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Abstract

We developed a new method for coarse-grained simulations of acid-base equilibria in

a system coupled to a reservoir at a given pH and concentration of added salt, that we

term the Grand-reaction method. More generally, it can be used for simulations of any

reactive system coupled to a reservoir of a known composition. Conceptually, it can

be regarded as an extension of the reaction ensemble, combining explicit simulations

of reactions within the system and Grand-canonical exchange of particles with the

reservoir. To demonstrate its strength, we applied our method to a solution of weak

polyelectrolytes in equilibrium with a reservoir. Our results show that the ionization

and swelling of a weak polyelectrolyte are a�ected by the Donnan e�ect due to the

partitioning of ions and by the polyelectrolyte e�ect due to electrostatic repulsion along

the chain. Both e�ects lead to a similar shift in ionization and swelling as a function

of pH; albeit for di�erent physical reasons. By comparison with published results,
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we showed that neglecting one or the other e�ect may lead to erroneous predictions

or misinterpretations of results. In contrast, the Grand-reaction method accounts for

both e�ects on the results and allows us to quantify them. Finally, we outline possible

extensions and generalizations of the method and provide a set of guidelines for its safe

application by a broad community of users.

Introduction

Reacting systems in contact with a reservoir are ubiquitous in chemical research, especially

in colloid and polymer science. Such a setup is widely used in applications to separate

or purify substances1,2, for example, in biomedical3�5 or water puri�cation6�10. Other ap-

plications include osmotic motors11 or sensors12. A speci�c example of such a system is

a solution of polyelectrolytes in a dialysis bag immersed in a reservoir solution at a given

pH and salinity, as shown in Fig. 1. The dialysis bag acts as a semipermeable membrane

that prevents polyelectrolytes from escaping and simultaneously allows the exchange of small

ions. Functionalized nanoparticles, proteins, or any other colloids in a solution separated by

a semipermeable membrane from the reservoir would be described similarly. If the polyelec-

trolyte contains weak acid groups, they undergo the following ionization reaction

HA −−⇀↽−− A− + H+ (1)

The equilibrium state of this reaction is determined by the pH and by the activity of other

ions in the system. The presence of charged polymers a�ects the partitioning of exchangeable

ions between the system and the reservoir, particularly a�ecting the concentration of H+ ions

in the system. Changing ion concentrations a�ect the reaction equilibrium, which in turn

a�ects the ion partitioning in a complicated feedback loop. To represent such a system in a

molecular simulation, this feedback loop must be described correctly.

Another example of a reacting system in equilibrium with a reservoir is a weak poly-
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Figure 1: Schematic illustration of the investigated system: A weak polyelectrolyte solution
in equilibrium with a reservoir at a given pH and salinity. The weak polyelectrolyte undergoes
an acid-base ionization reaction with the H+ ions present in the system. Some ions are
exchanged between the system and the reservoir, while the polyelectrolyte is present only in
the system. Due to the Donnan partitioning, the concentrations of exchangeable ions and
the pH di�er between the system and the reservoir.

electrolyte hydrogel immersed in a salt solution. The partitioning of salt ions and H+ ions

a�ects the swelling of polyelectrolyte hydrogels and is coupled to the ionization degree of the

polyelectrolyte. The ionization degree determines their ability to capture or release ions at

various pH values, which is relevant in desalination, controlled release and water treatment

applications9,10. Semipermeable membranes are not necessary for such systems because gel

connectivity prevents the polymer from escaping the gel phase without a�ecting its ability

to exchange ions with the surrounding reservoir solution. Similarly to gels, partitioning of

salt ions a�ects the stability of phase-separated complex coacervates2,13�16. The envisioned

application of coacervates to the separation of charged proteins2 requires understanding the

partitioning between the coacervate and the supernatant solution, while protein release by

a change in pH depends on the acid-base ionization equilibrium in the coacervate, which is

inherently coupled to the partitioning of H+ ions. Salt solutions in equilibrium with polymer

brushes, vesicles, or micelles could also be described similarly.

The Donnan theory qualitatively explains the coupling between the ion partitioning and

the ionization degree, by assuming an ideal (non-interacting) system but imposing the elec-

troneutrality constraint. In general, the Donnan partitioning of H+ ions suppresses the ion-

3



ization degree of a weak polyelectrolyte, which we will call the Donnan e�ect17,18. In contrast

to the Donnan e�ect, charge-charge repulsion in polyelectrolytes suppresses their ionization

as a consequence of strong electrostatic interactions between nearby ionized groups19�25.

A similar e�ect is well known in the pH-dependent ionization of charged colloids or pro-

teins26�29. Although the resulting shift in ionization response is qualitatively similar to the

Donnan e�ect, this shift originates from electrostatic interactions in a system, irrespective of

ion partitioning, and is absent without interactions. To distinguish this e�ect of interactions

from the Donnan e�ect, we will call it the polyelectrolyte e�ect.

Based on the above and to our best knowledge, a theory or a simulation method e�ciently

combining the Donnan e�ect with the polyelectrolye e�ect does not yet exist despite its

importance for solving many problems. The challenge in simulating such a system is deciding

on how to combine a method for simulating chemical reactions with a method for simulating

the exchange of particles with the reservoir. Although simulation methods for each of these

problems are available, combining them in one simulation is a complicated task. To underpin

the challenge, we brie�y describe some of the aforementioned methods, highlighting their

main approximations, limitations and possible artefacts.

Simulations in the Grand-canonical ensemble account for the coupling of a simulated sys-

tem with a reservoir. In its most common implementation30, one particle of the exchanged

species is inserted in, or deleted from, the simulation box. This change is accepted or re-

jected in a Monte-Carlo scheme with an acceptance probability that depends on the chemical

potential of the exchanged species in the reservoir and on the interactions in the simulation

box. When exchanging ionic species with the reservoir, inserting a single ion creates a non-

neutral simulation box. In the most commonly used periodic boundary conditions, such an

insertion results in an in�nite energy change; and this insertion should always be rejected.

The problem of electroneutrality can be overcome by exchanging an ion pair, or more gen-

erally an electroneutral group of cations and anions. In such a case, �uctuations in the ionic

composition are allowed, without a�ecting the electroneutrality. Non-reactive simple elec-
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trolyte solutions31, polyelectrolyte solutions32�34 and polyelectrolyte hydrogels35�39 coupled

to a salt solution reservoir have been simulated in this way. In a real system, electroneutral-

ity does not have to be strictly obeyed at a nanoscale, and imposing the electroneutrality

constraint arti�cially prevents some �uctuations. Therefore, Barr and Panagiotopoulos33

proposed relaxing the electroneutrality constraint using a modi�ed calculation of the elec-

trostatic interaction energy, which yields a high but �nite energy of a non-neutral simulation

box. Then, insertions and deletions of individual ions are allowed as the system remains elec-

troneutral on average. Regardless of how electroneutrality is treated, the Grand-canonical

coupling described above accounts for composition �uctuations due to Donnan partitioning

of ions but not for those due to chemical reactions involving those species in the system,

which cannot be exchanged with the reservoir.

To simulate chemical reactions in a closed system uncoupled to a reservoir, we can use

the Reaction-ensemble Monte Carlo40�42 (RxMC) or the Constant-pH43 (cpH) algorithm.

Various weak polyelectrolyte systems have been simulated using the RxMC method24,44�48

or cpH method25,49�57. In RxMC40, we simulate chemical reactions by inserting and deleting

particles, or by changing their chemical identity, as prescribed by the stoichiometry of the

simulated reaction. Chemical equilibrium is achieved by performing the reaction moves

in the forward and reverse directions of the reaction and by accepting the moves with a

Metropolis-like acceptance probability. Ionization in RxMC simulations of polyelectrolytes

is varied by varying its acidity constant, while the solution pH results from the simulation.

The constant-pH method has been introduced to enable simulations of acid-base ionization

reactions at a given pH43. Unlike RxMC, the pH of the system is an input parameter of the

cpH method, and directly enters the acceptance probability of the reaction move. However,

it is not explicitly coupled to the actual number of H+ ions in the simulation box, which

may lead to artefacts in speci�c situations58,59. Explicit coupling of the constant-pH method

to a reservoir is not straightforward because the pH of the system is needed as an input

parameter, but its relation to the pH of the reservoir is not known a priori. Explicit coupling
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of the RxMC method to the reservoir is a seemingly easier approach. However, this method

becomes highly ine�cient when the number of particles of one or more reacting species is low.

This limitation concerns especially H+ and OH� ions when simulating acid-base equilibria

close to pH = 7, because their concentration is very low58,60,61. Thus, combining these

methods for simulating reactive systems coupled to a reservoir is a complicated task.

Reactive systems coupled to a reservoir have been studied in the past, mostly by using

mean-�eld models and a partial-open ensemble62. The mean-�eld approximation represents

discrete particles by a density �eld (continuum), proportional to the average probability of

�nding a particle in a given region of space. A density distribution that minimizes the free

energy functional is then sought, for example, by solving the Poisson-Boltzmann equation63,

or a similar equation that also accounts for non-electrostatic interactions17,18,64�70. This

approximation inherently neglects some correlations but simultaneously renders the compu-

tational cost relatively insensitive to the actual number of particles in the studied system.

Such an approach has been used to study various systems in equilibrium with a bulk solution,

such as proteins treated as rigid objects27,71, �exible star-like polymers17,66,67,72,73, or planar

systems, including a polyelectrolyte brush grafted to a surface68,70,74�76. Polyelectrolyte hy-

drogels have been studied using a similar approach18,69,77�79. Coupling to the reservoir in the

partial-open ensemble can be achieved by setting suitable boundary conditions su�ciently

far from the object of interest (colloidal particle or polymer) and by explicitly accounting

for density gradients at the system-reservoir interface. Speci�cally, the pH and the concen-

trations of ions in the reservoir enter the mean-�eld models as a boundary condition for the

Poisson-Boltzmann (PB) equation. Then, the Donnan potential and electroneutrality of the

whole system follow as consequences of self-consistent determination of the electrostatic po-

tential. Chemical equilibria in mean-�eld models are determined by the local concentrations

of reacting species, coupled to the PB equation. To alleviate some limitations of mean-

�eld representation, studies have combined explicit-particle simulations with the mean-�eld

representation of exchangeable ions70,80�84, thereby coupling the exchangeable ions to the
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reservoir, as usually performed in the mean-�eld.

In contrast to the number of mean-�eld or mixed �eld+particle representations, coarse-

grained simulations of reactive systems explicitly coupled to a reservoir are scarce. Johnson

et al.41 were the �rst to propose an extension of the reaction ensemble by combining it with

the Gibbs ensemble to simulate phase equilibria. Interestingly, even though their article has

been cited many times, this aspect of their work seems overlooked. To some extent, their ap-

proach closely resembles the Grand-reaction method presented in this manuscript. However,

they focused on simulations of neutral systems in situations with equal pressures in both

simulation boxes. Moreover, they were not concerned with multi-component reaction equi-

libria at which some of the reacting species have very low concentrations or with situations

where some reactive species might not be exchanged. Recent simulations of weak polyelec-

trolytes by Rathee et al.60,61 also closely resemble our method. However, their coupling to

the multi-component reservoir was incomplete, which may lead to artefacts under speci�c

conditions. In addition, their simulation setup was ine�cient in simulating reactions close

to neutral pH, which is relevant in many applications. Thus, a robust simulation method

for coarse-grained simulations of acid-base ionization equilibria coupled to a reservoir at an

arbitrary pH has not been developed yet.

The Grand-reaction method, presented here, couples the Reaction-ensemble treatment of

the acid-base reactions and the Grand-canonical exchange of ions with a reservoir of a speci�c

composition. Below, we describe the simulation protocol and provide a set of guidelines to

ensure that the imposed pH and the numbers of all ions in the simulation box are consistent

with the reservoir composition. In principle, the Grand-reaction method enables simulations

at an arbitrary combination of pH and amount of added salt. In practice, this means that

the accessible pH range is no longer limited by the simulation algorithm; it is only limited

by the computational power, and by the quality of the model used to represent the ions and

colloidal particles in the implicit solvent. Furthermore, the method can be generalized to

other chemical reactions and other types of reservoirs.
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Theoretical Background

To introduce the notation and terminology, we brie�y recapitulate the main concepts in

describing the Donnan equilibria and chemical reaction equilibria. This is particularly im-

portant to avoid ambiguity in various notation conventions apparently used in literature.

We start by describing ideal systems without intermolecular interactions and then extend

them to interacting systems.

Donnan Contribution to the Chemical Potential

We de�ne the extended chemical potential µ of species i as

µi = µ	i + µid
i + µex

i + ziµ
don (2)

where zi is the valency of species i. We choose the convention that the reference chemical

potential µ	 is the chemical potential of an ideal gas at reference concentration c	 = 1 M.

The ideal contribution µid
i is de�ned as

µid
i = kBT ln

(
ci/c

	) (3)

where ci is the concentration of species i. The excess contribution µex
i arises due to in-

termolecular interactions, therefore µex = 0 for a non-interacting system. The Donnan

contribution µdon arises when minimizing the total free energy of (system + reservoir) under

the electroneutrality constraint (see Supporting Information, Section S4), such that µdon = 0

in the reservoir. The Donnan potential exactly cancels for any group of exchangeable ions

that is overall electroneutral because
∑

i ziµ
don = µdon

∑
i zi = 0. With the de�nition in

Eq. 2, the extended chemical potentials are equal in the system and in the reservoir. We use

the term extended to emphasize that our de�nition of the chemical potential includes the

Donnan term, which is usually omitted. This term must be accounted for when considering
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chemical reactions inside the system, involving constituents exchanged with the reservoir.

The µdon term leads to partitioning of ions between the system and the reservoir that is

commonly known as Donnan partitioning85�87.

The activity, a, can be de�ned in analogy with Eq.3, as:

µid
i + µex

i = kBT ln ai (4)

which is also used in the IUPAC de�nition of pH88,

pH = − log10 aH+ = − 1

kBT ln(10)

(
µid

H+ + µex
H+

)
(5)

In practice, the activity of a single ion cannot be measured. The pH measurement in the

system actually yields the activity of an ion pair89. In the chemical potential of an ion pair,

the Donnan contributions of the individual ions cancel each other. Therefore, the de�nition

of activity does not include the Donnan potential, and the values of pH measured in the

system and in the reservoir di�er by the Donnan term:

pHsys = pHres +
µdon

kBT ln(10)
(6)

Eq. 6 shows that a negative value of µdon implies pHsys < pHres, and a positive value of

µdon implies pHsys > pHres. Because we are mostly concerned with pH in the reservoir,

we introduce the convention that from now on pH without superscript always denotes the

pH measured in the reservoir. However, we keep the subscript whenever it is necessary to

distinguish the two contributions in one equation.

Donnan equilibrium with four ionic species

In Section S4, in the Supporting Information, we show that the partitioning of ions in a

system with four ionic constituents exchanged with the reservoir is described by the same
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equations as those used in the original Donnan description85, which has been formulated

for a two-component system in equilibrium with a one-component reservoir consisting of

only the salt ions (NaCl). The only di�erence is that the salt concentration in the original

formulation must be replaced by the reservoir ionic strength, Ires. In this treatment, all

species are treated as an ideal gas, with an additional constraint due to electroneutrality,

requiring that the chemical potentials of each mobile species be equal in the system and in

the reservoir, which leads to the well-known Donnan equations. The partition coe�cient ξi

of species i is de�ned as the ratio of its concentrations in the system and in the reservoir

ξi =
csys
i

cres
i

= exp

(
−ziµ

don

kBT

)
(7)

This can be expressed as

ξi =
csys
i

cres
i

=
zicA−

2Ires
+

√( cA−

2Ires

)2

+ 1 (8)

where Ires denotes the ionic strength in the reservoir, de�ned as

Ires =
1

2

∑

i

z2
i c

res
i (9)

We use the same formula to de�ne the ionic strength in the system, but in this case the

summation runs only over exchangeable ions, that is, it excludes the charges on the poly-

electrolyte.

Reaction equilibrium in a system coupled to a reservoir

Consider a general chemical reaction, de�ned by the stoichiometry:

νAA + νBB −−⇀↽−− νCC + νDD (10)
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where νA is the stoichiometric coe�cient of species A and analogously for all other species.

Equation 10 can be rewritten as
∑

i νiXi = 0, which uses the convention that ν < 0 for the

reactants (species on the left-hand side of Eq. 10) and ν > 0 for products (species on the

right-hand side of Eq. 10). The corresponding equilibrium constant is de�ned as

kBT lnK = −
∑

i

νiµ
	
i (11)

Chemical equilibrium requires that
∑

i νiµi = 0, which allows us to express K as

kBT lnK =
∑

i

νi(µi − µ	i ) =
∑

i

νi(µ
id
i + µex

i + ziµ
don) (12)

For reactions without changes in total charge, the Donnan contributions in Eq. 12 exactly

cancel each other. To demonstrate that this is indeed true, we can consider the following

thought experiment: First, let a system in contact with a reservoir reach equilibrium. Then,

create a closed system by removing the reservoir and by preventing further exchanges. Re-

moving the reservoir has no e�ect on the system composition and therefore on the chemical

equilibrium. The reaction equilibrium in this closed system depends on the concentrations

of individual species but not on the Donnan potential. Thus, the reaction equilibrium in

the system with the reservoir cannot explicitly depend on the Donnan potential either. In-

stead, the Donnan potential a�ects the partitioning of all exchangeable ions and therefore

the overall composition. This change in composition then a�ects the chemical equilibrium

of reactions in which some ionic species cannot be exchanged. When applying these consid-

erations to the acid-base ionization reaction in Eq.1, we derive the Henderson-Hasselbalch

equation in the form

log10

(
α

1− α

)
ideal
= pHsys − pKA = pHres − pKA +

µdon(α)

kBT ln(10)
(13)
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where α = cA−/(cA− + cHA) is the ionization degree of the acid; by writing µdon(α), we

emphasize that the Donnan contribution depends on α. Eq. 7 and Eq. 8 imply that if the

non-exchanged species is an anion A−, then µdon < 0 and pHsys < pHres. Therefore, the

Donnan partitioning decreases the ionization of the weak acid in the system in comparison

with the ionization in the reservoir. Conversely, if the non-exchanged species is a weak base,

then µdon > 0 and pHsys > pHres, again resulting in a decreased ionization. In an ideal

non-interacting system, only the Donnan contribution shifts the ionization equilibrium. In

an interacting system, both ionization equlibrium and Donnan partitioning are a�ected by

the interactions. One of the objectives of our work is to quantify the magnitude of these

contributions under various conditions.

Extension to non-ideal systems

All the above considerations can be easily extended to non-ideal interacting systems by

explicitly accounting for inter-particle interactions, which only a�ect the excess chemical

potentials. The excess chemical potentials are non-zero in an interacting system, and they

do not cancel for oppositely charged ions. Conversely, they tend to have the same sign

and they also have the same magnitude if the system is symmetric with respect to the sign

of all charges. This is an important di�erence between the excess contribution and the

Donnan contribution, which is also non-zero in an ideal system and exactly cancels for an

electroneutral group of ions.

Method

Required Input Parameters

The Grand-reaction method (G-RxMC) introduced in this work provides a general approach

to simulating multi-component reaction equilibria. We focus on coarse-grained models rep-

resenting an aqueous solution of ions in an implicit solvent that is treated as a continuum,
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characterized by the relative permittivity, εr. We de�ne the system by specifying its tem-

perature T , volume V , concentrations c of components that cannot be exchanged with the

reservoir, and chemical potentials µ of those components that the system can exchange with

the reservoir. Alternatively, we can specify concentrations of the reservoir constituents and

determine their chemical potentials. Furthermore, we specify the chemical reactions that

occur in the system by their stoichiometry and by their equilibrium reaction constants K.

We follow the IUPAC nomenclature90 to distinguish constituents of the system (all distinct

chemical species present in the system) and the components (constituents, whose concentra-

tion of which can be varied independently). In the general case, the reservoir may consist

of an arbitrary number of constituents, and the chemical reactions can involve arbitrary

constituents of the system.

In the example described below, we apply this general framework to a solution of weak

polyelectrolytes composed of N identical segments, in equilibrium with a salt solution at a

given pH and composition. In this example, the polymer chains represent the components

that are not exchanged with the reservoir, whereas the H+, Na+, Cl−, and OH− ions represent

the constituents that are exchanged with the reservoir. In general, in a reservoir containing

n ionic constituents, only (n − 1) chemical potentials can be speci�ed independently. The

chemical potential of the last constituent is determined by the electroneutrality constraint,

and this constituent is sometimes termed neutralizer44,91. In addition, the chemical poten-

tials of H+ and OH� are coupled by the ionic product of water, which provides a second

constraint. Therefore, in aqueous solutions only (n− 2) chemical potentials can be speci�ed

independently. Chemical reactions in our system comprise the acid-base ionization of the

weak polyelectrolyte, characterized by the acidity constant KA. All involved constituents are

described by short-range repulsive interaction potentials (to account for excluded volume)

and by the valency (which determines their electrostatic interactions). Polymer connectivity

is further characterized by an anharmonic bonding potential. Full details of the simulation

setup are given in the Supporting Information, Section S1.1 and Section S3.
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The simulation comprises a Monte Carlo (MC) procedure. This procedure samples the

simulated system in several orthogonal dimensions: (i) sampling particle positions while

maintaining a �xed composition; and sampling composition �uctuations due to (ii) chemical

reactions and to (iii) exchange of particles with the reservoir. Particle positions (displacement

moves) can be sampled using the standard Monte Carlo (MC) schemes or stochastic dynamics

algorithms58. These procedures are well established, and thus we will not discuss them

in detail. The moves accounting for chemical reactions (reaction moves) and the moves

accounting for exchange of particles with the reservoir (particle exchange moves) are crucial

for our method. Therefore, we will discuss them in detail below.

Accounting for Chemical Reactions

We used the reaction ensemble algorithm (RxMC) to account for chemical reactions taking

place in the system and for the exchange of particles between the system and the reservoir.

The RxMC method has been originally formulated for closed systems. To highlight that

our approach considers exchanges with a reservoir, we have designated it the Grand-reaction

method. The RxMC method de�nes the corresponding acceptance probability for the tran-

sition between the old state (o) and the new state (n) of a general reaction, Eq.1040,42,58:

PRxMC
on = min

{
1,
(
K
(
c	V NA

)ν̄)ξ∏

i

[
(N0

i )!

(N0
i + νiξ)!

]
exp (−β∆Uon)

}
(14)

where ν̄ =
∑

i νi, and NA is the Avogadro number. The extent of reaction ξ = 1 corresponds

to the forward direction (left to right) of the reaction in Eq. 10, and ξ = −1 corresponds

to the reverse direction. Note that the assumption of an implicit solvent implies that both

reactants and products in Eq. 10 are solvated molecules. Therefore, the equilibrium constant

K corresponds to the chemical reactions in solutions, whereas the original formulation of the

reaction ensemble40 considered equilibrium constants of gas-phase reactions. The tabulated

equilibrium constants for gas-phase reactions and solution reactions are related to each other
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by a constant factor that must be considered when performing quantitative predictions. The

conversion of the tabulated equilibrium constants for aqueous solutions into inputs of the

implicit-solvent simulations is described in the appendix of Ref58.

Acid/Base Ionization Reaction

Acid-base ionization equilibria involve a reaction with water, while water molecules are

not treated explicitly in the implicit-solvent representation. This requires special caution

when setting-up the reactions. The acidity constant, KA, is the equilibrium constant of the

ionization reaction in Eq. 1

kBT lnKA = µ	HA − µ	H+ − µ	A− (15)

By convention, the chemical potential of water is assumed to be constant and included in

the de�nition of KA. This is consistent with the implicit solvent representation assumed

in our simulation method. Although the water molecules are not represented by explicit

particles, they participate in the acid-base ionization, and the H+ and OH− ions produced

by the ionization reactions must be represented explicitly.

The acid ionization reaction, Eq. 1, can be conveniently simulated using the reaction

ensemble at pH . 4. At pH & 4, the concentration of H+ is so low that with a typical

simulation box size, L ≈ 20 nm, one obtains less than one H+ ion per simulation box, and

the reaction ensemble simulation becomes very ine�cient. At pH & 10, this problem can be

circumvented by re-formulating the ionization reaction using the OH− ion instead of H+, as

shown by Rathee et al.60,61. However, both H+ and OH� ions are scarce in the intermediate

pH range. In this case, sampling the ionization reaction using a similar approach would

cause a bottleneck in the whole simulation.

To avoid this bottleneck, we re-formulated the ionization reaction using other ions, and

modi�ed the equilibrium constants accordingly. By using the reaction in Eq. 1 and by adding
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or subtracting the chemical potentials or ions exchanged with the reservoir, we obtain

HA −−⇀↽−− A− + H+, kBT lnKA = −µ	
A− − µ	H+ + µ	HA (16)

HA + OH− −−⇀↽−− A−, kBT lnK ′A = −µ	
A− − µ	H+ + µ	HA − kBT lnKw (17)

HA −−⇀↽−− A− + Na+, kBT lnK ′′A = −µ	
A− + µ	HA + µNa+ − µ	Na − µH+ (18)

HA + Cl− −−⇀↽−− A−, kBT lnK ′′′A = −µ	
A− + µ	HA − µH+ − µCl− + µ	Cl (19)

The reactions Eq. 17�19 can be formally derived as the net result of combining Eq. 16,

representing the ionization reaction, with Eq. 21�24, representing the ion-exchange with the

reservoir, as de�ned in the next section. Note that only KA and K ′A are true equilibrium

constants because they are independent of the reservoir composition, whereas the constants

K ′′A and K ′′′A depend on the reservoir composition.

Finally, the ionization reaction must be coupled to the ion-exchange reaction with the

reservoir. Otherwise, the reaction equilibrium will not account for the Donnan partitioning

of ions, which would occur if we used the constant-pH method43 for simulating the ionization

equilibrium. The constant-pH method uses the pH in the system as input parameter, and

the ionization reaction is not directly coupled to the number of H+ ions in the simulation

box. This method accounts for the ideal-gas contribution (µid
H+) to the chemical potential

of H+ and for contributions due to two-body interactions (µex
H+) but not for the Donnan

contribution to µH+ and to the pH. Therefore, the constant-pH method cannot be used to

simulate a system in equilibrium with a reservoir.
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Connecting the System to the Reservoir

Exchanging Particles with the Reservoir

To couple the simulated system to the reservoir, we implemented the Grand-canonical par-

ticle exchange, using the acceptance probability30,92:

PGCMC
on = min

{
1,

(∏

i

[
N0
i !V c	

(N0
i + νiξ)!

]νiξ)
exp

(
β

[
ξ
∑

i

νi(µi − µ	i )−∆Uon

])}
(20)

The summation and the product in the acceptance probability both run over all constituents

exchanged in this move. For insertions, ξ = +1, whereas for deletions, ξ = −1. The

stoichiometric coe�cients νi determine the number of particles of constituent i exchanged

during the move (see also Eq. 21�Eq. 27).

Formally, we can write these particle insertions and deletions as chemical reactions in

which particles are created (inserted) in the simulation box or removed (deleted) from the

simulation box. To retain the electroneutrality of the simulation box, we always insert or

delete an electroneutral ion pair. Speci�cally, to simulate particle exchange with a reser-

voir consisting of Na+, Cl� , H+ and OH� ions, we de�ne the following reactions (ion pair

insertions):

∅ −−⇀↽−− Na+ + Cl−, KNa+Cl (21)

∅ −−⇀↽−− H+ + Cl−, KH+Cl (22)

∅ −−⇀↽−− Na+ + OH−, KNa+OH (23)

∅ −−⇀↽−− H+ + OH−, KH+OH ≡ Kw (24)

where Kw is the ionic product of water, and we de�ne the remaining equilibrium constants in

Equations 21 to 24 as kBT lnKi+j = (µi−µ	i )+(µj−µ	j ). The above equations are not inde-

pendent because adding (Eq. 21 + Eq. 24) is equivalent to adding (Eq. 23 + Eq. 22), thereby

resulting in the following stoichiometry constraint, equivalent to imposing electroneutrality
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of the reservoir:

KNa+ClKw = KH+ClKNa+OH (25)

Since Kw is �xed, only two of the three remaining constants can be chosen independently

to uniquely determine the system composition. In our case, we specify the remaining two

degrees of freedom by setting the pH and the concentration of added salt in the reservoir.

As an alternative to inserting or deleting ion pairs, particle identities can be exchanged,

which is formulated as reactions formally derived by subtracting (Eq. 23 − Eq. 24) and

(Eq. 22 − Eq. 24)

H+ −−⇀↽−− Na+ KNa−H = KNa+OH/Kw (26)

OH− −−⇀↽−− Cl− KCl−OH = KH+Cl/Kw (27)

where kBT lnKi−j = (µi − µ	i )− (µj − µ	j ).

Both the set of particle exchange moves in Eq. 21 − Eq. 24 and the identity exchange

moves in Eq. 26 and Eq. 27 are redundant. Therefore, a smaller subset of these moves is

su�cient to exchange any ion pair through a chain of several exchange moves. In terms of the

stoichiometric matrix formalism93, the stoichiometric matrix of the exchange reactions must

be of the same rank as the number of components. In Supporting Information, Section S6,

we show several examples of sets of exchange moves that are not su�cient, and we discuss

the resulting artefacts. A su�cient set of particle exchange moves can be realized by various

combinations of the above examples. In addition to the minimal set of moves, some redundant

combinations can also be included. Although they converge on the same �nal result, di�erent

moves may have di�erent sampling e�ciency under di�erent conditions94. In theory, we

could optimize the set of reactions on the �y by choosing the most abundant species under

given conditions95. In practice, we should use a redundant set of reactions to obtain a robust

combination of reactions in a broad range of pH values while adding only little computational

overhead due to the redundant moves. Choosing a redundant set of moves is especially useful
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when seeking to simulate a broad range of reservoir compositions, de�ned by the pH and

ionic strength, because we can then employ same set of moves for all simulations. For

example, the identity exchange moves in Eq. 26 and Eq. 22 are redundant with respect to

ion pair insertions. However, they have a very low computational cost and can accelerate

the simulation by e�ciently improving the sampling.

Linking the reservoir chemical potentials, its composition and pH

In experiments, it is often convenient to specify the reservoir according to its composition, for

example, by specifying the amount of NaCl that has been dissolved in water and the amount

of NaOH or HCl that has been added to adjust the pH. Conversely, our simulation algo-

rithm requires chemical potentials of the reservoir constituents as inputs. The relationship

between the composition and the chemical potentials in a reservoir consisting of interacting

particles is unique but complex. Therefore, we can either choose the chemical potentials and

determine the reservoir composition in an auxiliary simulation, or we can choose the com-

positions, and determine the corresponding chemical potentials. Two additional constraints

(the electroneutrality due to Eq. 25, and the value of Kw) imply that, in a reservoir with n

constituents, only (n−2) chemical potentials or concentrations can be chosen independently.

If we prefer to specify the reservoir by choosing the chemical potentials, we can choose

two of the chemical potentials {µNa+ , µCl− , (µH+ or µOH−)}, or equivalently two of the re-

action constants {KNa+Cl, KH+Cl, KNa+OH}. The salt concentration in the reservoir then

corresponds to the concentration of NaCl ion pairs, that is, cres
salt = min

(
cres

Na+
, cres

Cl−
)
. The

reservoir pH follows directly from µH+ . Depending on the pH, we can calculate the concen-

tration of additional NaOH or HCl as cNaOH = cres
Na+
− cres

salt or as cHCl = cres
Cl− − cres

salt. This

approach is termed herein the calibration method. If a speci�c value of cres
salt and a spe-

ci�c value of pH is desired, then the chemical potentials can be re-adjusted in an iterative

procedure, starting from the ideal-gas chemical potentials as an initial guess. However, in

such a case, it might be more convenient to use a di�erent approach, as described in the
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next paragraph.

If the reservoir is de�ned by its composition, then µid
i is known for all species, and µex

i can

be determined in an auxiliary simulation of the reservoir alone by direct calculation of µex

using Widom particle insertion96. In particular, the reservoir pH is not known a priori

and must be calculated from the determined µH+ . Then, the di�erence µi − µ	i = µid
i + µex

i

can be computed, which is the required input parameter of the acceptance probability in

Eq. 20. To ensure that the constraint kBT lnKw = µH+ + µOH− is satis�ed, the reservoir

concentration of H+ or OH� should be adjusted iteratively, based on the calculated µex. This

is especially important if the reservoir ionic strength, Ires, is dominated by the H+ or OH�

ions, that is, if pH . − log10 c
res
salt/c

	, or pOH . − log10 c
res
salt/c

	.

Neglecting the excess chemical potentials of ions in the reservoir and treating them as

an ideal gas may cause up to 50% deviations between the actual reservoir concentration and

the desired one. This estimate holds for 1:1 electrolytes at c ≈ 0.1 M, and even stronger de-

viations occur if multivalent ions are present in the reservoir. Therefore, the excess chemical

potential must be calculated for the speci�c model of ionic solution at a given reservoir com-

position. Furthermore, the simulation box used to determine the excess chemical potential

should be large enough to accommodate at least 100 ion pairs at the given concentration in

order to avoid problems with poor sampling97. Even if the concentration of some ion is low,

(for example, the concentration of H+ at pH ≈ 7), its excess chemical potential should be

accounted for.

Computational Details

Parameters of the simulated systems

We simulated 16 polyelectrolyte chains, composed of N = 50 monomers per chain, in an

implicit solvent and a cubic simulation box. We performed the simulations at di�erent con-

centrations of monomer units, cpol ∈ {2.41, 0.435, 0.147, 0.067, 0.058}M. The polyelectrolyte

consisted of weak acidic monomers, with a given pKA value. The system was in equilibrium
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with a reservoir corresponding to an aqueous solution of NaCl, whose pH was adjusted to

the desired value by adding HCl or NaOH. We simulated the polyelectrolytes with various

acidity constants, pKA ∈ {1, 2, 3, 4}, in equilibrium with reservoirs at various pH values,

1 ≤ pH ≤ 13, and at various NaCl concentrations, cres
salt ∈ {0.01, 0.02, 0.05, 0.1, 0.2}M. We

performed a set of auxiliary simulations of the reservoir with 400 ion pairs (Na+ and Cl� ,

800 ions in total) to determine the chemical potentials of individual ionic species in the reser-

voir. Further technical details of the simulations are provided in Supporting Information,

Section S1.

We used the reaction ensemble method to account for the ionization reaction. Because

of the broad range of pH, H+ and OH� ions were often scarce in our simulations. Therefore,

we implemented acid ionization reaction in Eq. 1 using reactions Eq. 16�Eq. 19. Na+ and

Cl− ions were always present in su�cient number: thus, the acid protonation reaction was

never a�ected by insu�cient sampling. The system was coupled to the reservoir using the

insertion of Na+Cl� ion pairs, Eq. 21 and by identity exchange moves, Eq. 26 and 27. The

G-RxMC method was implemented in the version 4.1 of the ESPResSo package, which we

used for our simulations98.

Computational Results

Donnan partitioning of ions

To validate our method of exchanging particles with the reservoir, we show that in the

absence of interactions the ion partitioning follows the Donnan theory. We examine the

Donnan partitioning in a three-component system in equilibrium with a two-component

reservoir: the charged species A−, which is present only in the system, and four di�erent

monovalent ions (two anions, two cations), which are exchanged between the system and the

reservoir. To present partitioning of both coions and counterions on one master curve, we

plot ξi for the coions (OH� and Cl� ) and (ξi − csys
A−/Ires) for the counterions (H+ and Na+).
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Figure 2: Comparison of ion partitioning predicted by the Donnan theory85,87 with simulation
results from the Grand-reaction method. The pink dashed line represents the generalized
Donnan prediction. Partitioning of various ions from the simulations is encoded by di�erent
symbol shapes, as indicated in the legend. The color code indicates the reservoir pH in each
simulation. Panel (a) shows the partitioning in an ideal system without interactions. Panel
(b) shows the partitioning in a polymer solution with interactions. We omitted data points
which correspond to fewer than 10 ions of a particular type in the simulation box because
they are a�ected by poor sampling. A plot with these data points is provided in Supporting
Information (Figure S1).

Both expressions dependent on csys
A−/2Ires and in an ideal system these expression are equal.

We can combine both expressions as

ξi − (zi − zA−)csys
A−/2I

res =





ξi, coions

ξi − csys
A−/Ires, counterions

(28)

where zi is the valency of ion i (zH+ = zNa+ = +1; zA− = zCl− = zOH− = −1). For the

counterions, we can interpret this expression as the partition coe�cient, corrected by the

number of ions neutralizing the polymer.

In Figure 2a, we show the ion partitioning from our simulations of a polyelectrolyte
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solution in equilibrium with a multi-component reservoir, de�ned by the pH and by the

amount of added salt. When switching o� all interactions (Figure 2a), our implementation

of particle exchange with the reservoir follows the Donnan partitioning (Eq. 28) in a broad

range of pH values. When switching on interactions (Figure 2b), the partitioning of ions

deviates from the Donnan prediction. All deviations shown in Figure 2b originate from

intermolecular interactions. The cohesive e�ect of electrostatics causes positive deviations

from the Donnan law, yielding higher concentrations of exchangeable ions in the system

than those predicted by Eq. 28. This is consistent with experimental observations of ion

partitioning in polyelectrolyte hydrogels99 and with our simulations of these systems38,78,79.

Ionization with Donnan partitioning: ideal vs. non-ideal system

To demonstrate the importance of coupling acid-base ionization with Donnan partitioning

of ions, we examine its e�ect on the ionization degree. Similarly to the previous section,

we �rst investigate the ideal system for which we can obtain exact analytical results as

a reference. Without the Donnan partitioning, the ionization degree α(pH) follows the

Henderson-Hasselbalch, Eq. 13 (denoted as HH in Fig.3a). By coupling the HH equation

with the Donnan partitioning, Eq. 28, we obtain the results denoted as HH+Donnan. In

Fig.3a, we show that the Grand-reaction method (G-RxMC) captures both e�ects correctly,

it reproduces the HH+Donnan reference results. Under the given conditions, the Donnan

e�ect decreases the ionization and shifts the titration curve to a higher pH value by ≈ 1

at α = 0.5. We compare the above results with what we call the Grand-constant-pH (G-

cpH) method, which resembles the G-RxMC method but treats the acid-base equilibrium

using the cpH method instead of the RxMC method. Further details of the G-cpH method

are given in Section S2 in Supporting Information. In contrast to the G-RxMC method,

the G-cpH method reproduces the reference HH results without the Donnan partitioning,

demonstrating that the cpH method fails to capture the Donnan contribution, even when

the simulation includes ion exchange with the reservoir. Hence, the cpH method cannot be
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Figure 3: Ionization degree as a function of reservoir pH, comparing di�erent methods. The
top panel (a) shows an ideal system, while the bottom panel (b) shows an interacting system.
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the polyelectrolyte e�ect at α = 0.5. Arrows indicate the magnitude of the polyelectrolyte
e�ect �P�, and the Donnan e�ect �D�.
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used to simulate a system in equilibrium with a reservoir.

Interestingly, Fig 3b shows that a G-cpH simulation of the same system with interactions

yields a shifted and deformed titration curve that almost coincides with the ideal results with

the Donnan partitioning (HH+Donnan). However, the physical reasons for this shift are

di�erent: in the cpH simulation, it is caused predominantly by repulsion among the charges

on the chain; in contrast, in the case of HH+Donnan, it is caused by di�erent concentrations

of H+ ions in the system and in the reservoir. The former is the polyelectrolyte e�ect and the

latter is the Donnan e�ect. Only the G-RxMC simulation captures both e�ects correctly, and

yields a titration curve with a shift that is roughly the sum of the individual contributions.

The magnitude of the Donnan e�ect in the interacting system can be estimated by considering

the di�erence between the G-RxMC and G-cpH result. Similar to the non-interacting case,

this estimate yields a shift of ≈ 1 on the pH scale at α = 0.5, demonstrating that the

shift in the titration curve due to the Donnan e�ect adds to the polyelectrolyte e�ect. This

additivity follows from the fact that at a �xed Ires the Donnan potential depends mainly

on the concentration of ionized groups in the system, which is uniquely determined by the

ionization degree α.

We should consider limiting cases when either the polyelectrolyte e�ect or the Donnan

e�ect dominates. According to Fig 2, the Donnan e�ect is strong when cA− > 2Ires. There-

fore, this e�ect is particular important at high polymer concentrations or at low salinity of

the reservoir. At polymer concentrations lower than Ires, the Donnan e�ect becomes small.

Thus, the magnitude of the Donnan e�ect varies as a function of the polymer concentra-

tion, pH and reservoir salinity. The polyelectrolyte e�ect primarily depends on interactions

between neighboring charges on the chain. These interactions are controlled by the charge

density on the chain and by the electrostatic coupling, and they are strong for su�ciently

long chains, N & 50, and absent in short chains. For a given combination of a polyelectrolyte

and a solvent, the polyelectrolyte e�ect increases with the ionization degree, qualitatively

similarly to the Donnan e�ect. Therefore, one of these e�ects can be easily mistaken for

25



the other. As a rule of thumb, we can estimate that the polyelectrolyte e�ect will dominate

at low polymer concentrations when the Donnan e�ect is weak even if the polymer is fully

ionized. In turn, the Donnan e�ect will dominate when the fully ionized polymer has a low

charge density but the polymer concentration in the system is su�cient to strengthen the

Donnan e�ect. In many relevant situations, none of the limiting cases is applicable, and

both e�ects may be of comparable magnitude. This complicated interplay between the poly-

electrolyte e�ect and the Donnan partitioning makes it di�cult to discern a priori, which of

these e�ects is dominant, if any. Therefore, both of these e�ects must be correctly captured

in simulations.

E�ect of pH and ion partitioning on chain swelling

After assessing the Donnan e�ect and the polyelectrolyte e�ect on the ionization, we now ex-

amine how the salt and polymer concentrations a�ect the properties of weak polyelectrolytes

under various conditions. We compare not only the degree of ionization but also the chain

swelling, which can be directly determined in experiments. The variation of end-to-end dis-

tance as a function pH (Figure 4) shows that, unlike the ionization degree, chain swelling is

a�ected by the reservoir pH on both ends of the pH scale. To di�erentiate the Donnan e�ect

from the polyelectrolyte e�ect, we compare G-RxMC simulations (showing both the poly-

electrolyte and the Donnan e�ect) with G-cpH simulations (showing only the polyelectrolyte

e�ect). Both the polyelectrolyte e�ect and the Donnan e�ect suppress polymer ionization,

shifting the titration curves to higher pH values (Figure 4a and c).

At a constant polymer concentration, cpol = 0.06M (Figure 4a), the Donnan e�ect and

the polyelectrolyte e�ect both increase with the decrease in salt concentration. At cres
salt =

0.10M & cpol, the small di�erence in the shift of G-cpH and G-RxMC curves indicates

that the Donnan e�ect is weak, shifting the titration curve on the pH scale by ≈ 0.1. In

contrast, the shift of both curves by ≈ 1 with respect to the Henderson-Hasselbalch (HH)

curve indicates that the polyelectrolyte e�ect prevails. At cres
salt = 0.02M . cpol, the G-RxMC

26



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α

p
K

A
a)

0.25

0.30

0.35

0.40

0.45

R
e
/

R
m

a
x

p
K

A

b)

1 3 5 7 9 11 13

pH

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α

p
K

A

c)

1 3 5 7 9 11 13

pH

0.25

0.30

0.35

0.40

0.45

R
e
/R

m
a

x

p
K

A

d)

c res
salt = 0.02 M

c res
salt = 0.10 M

cpol = 0.06 M

cpol = 0.43 M

G-RxMC
G-cpH
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curve is shifted to a higher pH by ≈ 0.5 further than the G-cpH curve, indicating that the

Donnan e�ect is stronger; however, the polyelectrolyte e�ect still dominates the overall trend.

The end-to-end distance of the chain, Re(pH), (Fig. 4b) follows the same qualitative trend

for both salt concentrations: an increase at pH ≈ pKA caused by the increase in polymer

ionization, followed by a plateau at 7 . pH . 11 when the polymer is fully ionized, and

�nally a de-swelling at pH & 12 when the ionic strength is dominated by the OH− ions.

The system at a lower cres
salt exhibits a higher swelling in the plateau region because its ionic

strength is lower.

At a constant salt concentration, cres
salt = 0.02M (Figure 4c), the Donnan e�ect increases

with the increase in the polymer concentration. However, the polyelectrolyte e�ect decreases

with the increase in polymer concentration because the counterions of the polymer increase

the ionic strength in the system. Therefore, the shift of the titration curve due to the

polyelectrolyte e�ect in the G-cpH simulations at cpol = 0.43M is only ≈ 0.8 while at

cpol = 0.06M it is ≈ 1.2. The combination of the Donnan e�ect and the polyelectrolyte

e�ect in G-RxMC simulations yields almost identical shifts of α(pH) curves at both polymer

concentrations in Figure 4c. The comparison of G-RxMC and G-cpH simulations in Figure 4c

shows that, at lower polymer concentrations a rather weak Donnan e�ect (≈ 0.5 on the pH

scale) is combined with a rather strong polyelectrolyte e�ect (≈ 1.2); In contrast, at higher

polymer concentrations, both e�ects have similar magnitudes, shifting the curves by ≈ 0.8

on the pH scale. The end-to-end distance (Figure 4b and d) is a function of the degree of

ionization and of the ionic strength in the system. Therefore, even though the α(pH) curves

at constant salt concentration are nearly identical in Fig. 4c, they result in a mutually

shifted swelling response, Re(pH) in Fig. 4d. The magnitude of Re(pH) is always higher at

cpol = 0.43M because the ionic strength in the system at a given α(pH) increases with cpol.

Thus, when comparing the chain swelling at di�erent polymer concentrations and at a �xed

salt concentration, we observe a cancellation of the e�ects on the α(pH) curves but not on

the Re(pH) curves.
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In general, this cancellation of e�ects, which we have demonstrated in special cases dis-

cussed in Fig. 4, is unexpected. Therefore, neglecting either the Donnan or the polyelec-

trolyte e�ect would lead to incorrect predictions. Furthermore, in Supporting Information,

Section S9, we compare the G-RxMC simulations with simulations of a closed system, show-

ing that Donnan partitioning cannot be neglected when simulating ionic polymers in equi-

librium with a reservoir. Thus, both Donnan and polyelectrolyte e�ects must be captured

to correctly predict α(pH) and Re(pH) in a broad range of parameters.

The non-monotonic swelling as a function of pH and salt concentration, shown in Fig. 4,

has been previously known from experiments and from numerical mean-�eld models; how-

ever, it has never been observed in coarse-grained simulations. Borisov et al.100 predicted a

non-monotonic swelling of star-like weak polyelectrolytes as a function of salt concentration

and explained this e�ect by similar arguments: starting from low ionic strength, the stars

�rst swell because their ionization degree increases with the ionic strength; at higher ionic

strength, the fully ionized stars shrink because of ionic screening. A similar e�ect on the

swelling of weak polyelectrolyte micelles was experimentally observed by Mat¥jí£ek et al.101.

Later, they con�rmed this e�ect in simulations, combining explicit-particle representation of

polymers with mean-�eld treatment of exchangeable ions on the Poisson-Boltzmann level102.

The molecular theory of Longo et al.82 also combined molecular representation of polyelec-

trolytes with mean-�eld treatment of exchangeable ions to observe a similar e�ect on the

swelling of polyelectrolyte gels grafted to a surface. In the cases mentioned above, the mean-

�eld representation of exchangeable ions made it possible to set the reservoir concentrations

as boundary conditions. To our knowledge, our current results are the �rst demonstration

of this e�ect in explicit-particle simulations.

Relation to previously published simulations

We compared our simulation method and our �ndings regarding the Donnan e�ect and the

polyelectrolyte e�ect with similar methods and systems studied in literature. Rathee et
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al.60,61 published two articles where they investigated weak polyelectrolytes in equilibrium

with two independent reservoirs; one consisting of a salt solution (NaCl or MgSO4 at various

concentrations) and the other consisting of KOH at c = 10−2.7 M, to ensure a constant value

of pH = 11.3. They varied the polymer ionization by varying the reaction constant of the

ionization reaction. They formulated the acid-base reaction using Eq. 17, which allowed

them to conveniently carry out simulations at pH > 11, and they mentioned that such a

setup would become ine�cient at lower pH values. Because they coupled the system to two

independent reservoirs, they obtained di�erent Donnan potentials and therefore di�erent

Donnan e�ects for the salt ions (Na+Cl� ) and for the (K+OH� ) ion pair. Consequently, the

Donnan e�ect on the ionization reaction was controlled by the ionic strength in the KOH

reservoir. We estimate that, in their �rst publication61, the Donnan e�ect should be rather

weak because the monomer concentrations were on the same order of magnitude as the ionic

strength in the KOH bath. In addition, opposite charges on weak acids and bases in their

system o�set each other; further suppressing the Donnan e�ect. In their second publication60,

they employed a rather high concentration of ionizable monomers cpol ≈ 0.05 M � 10−pOH.

From the HH+Donnan model, we estimate a shift in their titration curve of ≈ 0.4 units

of pKA due to the Donnan e�ect (see Supporting Information, Section S6). This shift

signi�cantly contributed to the observed overall shift in the titration curve (≈ 2.6 units of

pKA). However, they interpreted their results solely in terms of the polyelectrolyte e�ect

and hydrophobic interactions, and they did not mention the Donnan e�ect.

In contrast to the simulation studies discussed in the previous paragraph, results from

mean-�eld calculations of swelling of weak polyelectrolyte gels have been interpreted solely

in terms of the Donnan e�ect, neglecting the polyelectrolyte e�ect. For example, Polotsky

et al.103 developed a mean-�eld model of weak polyelectrolyte gels, which accounted for the

e�ect of Donnan partitioning on the ionization but completely neglected the polyelectrolyte

e�ect. Therefore, their results103 for polymer concentrations higher than salt concentrations

remain valid because the Donnan e�ect should dominate, while their results for polymer
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concentration lower than salt concentration should be revisited because the polyelectrolyte

e�ect could dominate. In our recent publication18, we used a numerical mean-�eld model that

accounts for inter-particle interactions to model the swelling of weak polyelectrolyte gels in

salt solutions as a function of reservoir pH. We have shown that the predicted shift in swelling

and ionization of these gels as a function of pHres can be quanti�ed in terms of the local

pH inside the gel (pHsys). In the current context, the di�erence (pHsys − pHres) is caused by

the Donnan e�ect (cf. Eq.6 and Eq.13). After subtracting the Donnan e�ect, our results18

suggest that the polyelectrolyte e�ect should cause a negative shift with respect to pH.

Originally, we ascribed this negative shift to the inhomogeneous charge distribution within

the gel. In the light of our current �ndings, we should ascribe this negative shift to artefacts

of the spherically averaged mean-�eld representation that strongly underestimates the direct

interaction between neighboring charges, which are the main cause of the polyelectrolyte

e�ect.

The above account of published literature is by no means exhaustive. It should rather

serve as a set of illustrative examples showing that various simulation and theoretical pre-

dictions for charge-regulating macromolecular systems in equilibrium with a reservoir should

be revisited. Many such results have been interpreted in terms of either the Donnan e�ect

or the polyelectrolyte e�ect but not both. Our current results show that, in some cases, such

an approximation might be well justi�ed, whereas it might lead to erroneous predictions in

other cases.

Conclusion and outlook

In this study, we presented the Grand-reaction method (G-RxMC) for coarse-grained sim-

ulations of ionization equilibria coupled to a reservoir in a broad range of pH values. The

pH and salt concentration are de�ned by the composition of the reservoir with which the

system can exchange ions. Our method for simulating particle exchanges with the reservoir
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and the ionization reaction naturally avoids known bottlenecks of previous simulations and

nonphysical parameter combinations (pH and ionic strength) that can occur when using

the constant-pH method. Our combination of particle exchanges enables e�cient simula-

tions also close to neutral pH, as long as the amount of added salt is not extremely low,

cres
salt & 10−4 M. A combination of neutral pH and low salt can still be simulated at moderate

cost if �nite-size e�ects are carefully considered. We will discuss this issue in full detail in

a forthcoming publication. With the Grand-reaction method, the accessible pH range is no

longer limited by the simulation algorithm. It is only limited by the applicability of the

underlying model of ionic solution, as de�ned by the interaction potentials.

We demonstrated the importance of such a method by simulating a solution of weak

polyelectrolytes as a model system. In the absence of interactions, our simulations repro-

duced the Donnan partitioning generalized to a multi-component reservoir. The Donnan

e�ect due to ion partitioning decreases the pH in the system, and decreases ionization of

the weak polyacid that cannot be exchanged between the reservoir and the system. In the

presence of interactions, deviations from the ideal Donnan partitioning can be explained by

charge-charge correlations. Charge-charge repulsion also leads to a shift in titration curves

that is known for weak polyelectrolytes in solutions and termed as the polyelectrolyte e�ect.

The titration curve of a polyelectrolyte solution in equilibrium with a reservoir is a�ected by

both, Donnan e�ect and polyelectrolyte e�ect, and these e�ects depend on di�erent param-

eters. The Donnan e�ect depends on the ratio of polymer concentration and ionic strength

in the reservoir, whereas the polyelectrolyte e�ect depends on the separation of charges on

the polymer chain and on the ionic strength in the system. Both e�ects shift the titration

curve α(pH) to higher pH values. In special cases, both e�ects can lead to almost identical

results, although for di�erent physical reasons. In some limiting cases, one e�ect prevails,

whereas the other one is negligible. In general, their overall in�uence is additive. Therefore

neglecting one or the other might lead to erroneous conclusions. At pH & pKA, the swelling

of polyelectrolytes is a�ected by both e�ects similarly to the titration curves. In addition,
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the swelling is a�ected by the Donnan e�ect also at pH� pKA, when the polyelectrolyte is

fully ionized. By confronting selected published results we showed that it might be necessary

to revisit some observations that have been interpreted solely in terms of the Donnan or the

polyelectrolyte e�ect.

The presented method and simulation protocols can be generalized beyond our example

system of a polyelectrolyte solution. The method can be used for any macromolecular or

colloidal system in equilibrium with a reservoir at a given pH and salt concentration. The

same principles and guidelines can be applied to simulate systems with weak polyelectrolyte

gels in a reservoir or attached to a surface, interpolyelectrolyte complexes in equilibrium

with a reservoir solution, peptides or proteins in salt solutions. In such systems, the e�ect

of pH and salt on ionization is routinely exploited in experiments, and the observations are

often interpreted assuming ideal ionization response. Our method enables us to predict the

properties of such systems from computer simulations previously unavailable in the literature.

Extensions of the Grand-reaction method to a reservoir with more components, or to mul-

tiple chemical reactions in the system, are straightforward. Another extension of our method

is a more sophisticated treatment of ions, such that they do not have identical parameters.

We can account for the di�erent e�ective radii of the hydrated ions104, which a�ects their

excess chemical potential. The in�uence of multivalent ions could also be simulated using

this approach. In both cases, the calculation of reservoir chemical potentials would need to

be modi�ed because di�erent interaction parameters imply di�erent excess chemical poten-

tials of each ion. In such cases, the calibration method might be more suitable to determine

the reservoir chemical potentials. Finally, we point out that the Grand-reaction method is

not suitable for simulating a bulk solution of weak polyelectrolytes at a given pH. For such

a system we recommend using the constant-pH method43 with an ionic strength matched to

the bu�er composition at the desired pH. Conversely, the Grand-reaction method should be

used for simulating any system where partitioning of ions between two phases is relevant.
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S1 Technical details of the simulations

S1.1 Simulation protocol

The Langevin equation was integrated by a Velocity Verlet algorithm with a time step of

δt = 0.01σ(m/kBT )1/2 where m is the mass of the particles.∗

Equilibration run consisted of 50 cycles, and each equilibration cycle consisted of 16N+10

reaction moves, and 1000 + 2N MD integration steps followed by extensive additional equi-

libration with 1.6× 105 reaction moves. The production run followed after the equilibration,

∗Note that mass of the particles is arbitrary. All the presented results are invariant with respect to it.

However, the ratio of the particle mass and energy determines the stability window of the algorithm. Also,

the time evolution of the system is nonphysical, as the Monte Carlo reaction moves do not include the

physical dynamics.
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with each production cycle consisting of 3N + 20 reaction moves, and 1000 + 2N MD inte-

gration steps. We calculated ensemble-averaged values of the observables from the con�gu-

rations after each production cycle. To assess the statistical accuracy of our data, we used

the correlation-corrected error estimateS1. The total length of the simulation was adjusted

to typically yield ≈ 500 uncorrelated samples of the slowest decorrelating observable (i.e.

the end-to-end distance). Depending on the system parameters, this was typically achieved

within 2× 103 − 2× 104 production cycles per simulation.

S1.2 Auxiliary simulations of the reservoir

To determine excess chemical potentials in the reservoir, we use the direct calculation by

Widom particle insertion, outlined in the main text. Because all ion types in our model have

identical interaction parameters, except for valency, their excess chemical potentials are the

same, and depend only on the ionic strength but do not depend on the ion type. Therefore,

we calculated the excess chemical potential of individual ions as one half the excess chemical

potential of the ion pair.

We performed a set of auxiliary simulations of the reservoir with 400 ion pairs (Na+

and Cl� , 800 ions in total), and with the simulation box size set obtain the desired ionic

strength. We measured excess chemical potential as a function of ionic strength, µex
i (Ires),

and interpolated these data points to obtain the excess chemical potential at an arbitrary

value of ionic strength within the relevant range (see Supporting Information, Section S7).

We determined the reservoir composition at a given pH and salt concentration that

corresponds to a salt solution (NaCl), the pH of which was adjusted to the desired value by

adding NaOH or HCl. To obtain the composition we de�ned the following functions:

∆pH(cresH+ , cresOH−) = pH− pHobserved(c
res
H+ , cresOH−) (S1)

∆pOH(cresH+ , cresOH−) = pKw − pH− pOHobserved(c
res
H+ , cresOH−) (S2)
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where pH refers to the target value, while pHobserved and pOHobserved are functions of c
res
H+ and

cres
OH− :

pHobserved(c
res
H+ , cresOH−) = − log10(c

res
H+/c	) + βµex(Ires(cresH+ , cresOH−))/ ln(10) (S3)

pOHobserved(c
res
H+ , cresOH−) = − log10(c

res
OH−/c	) + βµex(Ires(cresH+ , cresOH−))/ ln(10) (S4)

Then we expressed the reservoir ionic strength in terms of the salt concentration

Ires(cresH+ , cresOH−) =
1

2

(
cresH+ + cresOH− + cresNa+ + cresCl−

)
= cressalt +

1

2

(
cresH+ + cresOH− +

∣∣cresH+ − cresOH−
∣∣)

(S5)

in order to obtain ∆pH and ∆pOH as a function of cresH+ or cres
OH− , for a given value of cressalt and

pH. Finally, we used standard multidimensional root �nding algorithmsS2 to �nd the roots of

Equation S2, where ∆pH = 0 and ∆pOH = 0. As an initial guess to �nd the roots, we used

the concentrations of the corresponding ideal system: cresH+ = 10−pHc	, cres
OH− = 10pKw−pHc	.

S2 Details of the G-cpH method

In general, the G-cpH method resembles the G-RxMC method, with the di�erence, that the

RxMC method is replaced with the cpH method. Another important di�erence is the role of

the H+ ions in the cpH method. In the constant-pH method, the H+ ions generated in the

reactions of Eq. 1 are treated as dummy particles whose role is to retain overall electroneu-

trality of the simulation box. Unlike the reaction ensemble, the acceptance probability of

the constant-pH method does not explicitly depend on the number of H+ ions in the sim-

ulation box. The H+ ion acts just as a neutralizer that ensures overall electroneutrality of

the simulation box. Therefore, the number of H+ and OH� ions in the simulation box can

be almost arbitrary. The only requirement is that their number is su�cient to allow for the

protonation reaction to take place at any moment of the simulation.
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If H+ ions are the minority species in the simulation box, then there is a risk that

the protonation reaction would be prevented by the absence of explicit H+ ions. Similar

situation was the bottleneck of simulations by Rathee et al.S3,S4, where the absence of OH�

ions prevented them from simulating at pH ≈ 7. In such case, the ionization reaction can

be implemented using some other ion as neutralizer. For example one can use Na+ ions

HA −−⇀↽−− A− + Na+ (S6)

Because the neutralizer plays no role in the constant-pH acceptance probability, one should

use the same value of equilibrium constant irrespective of the type of neutralizer (Eq. S6 or

Eq. 1). The reaction in Eq. S6 can be regarded as two consecutive reactions: (1) ionization

of the acid that generates the H+ ion, and (2) exchange with the reservoir, replacing the

H+ with the Na+ ion. By choosing an ion as neutralizer which is present in su�cient high

numbers, one can ful�ll the requirement, that the protonation reaction can take place at any

moment of the simulation.

S3 Interaction Potentials and parameters

Ions were represented by the primitive model, characterized by the valency and e�ective ion

size. For simplicity, the short-range interactions (excluded volume) of all particles (small ions

and monomers of the polymer) were represented by the purely repulsive WCA potentialS5,

with the e�ective particle size σ = 0.355 nm and strength of the interaction ε = 1.0 kBT . The

FENE potential was used to account for polymer connectivity, with the typical Kremer-Grest

parametersS6 kFENE = 30.0 kBT/σ
2, and Rmax = 1.5σ. Functional forms of the interaction

potentials are given in Section S3 of the Supporting Information. The electrostatic coupling

strength is de�ned by the Bjerrum length λB = 2.0σ = 0.71 nm that approximately corre-

sponds to aqueous solution at T = 298 K. We use the value of pKw = 10−14 that corresponds

to the same temperature.
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In the simulations all particles interact via the WCA potentialS5:

EWCA(r) =





4ε
[(

σ
r

)12 −
(
σ
r

)6]
+ ε, if r < 21/6σ

0, else

where r is the distance between two particles.

Bonds between particles in the polymers are introduced via the FENE potentialS6:

EFENE(r) = −1

2
kFENER

2
max ln

(
1−

[
r

Rmax

]2)

where Rmax is the maximal stretching of the bond, kFENE a constant that de�nes the strength

of the bond. If the particle distance r approaches ∆Rmax, then the bond potential diverges.

The Coulomb interaction energy of two charges is given by:

Eel(r) = λBkBT
z1z2
r

(S7)

where z1 and z2 are the valencies of the two charges, kBT the thermal energy and λB the

Bjerrum length. In our simulations this interaction is handled via the P3M algorithmS7.

S4 The Donnan Equilibrium

S4.1 Donnan potential from constrained minimization of the free

energy

Express the total Gibbs free energy of the system and the reservoir as a sum of chemical

potentials of each exchangeable species:

G =
∑

j

(µ∗j)
sysN sys

j +
∑

j

(µ∗j)
resN res

j (S8)
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where µ∗j denotes the chemical potential of species j. We use
∑

j to denote the sum which

runs over all exchangeable species. For simplicity, further assume that all ionic species in the

reservoir can be exchanged with the system, and the system contains additional ionic species

that cannot be exchanged with the reservoir. Assume that particles cannot be created or

destroyed but they can only be exchanged between the system and the reservoir, such that

the total number of each species is conserved

Nj = N sys
j +N res

j = const (S9)

and we can rewrite G in terms of N sys
j only:

G =
∑

j

(µ∗j)
sysN sys

j +
∑

j

(µ∗j)
res(Nj −N sys

j ) =
∑

j

N sys
j ((µ∗j)

sys − (µ∗j)
res) +Nj(µ

∗
j)

res (S10)

Introduce the electroneutrality constraint in the system

∑

s

zsN
sys
s = 0 (S11)

Note that this sum
∑

s runs over all species in the system. Provided that reservoir was

electroneutral before any exchange, then Eq.S9 ensures that it remains electroneutral also

after the exchange. We minimize G with respect to N sys
i , introducing the Lagrange multiplier

λ to account for the electroneutrality constraint:

0 =
∂G

∂N sys
i

(S12)

=
∂

∂N sys
i

(∑

j

N sys
j ((µ∗j)

sys − (µ∗j)
res) +Nj(µ

∗
j)

res − λ
∑

s

zsN
sys
s

)
(S13)

= (µ∗i )
sys − (µ∗i )

res − λzi (S14)
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We obtain a trivial solution to Eq.S14 if csyss = cress for all species s, and λ = 0. If the total

charge of the non-exchangeable species in the system and in the reservoir di�ers, then we

obtain a non-trivial solution with λ 6= 0. Introducing the Donnan potential as µdon ≡ λ 6= 0,

we can express the non-trivial solution

λzi ≡ ziµ
don = ((µ∗i )

sys − (µ∗i )
res) (S15)

The above equation shows that chemical potentials in the system and in the reservoir di�er

by the term µdon, that arises in an ideal system as a consequence of the electroneutrality

constraint. Furthermore, since λ is a single constant for all ions, also µdon is a single constant

for all ions. Eq.S15 also implies that the Donnan contributions exactly cancel within any

group of exchanged ions that is overall electroneutral.

At �rst sight, Eq. S15 seems to break the common notion that chemical potentials of

each species in the system and in the reservoir are the same. However, chemical potential of

individual ions are ill-de�ned in a system that strictly obeys electroneutrality. On the other

hand, the chemical potential of an ion pair is well-de�ned, and it is equal in the system and

in the reservoir because the Donnan terms exactly cancel. Then one can interpret the term

µdon as an additional term that one needs to add to the chemical potential in order to allow

for a formal de�nition of single-ion chemical potential in an electroneutral system.

To achieve this, consider �rst the conventional de�nition of chemical potential in a single-

phase system without the Donnan contribution:

µ∗i = µ	i + µid
i + µex

i = µ	i + kBT ln(ci/c
	) + µex

i (S16)

where µ	i is the reference chemical potential, µid
i is the ideal chemical potential, ci is the

concentration, c	 is the reference concentration, and µex
i is the excess chemical potential of

species i. Now, we can introduce a new de�nition of the (extended) chemical potential µ, that

includes the Donnan contribution. Furthermore, we apply a convention that (µdon)
res

= 0 to
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obtain

µsys
i = µ	i + (µid

i )
sys

+ (µex
i )sys + ziµ

don =µ	i + kBT ln(csysi /c	) + (µex
i )sys + ziµ

don (S17)

µres
i = µ	i + (µid

i )
res

+ (µex
i )res =µ	i + kBT ln(cresi /c	) + (µex

i )res (S18)

With the above de�nitions, the extended chemical potentials of all exchangeable species are

equal in the reservoir and in the system,

µsys
i = µres

i (S19)

To calculate the Donnan potential, we can rewrite the electroneutrality constraint in

terms of concentrations as
∑

j

zjc
sys
j = −

∑

k

zkc
sys
k (S20)

where the summation
∑

k runs over all non-exchangeable species in the system. From Eq. S19

we obtain for all exchangeable species

csysi = cresi exp
(
∆sys−resµ

ex
i + ziµ

don
)

(S21)

where ∆I−IIµex
i = (µex)II − (µex)I . Combining the two above equations, we obtain

∑

j

zjc
res
j exp

(
∆sys−resµ

ex
j + µdonzj

)
= −

∑

k

zkc
sys
k (S22)

which can be solved for µdon if values of µex
i are known. This shows that µdon depends on

the concentrations of the exchangeable species in the reservoir, on the charge concentration

of the non-exchangeable species in the system, and on the di�erence of the excess chemical

potentials of the exchangeable species in the system and the reservoir. For a system with

zero excess chemical potential, we can calculate µdon analytically (see below), but this is not

possible in the general case.
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S4.2 Classical Donnan Equilibrium

The Donnan equilibriumS8�S10 was formulated for systems with two components: a charged

species which can only exist in the system, and a monovalent salt, which is in equilibrium with

a reservoir. It is also assumed that the solvent is in compressible. Here we brie�y describe

the Donnan equilibrium where A− ions can only exist in the system, while Na+Cl− salt is in

equilibrium with the reservoir. The ion partitioning is described using two assumptions:

1. The system is electroneutral

nNa+ = nCl− + nA− (S23)

2. The neutral salt is treated ideally:

µNa+Cl− = µNa+ + µCl− = µ	
Na+

+ µ	
Cl− + ln

[
csys
Na+

csys
Cl−

c	2

]
(S24)

Because {Na+Cl−} is an electroneutral ion pair, the Donnan contributions cancel in the

system and in the reservoir, (cf. Eq.S17 and Eq.S18). Eq.S24 thus attains the same for in

the system and in the reservoir, and we obtain

(µNa+)I + (µCl−)I = (µNa+)II + (µCl−)II (S25)

csys
Na+

csys
Cl− = cresNa+c

res
Cl− (S26)

csys
Cl−/c

res
Cl− = cresNa+/c

sys

Na+
(S27)

where we introduce a notation convention that csysi denotes concentration of species i in the

system, and cresi denotes its concentration in the reservoir. Using the electroneutrality of the

reservoir, cres
Na+

= cres
Cl− , we can express the ionic strength in the reservoir as

Ires =
(
0.5cresNa+ + 0.5cresCl−

)
(S28)

=
(
cresNa+

)
=
(
cresCl−

)
. (S29)
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We de�ne the partitioning coe�cient ξi as

ξi =
csysi
cresi

(S30)

Note that from Equation S27 it follows that ξCl− = 1/ξNa+ . Here we use a slightly di�erent

notation than in previous workS9,S11, which used a universal ξ′, which relates to the ξ values

used here as

ξ′ = ξCl− = 1/ξNa+ (S31)

We decided to use this di�erent notation, as this way, an increase in ξ always corresponds

to an increase of the concentration in the system, relative to the reservoir concentration.

Combining the above equations, we obtain the famous Donnan partitioning for the coion

(Cl−):

nCl− + nA− = nNa+ (S32)

csys
Cl− + csysA− = csys

Na+
(S33)

IresξCl− + csysA− = IresξNa+ (S34)

IresξCl− + csysA− = Ires/ξCl− (S35)

ξCl− = −csysA−/2I
res ±

√(
csysA−/2Ires

)2
+ 1 (S36)

ξCl− = −csysA−/2I
res +

√(
csysA−/2Ires

)2
+ 1 (S37)

where we regard only the positive root, as ξ ≥ 0. We obtain the partitioning of Na+ as

ξNa+ = +csysA−/2I
res +

√(
csysA−/2Ires

)2
+ 1 (S38)

S4.3 Donnan equilibrium with four ionic species

Extending the Donnan Equilibrium to four ionic species in the reservoir is straightfor-

wardS9,S11. The relevant components are: a charged species A− which can only exist in
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the system, and four ionic species (two cations, two anions: Na+, Cl−, H+, OH−), which are

in equilibrium with a reservoir. We use the same assumptions as before:

1. The system is electroneutral

nNa+ + nH+ = nA− + nCl− + nOH− (S39)

2. The species which can be exchanged are treated as ideal ions. Four di�erent neutral

species exists, so that we have

csys
Na+

csys
Cl− = cresNa+c

res
Cl− (S40)

csys
Na+

csys
OH− = cresNa+c

res
OH− (S41)

csysH+c
sys

Cl− = cresH+cresCl− (S42)

csysH+c
sys

OH− = cresH+cresOH− (S43)

and therefore

csys
Cl−/c

res
Cl− = cresNa+/c

sys

Na+
(S44)

csys
OH−/c

res
OH− = cresNa+/c

sys

Na+
(S45)

csys
OH−/c

res
OH− = cresH+/c

sys
H+ (S46)

csys
Cl−/c

res
Cl− = cresH+/c

sys
H+ (S47)

csys
Cl−/c

res
Cl− = csys

OH−/c
res
OH− = cresNa+/c

sys

Na+
= cresH+/c

sys
H+ (S48)

Using the electroneutrality of the reservoir, we have

Ires =
(
0.5cresNa+ + 0.5cresH+ + 0.5cresCl− + 0.5cresOH−

)
(S49)

=
(
cresNa+ + cresH+

)
=
(
cresCl− + cresOH−

)
(S50)

S-11



We use the same de�nition of ξi as above, and note that

ξOH− = ξCl− = 1/ξH+ = 1/ξNa+ (S51)

so that we introduce the shorthand notations

ξ− = ξOH− = ξCl− (S52)

ξ+ = ξH+ = ξNa+ (S53)

ξ+ = 1/ξ−. (S54)

Using the electroneutrality condition we obtain the partitioning of each coion (ξ−) as

csys
Na+

+ csysH+ = csys
Cl− + csys

OH− + csysA− (S55)

Ires/ξ− = Iresξ− + csysA− (S56)

ξ− = −csysA−/2I
res +

√(
csysA−/2Ires

)2
+ 1 (S57)

and for the counter ions

ξ+ = +csysA−/2I
res +

√(
csysA−/2Ires

)2
+ 1. (S58)

S4.4 Additional Results
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Figure S1: The data is the same as in Figure 2, except that here we do not omit any data
here. Empty data points show the partitioning of ions of which (on average) less than 10
ions were in the simulation box, for which we expect �nite size artifacts. This shows, that
the outliers can be attributed to the �nite size e�ects.

S5 Exclusion radius

Dealing with charged particles introduces the need for a short ranged repulsive interaction

which is in our case the diverging WCA interaction. For numerical stability of the MD

integration it is essential that the forces which occur during the simulation are not too high

for the used time step. If the placing of new particles on MC step is completely random,

then it may happen, that a new con�guration is accepted where particles are placed very

close to each other. This results in failure of the consecutive MD integration, because forces

acting on these particles are too high for the numerical integrator.

In order to deal with this problem in a previous publicationS12 we restricted the space

for particle insertions by an exclusion radius rexcl, such that all the insertions of particles

closer than rexcl to another particle were not allowed. By that time the MC moves proposing

the states with r < rexcl were not directly rejected, but instead we continued proposing new
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states until the distance between particles was bigger than rexcl. This resulted in wrong

sampling, especially for systems with high density. The issue is re�ected in �gure 2 of that

publicationS12, where the values of the excess chemical potential of the ions are below the

experimental data, whereas they lie above in �gure S3. In the current work this issue has

been resolved by properly rejecting those moves.

S6 Required Set of Reactions

We illustrate the need to include a su�cient set of reactions by investigating a system similar

to the one studied by Rathee et al.S3,S4. We will investigate only an ideal non-interacting

system to avoid any complications due to the polyelectrolyte e�ect or due to short-range

interactions (hydrophobicity). In particular, we show how the choice of the set of reactions

a�ects the degree of ionization obtained in the simulation.

The studied system comprises an acid A, which can not be exchanged with a reservoir,

and ion pairs K+OH� and Na+Cl� , both of which can be exchanged with a reservoir. First,

we consider the same set of reactions as was used by Rathee et al.S4

A− −−⇀↽−− HA + OH−, K = Kw/KA (S59)

∅ −−⇀↽−− Na+ + Cl− (S60)

∅ −−⇀↽−− K+ + OH− (S61)

They formulated the acid dissociation by Reaction S59, because they simulated a system at

basic conditions. In such case, the H+ ions can be safely neglected. In this set of reactions,

it is not possible to exchange K+ for Na+, or OH� for Cl� . Therefore, this set of reactions

represents a setup, where KOH and NaCl are present in two di�erent reservoirs, which can

not exchange ions. However, all four ions, K+Na+Cl�OH� are present in the system. In a

more realistic setup, both reservoirs should exchange all small ions with the system, that
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would be equivalent to coupling the system with a single reservoir containing a mixture of

KOH and NaCl. The set of reactions given above is insu�cient to simulate coupling with

such reservoir.

Second, we consider a su�cient set of reactions, obtained by adding of the following to

reaction to the above set:

OH− −−⇀↽−− Cl− (S62)

K+ −−⇀↽−− Na+ (S63)

This set of reactions represents coupling with a single reservoir containing all four ions,

K+Na+Cl�OH� . Note that Reactions S59�S62 already constitute a su�cient set, and Reac-

tion S63 is redundant. However, we also include Reaction S63 in the set because it improves

sampling e�ciency.

The simulated system initially consists of 121 base particles (A� ) with concentration

cpol ≈ 0.05 M, and equal amount of K+ ions, in a cubic simulation box with periodic bound-

ary conditions. The concentration of NaCl in the reservoir was set to cressalt = 0.01 M and

the concentration of KOH in the reservoir was set to cKOH = 0.002 M. The acidity con-

stant (pKA) was varied between 8.8 to 13.8 while keeping a constant value of pH = 11.3,

determined by the concentration of KOH. These parameters correspond to the ones used by

Rathee et al.S4.

Figure S2 shows that the shift in the titration curve obtained using the insu�cient set

is larger than that obtained using the su�cient set of reactions. In the insu�cient set

of reactions, the ionization reaction is coupled only with the KOH reservoir because the

Reaction S59 is not linked to Reaction S61 by any component. Because the Donnan e�ect

on the ionization reaction is controlled by the OH� concentration in the KOH reservoir,

it depends on the ratio cA−/2cKOH. With the insu�cient set of reactions, the shift in the

titration curve due to the Donnan e�ect is approximately ≈ 1.0 units of pKA.
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Figure S2: The degree of ionization as a function of pH− pKA, (titration curves) obtained
by simulating an ideal system using the insu�cient and the su�cient set of reactions.

When using the su�cient set, the KOH and the NaCl reservoirs are mutually coupled,

and the Reaction S59 is coupled with this combined reservoir. Therefore, the Donnan e�ect

on the ionization reaction depends on the ratio cA−/2(cKOH + cressalt), and is smaller than the

Donnan e�ect in the insu�cient set. Therefore, the shift in the titration curve due to the

Donnan e�ect in the su�cient set of reactions is also smaller than in the insu�cient set,

roughly 0.4 units of pKA.

S7 Excess chemical potential in the reservoir

The excess chemical potential of 400 NaCl ion pairs (800 ions) at di�erent box volumes was

determined via the Widom insertion method as described in the main text. For a Bjerrum

length of lBjerrum = 0.71 nm we obtained the results shown in �gure S3. Note that those

results do not su�er from previously undiscovered artifacts from wrong sampling of the

phase space inS12.
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Figure S3: Excess chemical potential as a function of (reservoir) ionic strength. Error
bars smaller than symbol size. Orange points mark experimental results form the activity
coe�cients provided byS13 andS14.

S8 Titration Curve
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Figure S4: Ionization degree of the polyelectrolyte as a function of pH at various salt con-
centrations in the reservoir, and various acidity constants of the polymer, as indicated in the
legend. Error bars are smaller than the point size.
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S8.1 Validation of the determined chemical potentials in the reser-

voir
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Figure S5: Relative deviation of the ion concentrations inside the simulation box and in the
reservoir.

In the �rst step, we verify that the reservoir chemical potentials determined using the

procedure described in the main text lead to the desired concentrations. We start with an

initially empty simulation box, and simulate exchange of ions with the reservoir using the

determined chemical potentials. We performed the simulations for all combinations of the

parameters: pH ∈ {1, 2, . . . , 13}, cressalt ∈ {0.01, 0.2}M, and various simulation box lengths

between boxl ∈ {6.53, . . . , 25.56} nm. In Figure S5 we show that the concentration of ions

in the box, csysi coincides with the expected reservoir concentration within 1%. Results

yielding less than 10 particles in the simulation box were omitted because they are a�ected

by �nite-size e�ects. Deviations of all the results shown in Figure S5 are within the estimated

statistical accuracy, supporting the validity of our algorithm.
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S9 Comparison with a closed system
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Figure S6: End-to-end distance of the weak polyelectrolyte chain with pKA = 4.0 as a
function of pH. To discern the polyelectrolyte e�ect and the Donnan e�ect, we compare sim-
ulations using the Grand-reaction method with constant-pH simulations at a �xed amount of
added salt (closed system). Salt concentrations in the reservoir and monomer concentrations
are indicated in the legend. Error bars are on the order of the point size.

To discern the e�ect of coupling the system to a reservoir, we compare in Figure S6 the

Grand-reaction ensemble simulations of open system with constant-pH simulations of a closed

system at a �xed amount of added salt. Most features of this �gure were described in the
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main text, when comparing G-RxMC and G-cpH simulations. Two additional e�ects appear

when comparing open-system G-RxMC and closed-system cpH simulations. At pH ≈ 9

the polyelectrolyte is fully charged but the open-system simulations predict a higher chain

swelling because the Donnan partitioning makes ionic strength in the open system lower than

in the closed system. Confer Figure S7 to see this e�ect visualized. At pH & 12 the ionic

strength is dominated the by the OH� ions, and it increases with increasing pH. This leads

to de-swelling of the chain at high pH. As has been pointed out earlier,S15 this de-swelling

at high pH is missing in the closed-system cpH simulations because the OH� ions are not

treated explicitly in the cpH method.

1 3 5 7 9 11 13

pH

0.02

0.04

0.06

0.08

0.10

0.12

I/
(M

)

p
K

A

c res
salt = 0.02 M

cpol = 0.06 M

I sys closed cpH
I res HH+Donnan
I sys HH+Donnan

Figure S7: Ionic strength as a function of pH in an ideal HH+Donnan system, as one
would encounter in an ideal G-RxMC simulation, compared to a closed system with constant
amount of added salt, as one would encounter in a closed-system cpH simulation of a closed
system. The ionic strength in the HH+Donnan system (Isys), is always higher or equal to
ionic strength in the corresponding reservoir (Ires). At intermediate pH, ionic strength in the
closed-system cpH simulation is higher than both, Isys and Ires, because the neutralizer in
the closed system can not be partitioned to any reservoir. At extreme pH the ionic strength
is dominated by the H+ and OH� ions. In such a case, ionic strength in the HH+Donnan
setup is higher than in the closed-system cpH simulation because the closed-system cpH
simulation does not explicitly include all H+ ions.
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