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ABSTRACT: Ni-based oxide materials are promising candi-
dates for catalyzing the oxygen evolution reaction. The de-
tailed mechanism of water splitting in these systems has been 
of interest with a goal of understanding the intermediate spe-
cies vital for catalytic activity. A potential intermediate species 
prior to release of oxygen is a bridging NiIII2(μ-1,2-peroxo) 
complex. However, Ni2(μ-1,2-peroxo) complexes are rare in 
general and are unknown with oxidation states higher than 
NiII. Herein, we report the isolation of such an unusual high-
valent species in a NiIII2(μ-1,2-peroxo) complex, which has 
been characterized using single-crystal X-ray diffraction and 
X-ray absorption, NMR, and UV-vis spectroscopies. In addi-
tion, treatment with excess tetrabutylammonium chloride 
results in regeneration of the precursor Ni–Cl species, impli-
cating the reversible release of oxygen or a reactive oxygen 
species. Taken together, this suggests that NiIII2(μ-1,2-peroxo) 
species are accessible and may be viable intermediates during 
the oxygen evolution reaction. 

The availability of cost-effective and abundant energy stor-
age methods remains a significant challenge to effectively 
harnessing solar energy.1 Electrochemical or photochemical 
water splitting to form oxygen and hydrogen presents a scala-
ble option for the storage of solar energy in the form of chemi-
cal bonds, but most catalysts developed for hydrogen and 
oxygen evolution employ precious metals such as Ir and Pt, 
hindering large-scale use. For this reason, water splitting cata-
lysts using first-row transition metals have become a desira-
ble alternative.2 Recently, Ni-based layered double hydroxides 
(LDH) have shown great promise due to their stability and 
high catalytic activity.3–6  

Given the properties of LDH materials, studies have been 
aimed at understanding their mechanism and function. While 
Ni-only LDH materials display oxygen evolution reactivity, 
superior catalysts are generated with incorporation of other 
transition metals such as Fe.7–9 Of particular interest in [NiFe]-
LDH materials is to determine whether Ni or Fe is the active 
site for oxygen evolution.10–17 While Fe active sites have been 
proposed due to the higher turnover frequencies of [NiFe]-
LDH materials, Ni remains an essential component of the most 
active catalysts. In these and other synthetic systems high-
valent peroxo species, potentially arising from oxo-oxo cou-
pling, are key proposed intermediates prior to oxygen 
release.18,19  

While there have been increasing examples of systems with 
high valent (>2+) Ni centers,20–23 this area is underdeveloped 
with regard to structurally characterized oxygen-containing 
intermediates that may have relevance to oxygen evolution. 
While examples of bimetallic dioxygen complexes of iron, 

copper, and cobalt have been isolated and studied,24–31 only a 
handful of Ni-dioxygen complexes have been isolated such as 
bis-μ-oxo and bis-μ-superoxo species.32–38 Some binuclear 
NiII(μ-1,2-peroxo) complexes have been transiently 
observed,39,40 but only one example has been structurally 
characterized.41 As such, the viability of high-valent Ni-peroxo 
intermediates remains unknown.  

Previously, the tris(NHC)phenylborate (NHC = N-
heterocyclic carbene) ligand PhB(tBuIm)3 has been used to 
stabilize unusual high-valent CoIII-oxo and FeIV,V-nitride com-
plexes.42–44 We rationalized that this system might also aid in 
the stabilization and characterization of high-valent Ni com-
plexes with oxygen-based ligands. Herein, we report the use of 
PhB(tBuIm)3 to isolate the first example of a NiIII2(μ-1,2-
peroxo) complex {[PhB(tBuIm)3]Ni–O–O–
Ni[(tBuIm)3BPh]}{BArF4}2 (2, BArF4 = tetrakis(3,5-
bis(trifluoromethyl)phenylborate). Complex 2 has been struc-
turally characterized, and its properties examined using a 
variety of techniques including 1H NMR, UV-vis, and X-ray 
absorption spectroscopies. Furthermore, addition of simple 
nucleophiles such as Cl− has been shown to regenerate the 
starting terminal chloride complex, suggesting the release of 
oxygen or reactive oxygen species. These results demonstrate 
that high-valent Ni-peroxo intermediates are indeed syntheti-
cally accessible and may be viable intermediates in oxygen 
evolution. 

The synthesis of the Ni-chloride precursor 
[PhB(tBuIm)3]NiCl (1) was recently reported by our group.45 
As 1 shows no reactivity under an atmosphere of oxygen for 
several days, we screened common halide abstractors such as 
Na+, Ag+, and Tl+ salts to encourage reactivity. While Ag+ or Tl+ 
led to no tractable reactivity, treatment of 1 with NaBArF4 in 
dichloromethane (DCM) causes the solution to change from a 

Scheme 1. Synthesis of 1-Na and 2. 

 



 

dull chartreuse green to an intense emerald green, indicative 
of the formation of a new species 1‐Na (Scheme 1). We found 
that a similar color change is observed in other non-
coordinating solvents such as 1,3-difluorobenzene. However, 
1‐Na is extremely sensitive to even small amounts of coordi-
nating impurities such as ethers or variation in preparation 
conditions precluding detailed characterization of this species 
(Figure S1). While we do not have concrete characterization 
data on this complex, we tentatively propose an intermediate 
structurally similar to 1 with a weak interaction between the 
Na+ ion and the chloride ligand. The proposed similar struc-
ture is also supported by comparing the paramagnetic 1H 
NMR spectra of 1	 and 1‐Na that show a shifted, but similar 
overall pattern of resonances. Furthermore, treatment of 1‐Na 
with 12-crown-4 ether to sequester Na+ ions regenerates 1 by 
1H NMR spectroscopy (Figure S2). Based on these data, and 
similar species previously reported, we tentatively propose 
that 1‐Na is a dimer as depicted in Scheme 1.46  

Treatment of 1‐Na in DCM with dry oxygen at room tem-
perature results in an intractable brown mixture of diamag-
netic products as ascertained by 1H NMR spectroscopy. How-
ever, at −78 °C addition of dry oxygen to 1‐Na	in DCM results 
in a color change from emerald green to dark purple. We as-
sign this new purple species as a dimeric NiIII2(μ-1,2-peroxo) 
complex {[PhB(tBuIm)3]Ni–O–O–Ni[(tBuIm)3BPh]}{BArF4}2, 2 
(Scheme 1). The distinct color change is reflected in the low 
temperature UV-vis spectrum of 2 (Figure 1) displaying fea-
tures at 410 nm (740 M-1cm-1) and 550 nm (970 M-1 cm-1) 

which are dramatically different from those in 1	 or 1‐Na. 
Monitoring the oxygen addition reaction by UV-vis spectros-
copy at low-temperature showed complete consumption of 
the starting material nearly instantaneously upon addition of 
O2 at –78 °C (Figure S3). The extremely fast rate of this reac-
tion combined with the sensitivity of 1‐Na	precluded a more 
detailed examination of the solution dynamics of the oxygena-
tion reaction.  

Fortunately, dark purple crystals of 2	 can be grown from 
concentrated DCM over several days at –78 °C. Single crystal 
X-ray diffraction (SXRD) confirms the formation of a NiIII2(μ-
1,2-peroxo) complex 2 (Figure 2). While the quality of the 
dataset is limited due to large numbers of solvent molecules 
and severe disorder of BArF4 counterions, the atomic connec-
tivity of 2 can be concretely ascertained.  The O–O bond length 
in 2 is 1.40(1) Å. This is shorter than the 1.465(2) Å observed 

in a recent example of a NiII2(μ-1,2-peroxo) complex support-
ed by a β-diketiminate scaffold.41 For comparison, the O–O 
bond length in hydrogen peroxide is 1.49 Å and μ-1,2-peroxo 
complexes of Co have displayed O–O bond lengths that range 
from 1.34 to 1.49 Å.47 Meanwhile, the O–O bond lengths in two 
previously isolated Ni2(μ-1,2-superoxo) complexes are 1.33 
and 1.35 Å.33,41 The solid-state structure of 2 shows that the 
NiIII centers adopt a seesaw geometry, with an Ni–O bond 
length of 1.79(1) Å and a Ni–O–O–Ni dihedral angle of 
161.8(5)°. The Ni–O bond lengths are shorter than those of the 
recently isolated NiII2(μ-1,2-peroxo)  complex, which has Ni–O 
bond lengths of 1.834(2) Å and a dihedral angle of 89.9(2)°.41  
The shorter Ni–O distances are consistent with a higher oxida-
tion state of NiIII in 2. 	

A similar solution and solid-state structure of 2 is support-
ed by NMR data. The 1H NMR spectrum of 2 collected at –78 °C 
has broadened and shifted resonances, consistent with a par-
amagnetic species (Figure S4). In compound 1, the 1H NMR 
resonances at 106 and 16 ppm have been assigned to the hy-
drogens of the imidazol-2-ylidene backbone. A similar pattern 
is seen in 2, but with a doubling of these signals (109, 100, –
13, –15 ppm), which suggests the presence of an asymmetric 
dimer at –78 °C. We propose this pattern arises from a combi-
nation of the seesaw geometry about the Ni centers and dy-
namics about the B–Ni–O vector at –78 °C, as previously ob-
served in a terminal Ni methyl complex supported by this 
tris(NHC) ligand scaffold.45 The same 1H NMR spectra are ob-
served for samples of crystalline 2	dissolved in d2-DCM	 and	
samples of 2 generated in	situ by addition of O2 to 1‐Na, con-
firming that complex 2 is formed in	 situ in a relatively clean 
manner.  

The effective magnetic moment of 2 was measured by Ev-
ans’ method at –78 °C to be μeff = 3.35(7) μB. This value is po-
tentially consistent with either ferromagnetic coupling be-
tween two S = 1/2 NiIII centers (μS.O. = 2.82 μB) or weak cou-
pling between these centers (μS.O. = 2.45 μB). Additionally, the 
X-band electron paramagnetic resonance (EPR) spectrum of a 
solution of 2 in DCM at 15 K is nearly silent, with only a weak 
signal centered around g = 2 accounting for less than 10% of 
the Ni in the sample. While metal complexes bridged by diox-
ygen ligands are commonly antiferromagnetically coupled, 

 

Figure 1. UV-vis spectra of 1, 1-Na (at RT) and 2 (at 78 °C) 
in DCM. Left y-axis is for 1 and 1-Na, and right y-axis is for 2. 

 

Figure 2. SXRD structure of 2. Ni shown in green, oxygen in 
red, carbon in grey, nitrogen in blue and boron in tan. Ellipsoids 
are shown at 50% probability. Solvent molecules, counterions 
and H-atoms omitted and parts of ligand scaffold shown as 
wireframe for clarity. 
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there is a recent example of ferromagnetically coupled copper 
centers bridged by a peroxo ligand.48 As such, we cannot cur-
rently discern between ferro- or antiferromagnetic coupling in 
2. 

To further interrogate the solution state structure of 2, and 
to probe the assigned oxidation states of Ni, we turned to Ni 
K-edge X-ray absorption spectroscopy (XAS). The Ni K-edge of 
2 (8346.1 eV) occurs at higher energy relative to 1	(8345.4 eV, 
Figure 3A and Figure S5). The difference in the Ni K-edge be-
tween 1 and 2 is outside of error (±0.4 eV), but it should be 
noted that one-electron oxidation from NiII to NiIII in synthetic 
complexes produces shifts ranging from 0 to 1.8 eV and care 
must therefore be taken in interpreting this shift as an indica-
tor of oxidation state change.49–52 The pre-edge features for 1 
and 2 are the same within error. The extended X-ray 
absorption fine structure (EXAFS) region of 1 can be fit to a 
model containing three carbon atoms and one chlorine atom 
in the first shell (Figure S6 and Table S1). Despite poor data 
quality, analysis of the EXAFS region of 2 suggests a 
reasonable fit with a simple model containing three carbon 
atoms and one oxygen atom in the first shell consistent with 
the structure obtained by SXRD (Figure 3B and S7 and Table 
S2). A poor fit resulted from a model containing a Cl atom, 

supporting the loss of this ligand upon reaction with oxygen. 
Taken together, the observed bond lengths, magnetic proper-
ties, and shift in the Ni K-edge of complex 2 support the as-
signment of a NiIII oxidation state.  

We synthesized the 18O2 isotopologue of 2 to further char-
acterize the O–O bond through vibrational spectroscopy. 
However, we have been unable to assign a vibrational band to 
the O–O stretch by either infrared or Raman spectroscopy of 2 
at low temperatures. We attribute the lack of an observable 
peroxo O–O stretch to either Raman laser photodegradation of 
2 or features overlapping with peaks from the BArF4− counter-
ion (Figure S8).  

With complex 2 in hand, we sought to examine its reactivi-
ty, particularly with regard to the possible reversibility of 
dioxygen binding. Subjecting 2 to several freeze-pump-thaw 
cycles in DCM resulted in no change in the UV-vis spectrum of 
the solution. This observation excludes an equilibrium disso-
ciation of O2. However, addition of 10 equivalents of tetrabu-
tylammonium chloride (TBACl) to 2 in DCM at –78 °C pro-
duced a color change from dark purple to green upon warm-
ing to –50 °C and 87% recovery of 1 was observed by 1H NMR 
spectroscopy (Figure S9, S10). Complex 2 similarly reacts with 
tetrabutylammonium hydroxide at –50 °C, although the Ni-
containing products of this reaction are not well-defined. The 
balanced reaction with Cl- requires the formal release of O2. 
However, we have not been able to observe dioxygen release 
into the headspace by GC analysis. We hypothesize that a 
short-lived, reactive oxygen species (potentially singlet oxy-
gen or hydrogen peroxide) that reacts further in solution may 
be generated.53 However, the observed reactivity suggests 
that if such Ni2(μ-1,2-peroxo) complexes are generated in 
oxygen evolution catalysts, O2 release may be dependent on 
reaction with nucleophilic species as opposed to direct disso-
ciative O2 loss. 

In summary, we have generated and thoroughly character-
ized the first example of a bimetallic NiIII2(μ-1,2-peroxo) com-
plex, 2. The SXRD structure, along with XAS, 1H NMR and UV-
vis spectra of 2 confirm the assignment of a NiIII2(μ-1,2-
peroxo) moiety. Furthermore, this complex is reactive to-
wards nucleophiles such as Cl and OH, likely releasing reac-
tive O2 species. Taken together, these data demonstrate that 
NiIII2(μ-1,2-peroxo) species are synthetically accessible and 
support the hypothesis that related species may be viable 
intermediates in Ni-based oxygen evolution catalysts.  
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