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Abstract 

The emergence and rapid spreading of novel SARS-CoV-2 across the globe represent an 

imminent threat to public health. Novel antiviral therapies are urgently needed to overcome 

this pandemic. Given the great role of main protease of Covid-19 for virus replication, we 

performed drug repurposing study using recently deposited main protease structure, 6LU7. 

For instance, pharmacophore- and e-pharmacophore-based hypotheses such as AARRH and 

AARR respectively were developed using available small molecule inhibitors and utilized in 

the screening of DrugBank repository. Further, hierarchical docking protocol was 

implemented with the support of Glide algorithm. The resultant compounds were then 

examined for its binding free energy against main protease of Covid-19 by means of Prime-

MM/GBSA algorithm. Most importantly, the resultant compounds antiviral activities were 

further predicted by machine learning-based model generated by AutoQSAR algorithm. 

Finally, the hit molecules were examined for its drug likeness and its toxicity parameters 

through QikProp algorithm. Overall, the present analysis yielded  four potential inhibitors  

(DB07800, DB08573, DB03744 and DB02986) that are predicted to bind with main protease 

of Covid-19 better than currently used drug molecules such as N3 (co-crystallized native 

ligand), Lopinavir and Ritonavir.  
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Introduction 

The outbreak of coronavirus disease (COVID-19) has raised major health concern to humans 

worldwide. The novel Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) 

has been identified as the causative pathogen which belongs to family Coronoviridae and 

genus Betacoronavirus [1, 2]. The global pandemic initiated in late December 2019 in 

Wuhan, capital of China’s Hubei Province. Since then, it has swiftly spread across the world 

claiming thousands of lives. As of 24th March 2020, a total of 372757 confirmed cases have 

been reported internationally with 16231 cases of deaths [3]. The virus most likely originated 

from a zoonotic transmission from bats to humans and now has progressed to transmit from 

humans to humans.  Faced with such a forbidding situation, World Health Organization 

(WHO) is also determined to working together with transport, travel and tourism sectors on 

emergency preparedness and response. Therefore, there is an imminent necessity to 

understand this novel virus and develop various measures to control its spread.  

Recent studies have proposed that the full-length genome of SARS-CoV-2 is quite similar to 

SARS-CoV based on phylogenetic analysis [4, 5]. It was also found to exhibit putatively 

similar cell entry mechanism and human cell receptor utilization to that of SARS-CoV         

[4, 6, 7]. Considering this apparent similarity scientists have recently carried out preliminary 

research to identify potential vaccine target for COVID-19 based on SARS-CoV 

immunological studies [8]. However, no specific therapeutics is accessible to treat the 

infection indicating that, only clinical symptoms along with secondary infections could be 

treated with repurposed antiviral drug. Hence there is a dire need to develop potent 

therapeutics and vaccines against SARS-CoV-2. 

One of the attractive target for anti-CoV drug design is coronavirus main protease. It plays a 

vital role in the viral gene expression and replication through proteolytic processing of 

polyproteins [9]. The crystal structure of SARS-CoV-2 main protease was recently elucidated 



to enable designing of specific protease inhibitors [10]. Even though the main proteases of 

SARS-CoV-2 and SARS-CoV are closely related with a sequence identity of 96.1% [11], 

[12], the drugs developed for SARS-CoV could not be suggested for the treatment as they 

remained in pre-clinical stage [13]. Several studies have been carried out to investigate the 

inhibitory activity of repurposed drugs for SARS-CoV-2 treatment [14, 15]. However, 

treating this infection with drugs, formerly designed for different targets, might result in 

adverse side effects and unwanted pharmacological effect [16]. Therefore, in the present 

study our team has made an attempt to screen protease inhibitors by specifically targeting the 

main protease of SARS-CoV-2. Most importantly, we have employed drug repurposing 

approaches by integrating pharmacophore and e-pharmacophore based screening to retrieve 

the novel and potent compounds against SARS-CoV-2. These virtual screening strategies 

have shown great promise in identifying bioactive molecules from large libraries [17 - 19]. In 

addition to these approaches, Prime MMGBSA (Molecular Mechanics/Generalized Born 

Surface Area) analysis and AutoQSAR techniques were performed to contemplate more 

efficacious drugs. We believed that hits resulted from our integrated approach provides clue 

for the control of the emerging SARS-CoV-2 pandemic.   

 

Materials and Methods 

Preparation of Dataset  

The protein structure used in our study was obtained from Protein Data Bank (PDB ID: 

6LU7) and was prepared using Schrödinger’s protein preparation wizard [20]. Hydrogen 

bond optimizations, water removal, protein structure correction and finally protein energy 

minimization using OPLS_2005 force field were carried out during the preparation. 

Subsequently, the position of N3 (co-crystallized native ligand; used as the reference 

compound) was defined for grid generation. Further, a set of 9 molecules consisting of 



substructure of the co-crystallized ligand of SARS-CoV-2 protease, a co-crystallized ligand, 

three substructures of equivalent SARS-CoV-1 protease inhibitors and four known SARS-

CoV-1 inhibitors with low binding affinity were extracted from the literature [21]. These 

molecules were then cleaned using default specifications of LigPrep module and utilized for 

hypothesis generation [20]. Additionally, a phase database was generated from a total of 9591 

molecules retrieved from DrugBank and was utilized for virtual screening (VS) application 

[22].  

Generation of structure and ligand based pharmacophore models 

The potential ligand based pharmacophore model was generated with the help of 9 main 

protease inhibitors retrieved from the literature [21]. The 9 molecules were initially divided 

into actives (5 molecules) and inactives (4 molecules). The protease inhibitors corresponds to 

SARS-CoV-2 were considered as actives. On the contrary, inhibitors of SARS-CoV-1 were 

considered as inactives. Note that present analysis utilizes the high-confident 9 molecules for 

model development as it provides model with high precision. Subsequently, using PHASE 

module of Schrödinger suite a common pharmacophore hypothesis (CPH) was generated 

after a stringent scoring and ranking process [23]. Likewise a structure based e-

pharmacophore model was generated from the XP docked complex structure information 

associated with 9 existing inhibitors. By selecting only favorable sites that contributed more 

to the Glide XP energy terms, a CPH was constructed. Both the generated CPHs were used as 

a 3D query for screening the phase database. Finally, hierarchical GLIDE docking consisting 

of HTVS, SP and XP were performed against pharmacophore based screened set of 

molecules. This process is of immense importance to distinguish actives from inactives in a 

virtual screening application. 

 

 



Post Screening Analysis 

The XP screened out molecules underwent Prime MM/GBSA analysis where their binding 

energies were estimated in order to examine fine levels of compounds activity against main 

protease [24]. Despite the number of energy properties generated by Prime algorithm, the 

present analysis uses the parameter called free energy of binding to gain insight into the 

compounds activity. Nonetheless, the ligand strain energy, Coulomb energy and Van der 

Waals energy were also assessed in filtering the final hit compounds. 

Machine Learning Principles using AutoQSAR 

AutoQSAR is a machine-learning algorithm provided by Schrödinger suite that builds and 

applies QSAR models through automation [25]. In order to build a predictive model, 

AutoQSAR takes the 1D, 2D and 3D structural data of a molecule along with a property (eg: 

IC50) to be modeled, as an input . It will then compute the fingerprints and descriptors using 

machine-learning statistical methods for creating a predictive QSAR model. The predictive 

accuracy of the model is evaluated using various parameters such as ranking score, Root 

Mean Square Error (RMSE), Standard Deviation (SD), Q2 and R2 values [26]. It is worth 

mentioning that the present analysis utilizes a total of 100 3C-like proteinase inhibitors for 

predictive model development. The details of the molecules along with their pIC50 values are 

presented in Table S1. 

Drug likeness and Toxicity Descriptors: 

Finally, the set of small molecules resulted from all the screening analysis will be tested for 

its druglikenss and toxicity properties. Of note, the pharmaceutically relevant key descriptors 

such as Stars, CNS and HOA were analyzed. The QikProp algorithm was employed for this 

purpose [27]. The prediction results from this tool is mainly relies on the descriptors value 

corresponds to the 95% of the known drugs available in the market. For instance, Star 

descriptor provides the number of descriptor outliers, CNS provides the predicted activity of 



the molecule in central nervous system and HOA is the predictor of qualitative human oral 

absorption. It is certain that understanding these descriptors is utmost importance to 

overcome the clinical failure of the resultant compounds which in turn reduce the time and 

resources associated with the overall drug development process. 

 

Results and Discussion 

Pharmacophore Model Generation 

The pharmacophore model development was achieved by means of existing main protease 

inhibitors reported in the literature [21]. Initially, the structure cleaning (protonation and 

chirality assessment) was accomplished using LigPrep module. With the set of cleaned-up 

ligands, conformational search will be initiated to generate a set of conformers for each 

ligand by ConfGen option. The generated conformers are grouped into actives and inactives 

and then pharmacophoric sites were created. The pharmacophores from all conformations of 

the ligands in the active set are examined. Subsequently, Common pharmacophores 

hypothesis were identified using a tree-based partitioning technique. The hypothesis with best 

survival score was utilized to screen the phase database. Here, the hypothesis named 

AARRH, consisting of two hydrogen bond acceptors, two aromatic rings and one 

hydrophobic group, was chosen for further analysis. The generated hypothesis is represented 

in Fig. S1.  

E-pharmacophore Model Generation 

On the contrary, the energy-based model is generated by considering the Glide XP docked 

structures of protein complexes as an input. The ligand docked poses of all the fragments and 

their contributions in ligand binding will be taken into account in this approach of model 

generation. The hypothesis was built by mapping energetic terms of Glide XP on 

pharmacophoric features. The structural and energy information present in between the 



protein and ligand molecule were used to compute these energetic terms [28]. Consequently, 

a four featured model was generated which consists of two hydrogen bond acceptors and two 

aromatic rings (AARR) (Fig. S2). Additionally, during the model generation process, it was 

made sure that the features should exhibit an energy score greater than – 0.8 kcal/mol which 

was fixed as a threshold. This is essential in prioritizing the important sites accountable for 

effective ligand binding. 

Virtual Screening using Docking Algorithm and Prime MMGBSA Analysis 

In the initial stage of screening, the DrugBank database was screened independently using 

AARRH and AARR hypotheses to retrieve hit molecules with similar pharmacophore 

features. A total of 1000 hit molecules were retrieved from each hypothesis. These hits were 

then taken for Glide docking studies. In this process the hits were ranked using a three step 

hierarchical process, viz HTVS, SP and XP. The use of such hierarchical filters and 

associated parameters were highlighted in our earlier articles [18, 29, 30]. Initially, HTVS 

was carried out and 500 (50%) of the high scoring compounds were selected for the SP 

docking. Finally a total of 250 (50%) molecules from SP docking were subjected to XP 

docking. The compounds from multi-stage docking were filtered out based on the XP score 

threshold of native ligand (-5.444 kcal/mol). This filter resulted a total of 65 and 102 of 

compounds from pharmacophore- and e-pharmacophore-based hypothesis respectively. 

Subsequently, the results from both of our models were integrated. It is certain that 

integrating multiple hypotheses will be useful to eliminate the false positive prediction in the 

virtual screening application. This integration resulted a set of 155 molecules. The resultant 

compounds with its docking score are reported in Table 1. In the second stage of screening, 

binding free energy were analyzed for the integrated screened set of compounds. It is worth 

mentioning that entire 155 compounds possesses better binding free energy values than native 

ligand (-36.816 kcal/mol). This depict the strong correlation between the observed docking 



score and binding free energy parameter examined from Prime algorithm. In essence, 149 

compounds from this set likely to have better binding energy than Ritonavir, the currently 

used molecules in the treatment of Covid-19 infection. 

AutoQSAR analysis and Interaction profiling of the screened hits 

The screening process further continued with the aid of machine learning-based predictive 

model (pIC50 Calculation) generated by AutoQSAR module of Schrodinger. For instance, the 

machine learning model was developed with the help of 3C-like proteinase inhibitors 

retrieved from BindingDB. The algorithm generated 10 best models and the result is shown 

in Table 2. In particular, we have used highest score as the criteria to select the best model for 

the analysis. As stated earlier, the best model showed lowest SD and RMSE values than the 

other generated model and thus depicts its reliability in the generated result. The scatter plot 

depicting predicted pIC50 versus experimental pIC50 for best generated model was shown in 

Fig. 1.  

Here, the entire data set of 155 compounds were tested for IC50 prediction using the best 

model. The prediction results for the complete set is presented in Table 1 together with 

docking score and binding energy. It is interesting to observe that only 4 compounds such as 

DB07800, DB08573, DB03744 and DB02986 showed better pIC50 values than native ligands 

and other existing drugs such as Ritonavir and Lopinavir. Thus, these 4 molecules considered 

as lead molecules against main protease of Covid-19 in our study. The binding pattern of 

these lead molecules together with reference compounds are illustrated in Fig. 2. 

Drug likeness and Toxicity Descriptors: 

Finally, these lead molecules were tested for its drug likeness and toxicity analysis using 

QikProp algorithm. The result is shown in Table 3. It is interesting to note that all the 

compounds having satisfactory star values of less than 5. Thus highlights that majority of the 

pharmaceutically relevant descriptors are found to be in the acceptable range for the screened 



hit compounds. Additionally, the lead molecules demonstrated significant human oral 

absorption characteristics than all the reference ligand considered in our study. For instance, 

Ritonavir, native ligand and Lopinavir showed highest star value of 10, 9 and 3 respectively 

in our Qikprop analysis. This data from our study is correlates well with reported literature 

evidences. For instance, evidences states that patients treated with these drug were more 

likely to experience side effects like nausea, vomiting and diarrhea. Although positive results 

are achieved in the initial trials, resistance pattern is reported in the recent times in addition to 

its highly toxic characteristics. Moreover, these drugs certainly cause lot of adverse effects 

and chronic medical problems with long term usage [31]. On the contrary, the hit compounds 

resulted from our analysis demonstrated excellent safety profile as observed from the star 

descriptor than the existing antivirals. 

 

Discussions 

A total of 4 hit molecules were proposed from our study against main protease of Covid-19. 

The hit compounds exhibit better docking score, binding free energy and pIC50 values than 

existing inhibitors. Studies highlights that ligand strain energy is one of the significant 

parameter to be analysed in the case of drug screening [32]. It is an energy cost associated 

with ligand binding. Hence, the molecules with less strain energy likely to exhibit better 

binding free energy. It is important to note that all the hit compounds resulted from our 

analysis yielded less strain energy than existing anti-virals studied in our analysis. Thus 

highlights the tighter binding of hit molecules against the target protein. Moreover, Table 3 

also highlights that Coulombic and van der Waals interactions provided the most substantial 

force for the binding of the inhibitor resulted from our study. 

The binding of all the 4 hit molecules mimics binding pattern of existing inhibitors. It is 

interesting to note that GLN189 likely to play pivotal role in the binding of lead compounds. 



The detailed listing of binding forces are given in Table S2. Literature evidence highlights 

that the existence of Π−Π stacking might increases the stability and loading capacity drugs 

[33]. Notably, most of the hits resulted from our study able to maintain Π−Π stacking in the 

binding pocket as like Lopinavir.  Overall, it is certain that the key residues proposed in our 

study will facilitate the design of novel compounds in the future. 

It is interesting to note that the hit compounds obtained in our study composed of crucial 

scaffolds, namely; benzamide indole and azetidine scaffolds. The two dimensional structure 

of hit compounds shown in Fig. 3. For instance, benzamide scaffold is the backbone of the hit 

compound, DB07800. On the other hand, indole and azetidine are the functional moieties in 

the case of hit compound, DB03744. The literature evidence highlight that benzamide 

derivative such as AH0109 exhibits potent anti-HIV-1 activity and has capability of 

disrupting the replication of HIV-1 strains that are resistant to the routinely used anti-HIV-1 

drugs [34]. 

Importantly, the azetidine containing rimantadine analogues were found to exhibit 10 to 20 

fold more potent activity against influenza A H2N2 virus than amantadine [35]. Of note, 

Indole group exemplifies one of the utmost privileged scaffolds in drug discovery. Currently, 

an amazing number of indole-containing compounds are in different clinical phases. In 

particular, Indole scaffold is widely used in antiviral research. One of the famous of marketed 

indole-containing antiviral drug is Arbidol, which is also in practice the management of 

Covid-19 infection [36 - 38]. 

Studies of DB02986 showed that this compound is found to act on carbonic anhydrase. It is 

thought that carbonic anhydrases have an important role in the initiation of the viral 

replication. It is likely that inhibition of the carbonic anhydrase increases the concentration of 

hydrogen ions intracellularly and decreases the pH. This decrease in pH in turn restrict the 

binding of virus in the host cell and even viral replication. Moreover, inhibitors of carbonic 



anhydrase are also reported to have an activity against HIV infection [39, 40]. Taken 

together, these findings provide evidences for the newly identified compounds that can 

potentially be developed as drugs for the management of Covid-19 infection. 

 

Conclusion 

Here, we made a concerted effort to develop coronavirus therapeutic agents using integrated 

machine learning-based drug repurposing strategy. It is important to emphasize that 

compounds such as DB07800 (N-(2-(((5-Chloro-2-Pyridinyl)Amino)Sulfonyl)Phenyl)-4-(2-

oxo-1(2H)-Pyridinyl)Benzamide), DB08573 (3-[(4-Chloroanilino)Sulfonyl]Thiophene-2-

Carboxylic acid), DB03744 (Cp403700, (S)-1-{2-[(5-Chloro-1h-Indole-2-Carbonyl)-Amino]-

3-Phenyl-Propionyl}-Azetidine-3-Carboxylate) and DB02986 (N-(2-Thienylmethyl)-2,5-

Thiophenedisulfonamide) found to possesses better glide Score, binding free energy and 

predicted IC50 values alongside satisfactory drug likeness than co-crystallized native 

compounds and other existing inhibitors. The ubiquitous experimental data supports that the 

scaffolds identified in the study exhibit anti-viral activities and hence demonstrating the 

reliability of our results. Hopefully, we have proposed some useful candidates for SARS-

CoV-2 main protease inhibitors. However, further experimental study on these compounds 

will be necessary to confirm the conclusions. 
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Table Legends 

TABLE 1 Docking score, Binding energy and pIC50 values of Screened hits molecules  

TABLE 2 Statistical parameters corresponds to ten best model generated by AutoQSAR.  

TABLE 3 The collective key parameters corresponds to the reference and hit molecules from 

our analysis. 

 

Figure Legends 

FIGURE 1 Scatter plot analysis of best model predicted from AutoQSAR. 

FIGURE 2 Ligand interaction diagram of references and hit molecules. References -            

a) Ritonavir ; b) Lopinavir ; c) N3 – Inhibitor (Native Ligand).  Hit molecules - d) DB07800 ; 

e) DB08573 ; f) DB03744 ; g) DB02986.  

FIGURE 3 2D structure of reference and hit molecules. References - a) Ritonavir ; b) 

Lopinavir; c) N3 – Inhibitor (Native Ligand) . Hit molecules - d) DB07800 ; e)DB08573 ;    

f) DB03744 ; g) DB02986. Important functional groups are highlighted as red circle.  

 



TABLE 1 Docking score, Binding energy and pIC50 values of Screened hits molecules  

S. No DrugBank - ID Docking score 

(kcal/mol) 

∆G Bind 

(kcal/mol) 

Predicted 

pIC50 

1 DB02375 -9.107 -49.332 5.47 

2 DB08230 -8.464 -43.044 5.298 

3 DB12784 -8.439 -46.629 3.27 

4 DB09298 -8.403 -53.381 4.664 

5 DB04216 -8.174 -43.275 5.282 

6 DB07903 -8.119 -64.959 4.787 

7 DB01858 -8.112 -59.842 4.125 

8 DB13781 -8.057 -58.554 4.518 

9 DB02224 -7.941 -42.874 5.148 

10 DB07439 -7.815 -45.165 4.574 

11 DB08775 -7.723 -50.41 4.582 

12 DB07039 -7.67 -44.844 4.817 

13 DB02537 -7.583 -47.838 4.511 

14 DB11841 -7.529 -46.507 4.778 

15 DB07795 -7.457 -44.796 5.169 

16 DB08138 -7.301 -54.598 3.837 

17 DB08066 -7.269 -40.134 5.147 

18 DB07419 -7.183 -54.207 4.029 

19 DB01852 -7.174 -43.482 5.012 

20 DB11698 -7.087 -40.811 4.283 

21 DB08573 -7.052 -40.254 5.882 

22 DB07991 -7.027 -58.267 5.116 



23 DB08229 -7.009 -38.27 5.3 

24 DB07800 -7.005 -54.044 5.548 

25 DB08424 -6.927 -43.028 3.965 

26 DB14086 -6.919 -40.063 5.001 

27 DB12507 -6.855 -42.375 4.954 

28 DB12672 -6.822 -55.413 4.695 

29 DB07587 -6.806 -46.706 4.243 

30 DB12301 -6.768 -51.556 4.847 

31 DB07194 -6.768 -54.274 4.361 

32 DB08067 -6.73 -49.22 4.985 

33 DB11967 -6.718 -57.339 4.239 

34 DB05772 -6.688 -51.108 4.65 

35 DB12140 -6.687 -54.71 3.584 

36 DB07750 -6.68 -46.262 4.179 

37 DB04903 -6.638 -59.378 5 

38 DB09082 -6.636 -60.372 4.766 

39 DB07589 -6.627 -51.155 4.5 

40 DB07685 -6.62 -56.332 5.25 

41 DB07676 -6.615 -49.46 4.545 

42 DB00231 -6.61 -49.926 5.291 

43 DB03916 -6.609 -51.124 4.325 

44 DB08517 -6.577 -44.173 4.511 

45 DB02241 -6.569 -56.316 4.678 

46 DB06397 -6.549 -52.239 4.782 

47 DB04200 -6.543 -40.777 4.546 



48 DB07054 -6.541 -44.817 3.516 

49 DB07315 -6.513 -44.896 4.847 

50 DB08454 -6.498 -56.19 4.344 

51 DB04030 -6.497 -59.602 5.253 

52 DB11824 -6.459 -50.469 4.437 

53 DB00972 -6.438 -50.359 4.793 

54 DB12941 -6.427 -60.855 5.029 

55 DB04811 -6.417 -45.287 4.882 

56 DB07352 -6.398 -40.273 4.866 

57 DB12078 -6.383 -54.886 4.362 

58 DB08345 -6.35 -65.857 4.65 

59 DB08968 -6.344 -60.232 5.208 

60 DB07809 -6.328 -57.424 4.54 

61 DB11696 -6.318 -50.386 4.987 

62 DB07288 -6.274 -50.755 5.166 

63 DB07941 -6.272 -55.102 4.09 

64 DB08282 -6.257 -57.374 5.229 

65 DB07794 -6.254 -44.029 4.54 

66 DB05956 -6.248 -48.81 3.275 

67 DB01094 -6.236 -38.898 4.813 

68 DB14034 -6.226 -54.481 5.154 

69 DB07421 -6.221 -49.145 4.507 

70 DB04669 -6.197 -57.198 4.37 

71 DB02558 -6.187 -46.331 5.243 

72 DB07157 -6.167 -43.229 4.746 



73 DB02194 -6.166 -55.182 4.88 

74 DB12207 -6.15 -45.258 4.043 

75 DB07500 -6.146 -39.329 4.559 

76 DB00522 -6.146 -51.823 5.246 

77 DB07649 -6.137 -46.083 4.059 

78 DB08488 -6.136 -49.881 5.164 

79 DB01128 -6.128 -39.381 3.967 

80 DB04861 -6.125 -49.294 3.469 

81 DB03467 -6.109 -37.932 4.926 

82 DB11885 -6.1 -49.185 4.017 

83 DB07042 -6.1 -50.681 4.62 

84 DB12448 -6.075 -39.864 4.973 

85 DB07065 -6.063 -62.437 4.797 

86 DB12233 -6.063 -47.742 5.159 

87 DB06983 -6.057 -49.81 4.292 

88 DB06837 -6.038 -40.556 5.297 

89 DB06914 -6.022 -52.964 4.511 

90 DB08531 -6.012 -56.319 4.666 

91 DB08233 -6.012 -51.402 4.636 

92 DB12183 -6.008 -51.037 4.144 

93 DB08450 -6.002 -41.838 4.249 

94 DB03509 -5.991 -47.54 5.144 

95 DB07469 -5.96 -49.56 4.872 

96 DB07468 -5.957 -42.67 4.924 

97 DB07785 -5.948 -42.986 4.573 



98 DB07779 -5.948 -43.432 4.579 

99 DB07766 -5.934 -52.316 4.591 

100 DB02046 -5.92 -55.748 5.139 

101 DB07257 -5.917 -43.817 5.15 

102 DB08137 -5.913 -53.883 4.806 

103 DB06919 -5.91 -53.654 5.363 

104 DB08538 -5.908 -43.935 3.506 

105 DB08159 -5.904 -41.77 5.266 

106 DB12963 -5.893 -48.754 4.969 

107 DB07789 -5.887 -51.108 4.526 

108 DB12535 -5.87 -53.539 3.924 

109 DB08042 -5.866 -47.802 3.858 

110 DB08701 -5.863 -50.988 5.321 

111 DB07470 -5.854 -44.823 4.962 

112 DB01136 -5.834 -42.977 4.212 

113 DB01136 -5.834 -42.977 4.212 

114 DB12100 -5.828 -50.762 4.736 

115 DB07247 -5.818 -51.825 5.112 

116 DB13874 -5.817 -51.635 4.286 

117 DB11838 -5.814 -53.126 4.877 

118 DB07423 -5.802 -53.099 4.705 

119 DB09295 -5.8 -43.682 4.282 

120 DB12848 -5.792 -51.389 4.04 

121 DB12047 -5.792 -42.523 4.586 

122 DB08536 -5.792 -46.002 4.37 



123 DB08340 -5.791 -41.883 4.567 

124 DB11877 -5.783 -56.326 3.791 

125 DB07845 -5.765 -43.48 4.083 

126 DB12200 -5.758 -49.984 5.203 

127 DB02611 -5.758 -47.782 4.996 

128 DB02986 -5.75 -45.017 6.039 

129 DB12021 -5.736 -44.565 4.707 

130 DB09330 -5.729 -61.252 4.152 

131 DB08883 -5.71 -58.954 4.74 

132 DB03744 -5.71 -38.836 5.656 

133 DB07595 -5.688 -57.132 4.346 

134 DB08459 -5.681 -55.417 4.855 

135 DB04518 -5.642 -44.649 4.173 

136 DB08064 -5.638 -54.695 4.957 

137 DB06237 -5.629 -42.562 4.375 

138 DB08392 -5.607 -46.21 3.966 

139 DB07324 -5.598 -44.017 4.54 

140 DB08143 -5.595 -51.824 4.629 

141 DB02830 -5.586 -49.851 4.911 

142 DB07379 -5.583 -51.098 4.6 

143 DB07267 -5.566 -51.25 4.117 

144 DB07210 -5.515 -58.707 4.441 

145 DB07755 -5.499 -44.172 4.179 

146 DB13016 -5.496 -45.466 4.931 

147 DB00904 -5.494 -54.03 4.692 



148 DB08738 -5.483 -37.956 5.324 

149 DB03601 -5.48 -39.733 4.953 

150 DB06927 -5.48 -42.356 4.687 

151 DB06589 -5.475 -55.857 5.039 

152 DB12465 -5.468 -48.798 4.321 

153 DB07878 -5.467 -45.682 4.786 

154 DB09198 -5.459 -48.496 4.369 

155 DB11952 -5.448 -48.708 5.111 



TABLE 2 Statistical parameters corresponds to ten best model generated by AutoQSAR 

 

 

 

 

 

 

 

 

 

 

 

 

Model code Score SD R2 RMSE Q2 

kpls_desc_44 0.7022 0.4104 0.6949 0.3662 0.5604 

pls_44 0.6457 0.4598 0.6170 0.3674 0.6481 

kpls_radial_25 0.6406 0.4361 0.6391 0.4143 0.4996 

pls_45 0.5958 0.4677 0.5926 0.4383 0.5320 

Kpls_desc_25 0.5957 0.4711 0.5897 0.4359 0.4461 

kpls_desc_200 0.5928 0.4230 0.6684 0.4266 0.5385 

kpls_molprint2 0.5920 0.4589 0.5923 0.4430 0.4885 

pls_20 0.5896 0.4578 0.6115 0.4399 0.5092 

kpls_dpsc_20 0.5928 0.4230 0.6684 0.4266 0.5385 

Kpls_sesc_45 0.5790 0.4869 0.5466 0.4188 0.5726 



TABLE 3 The collective key parameters corresponds to the reference and hit molecules from our analysis. 

Compou

nds 

Docking 

score  

(kcal/mol) 

∆dG Bind 

(kcal/mol) 

∆dG 

Bind 

Coulomb 

∆dG 

Bind 

Covalent 

∆dG 

Bind 

Hbond 

∆dG 

Bind 

Lipo 

∆dG 

Bind 

Packing 

∆dG 

Bind 

Solv 

GB 

∆dG 

Bind 

vdW 

Lig 

Strain 

Energy 

stars CNS[a] HoA[b] pIC50 

Ritonavir -7.529 -39.34 -20.57 5.506 -2.68 -16.04 0 37.716 -43.271 27.905 10 -2 1 4.625 

Lopinavir -5.907 -39.186 -6.528 1.124 -2.123 -18.651 -3.508 25.659 -35.158 22.952 3 -2 1 5.535 

N3 

inhibitor 

-5.444 -36.816 -21.566 5.249 -1.797 -11.098 -0.52 40.063 -47.148 18.938 9 -2 1 5.49 

DB07800 -7.005 -54.044 -17.867 3.381 -2.042 -14.955 -3.982 25.544 -44.124 16.931 1 -2 3 5.548 

Db03744 -5.71 -38.836 0.75 14.349 -1.461 -14.117 -2.798 1.666 -37.225 12.068 0 -2 2 5.565 

Db08573 -7.052 -40.254 18.054 3.051 -1.891 -11.498 -3.794 -6.955 -37.221 3.14 1 -1 3 5.882 

Db02986 -5.75 -45.017 -18.601 6.469 -2.485 -10.941 -2.579 15.522 -32.402 9.043 1 -2 2 6.039 

[a] - Central Nervous System ; [b] - Human Oral Absorbtion 

 



 

FIGURE 1 Scatter plot analysis of best model predicted from AutoQSAR. 

 

 

 

 

 

 

 

 

 

 



 

 

a) b) 

c) 

d) e) 

f) g) 

FIGURE 2 Ligand interaction diagram of references and hit molecules. References - a) Ritonavir ;         

b) Lopinavir; c) N3 - Inhibitor (Native Ligand) . Hit molecules - d) DB07800 ; e)DB08573 ;                 

f) DB03744 ; g) DB02986 



 

a) b)  c)  

e)  d)  

FIGURE 3 2D structure of reference and hit molecules. References - a) Ritonavir ; b) Lopinavir; 

c) N3 – Inhibitor (Native Ligand) . Hit molecules - d) DB07800 ; e)DB08573 ;    f) DB03744 ; g) 

DB02986. Important functional groups are highlighted as red circle.  

 

 

f)  g)  


