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Abstract 

The recent outbreak of novel “coronavirus disease 2019” (COVID-19) has spread rapidly 

worldwide, causing a global pandemic. In the absence of a vaccine or a suitable 

chemotherapeutic intervention,  it is an urgent need to develop a new antiviral drug to fight this 

deadly respiratory disease. In the present work, we have elucidated the mechanism of binding 

of two inhibitors, namely α-ketoamide and Z31792168 to SARS-CoV-2 main protease (Mpro 

or 3CLpro) by using all-atom molecular dynamics simulations and free energy calculations. We 

calculated the total binding free energy (ΔGbind) of both inhibitors and further decomposed 

ΔGbind into various forces governing the complex formation using the Molecular 

Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. Our calculations reveal 

that α-ketoamide is more potent (ΔGbind= - 9.05 kcal/mol) compared to Z31792168 (ΔGbind= - 

3.25 kcal/mol) against COVID-19 3CLpro. The increase in ΔGbind for α-ketoamide relative to  

Z31792168 arises due to an increase in the favorable electrostatic and van der Waals 

interactions between the inhibitor and 3CLpro. Further, we have identified important residues 

controlling the 3CLpro-ligand binding from per-residue based decomposition of the binding free 

energy. Finally, we have compared ΔGbind of these two inhibitors with the anti-HIV retroviral 

drugs, such as lopinavir and darunavir. It is observed that α-ketoamide is more potent compared 

to both lopinavir and darunavir.  In the case of lopinavir, a decrease in the size of the van der 

Waals interactions is responsible for the lower binding affinity compared to α-ketoamide. On 

the other hand, in the case of darunavir, a decrease in the favorable intermolecular electrostatic 

and van der Waals interactions contributes to lower affinity compared to α-ketoamide. Our 

study might help in designing rational anticoronaviral drugs targeting the SARS-CoV-2 main 

protease.   
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Introduction 

The recent outbreak of “coronavirus disease 2019” (COVID-19) poses a serious public health 

risk. COVID-19 is caused by the novel coronavirus (nCoV) or SARS-CoV-2, which is a highly 

contagious and pathogenic virus. The disease has spread worldwide since its outbreak in the 

city of Wuhan, China, in 2019 (Hui et al. 2020; Wu, Leung & Leung 2020). As of 3rd April 

2020, the total number of people diagnosed with the COVID-19 viral infection exceeds over 1 

million, with more than 55000 fatalities worldwide. In India, more than 2100 people have been 

infected with 56 deaths (https://www.mohfw.gov.in/). The number of positive cases is 

increasing exponentially due to human-to-human transmission. The World Health Organisation 

(WHO) has declared COVID-19 a global pandemic.  

 

nCoV is a nonsegmented, single-stranded, positive-sense RNA virus that belongs to the beta 

coronavirus family (Woo, Huang, Lau & Yuen 2010). This gene encodes four structural 

proteins, namely spike glycoprotein (S), a small envelope protein (E), matrix glycoprotein (M), 

and nucleocapsid protein (N) (Rota et al. 2003). The S protein attaches with the host receptor 

by the specific receptor binding (RBD) (Wan, Shang, Graham, Baric & Li 2020), while the N 

protein binds to RNA in multiple sites to make a helical nucleocapsid structure (Chang, Hou, 

Chang, Hsiao & Huang 2014). Along with these proteins, chymotrypsin-like cysteine protease 

(3CLpro) is an essential protein for maintaining the viral life cycle by cleaving the essential 

polyprotein PP1A to individual functional components. 3CLpro contains 9 α-helices and 13 β-

strands (see Figure 1 A), creating three domains, domain I (residues 8-101), domain II (residues 

102-184), and domain III (residues 201-306). The domains II and III are connected by a long 

loop (residues 185-200). The active site of this protease is located between domains I and II, 

and each domain contributes a single residue to the catalytic dyad, His41 and Cys145, 

respectively. 3CLpro plays a key role in mediating viral replication and transcription making it 

an attractive drug target for COVID-19 treatment.  
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Figure 1: (A) The ribbon representation of SARS-CoV-2 3CLpro (PDB code: 5R84). The 

inhibitors, α-ketoamide (B) and Z31792168 (C) are represented as a stick model. The catalytic 

dyad residues (H41 and C145) are shown in ball and stick representation. 

 

Recently, Jin and coworkers have designed a modified peptide inhibitor for this protease and 

solved the X-ray crystal structure of the complex (Jin et al. 2020). The availability of the crystal 

structure of 3CLpro opens up a lot of opportunities to develop new antiviral drugs. This structure 

is employed to computationally evaluate the repurposing of different FDA approved drugs 

against COVID-19 (Wang 2020). Several studies have predicted the binding strength of 

darunavir, indinavir, and other HIV protease drugs against 3CLpro (Lin, Shen, He, Li & Guo 

2020; Sang, Tian, Meng & Yang 2020).   

 

Recently, Zhang and coworkers have designed a poten inhibitor, α-ketoamide [tert-butyl (1-

((S)-1-(((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-3-

cyclopropyl-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate] (see Figure 1B) 

targeting 3CLpro and resolved the crystal structure of 3CLpro/α-ketoamide (Zhang et al. 2020). 

This inhibitor shows a promising binding as well as a pronounced lung tropism, and can be 

administered by inhalative route (Zhang et al. 2020). In the present work, we have studied the 

mechanism of binding of this inhibitor to SARS-CoV-2 3CLpro using molecular dynamics 

simulations in conjunction with the popular molecular mechanics/Poisson-Boltzmann surface 

area scheme. We have also considered another inhibitor, Z31792168 (2-cyclohexyl-N-pyridin-

3-yl-ethanamide) in our study (see Figure 1C) and compared with α-ketoamide. Finally, the 

binding free energy of these two inhibitors are compared with the anti-HIV retroviral drugs, 

such as lopinavir and darunavir.  
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2. Materials and Methods 

2.1 Simulation Protocol 

The initial coordinates for our molecular dynamics simulations were obtained from the X-ray 

crystallographic structure of the SARS-CoV-2 3CLpro complexed with the inhibitors α-

ketoamide (PDB: 6Y2G) and Z31792168 (PDB: 5R84) (Berman et al. 2002; Zhang et al. 2020). 

The missing residues in 3CLpro were added by using the Modeller (Fiser & Šali 2003; Webb & 

Sali 2014) plugin in UCSF Chimera software (Pettersen et al. 2004). The protonation states of 

the charged residues were determined using the Propka 3.1 webserver (Olsson, Søndergaard, 

Rostkowski & Jensen 2011). All simulations were executed by the pmemd.cuda mudule of 

AMBER18 (Case 2018) package and analyses were done by the Cpptraj module (Roe & 

Cheatham III 2013). We used the latest AMBER ff14SB force field (Maier et al. 2015) to 

describe the protein structure and the updated generalized Amber force field (GAFF2) (Wang, 

Wolf, Caldwell, Kollman & Case 2004) is used to assign parameters to small molecules. All 

the missing hydrogen atoms were added by the Leap module of AMBER (Salomon‐Ferrer, 

Case & Walker 2013). The inhibitors were assigned AM1-BCC (Jakalian, Jack & Bayly 2002) 

charge, which was calculated by utilizing the Antechamber (Wang, Wang, Kollman & Case 

2006) module of AMBER18. The systems were solvated in a truncated octahedron periodic 

box with an explicit TIP3P (Price & Brooks III 2004) water model and a 10 Å buffer distance 

was considered from the complex along each side. 

 A suitable integer number of counterions (Na+) were added for neutralizing the whole system. 

The temperature was kept at 300 K and controlled by the Langevin thermostat (Loncharich, 

Brooks & Pastor 1992). The system pressure was monitored using a Berendsen Barostat 

(Berendsen, Postma, van Gunsteren, DiNola & Haak 1984) and kept at 1.0 bar. All bond 

lengths involving hydrogen atoms were constrained by the SHAKE algorithm (Kräutler, Van 

Gunsteren & Hünenberger 2001). We used a time-step of 2.0 fs for the simulation. The particle 

mesh Ewald summation (PME) (Darden, York & Pedersen 1993) approach was used to 

compute the long-range electrostatic interactions. For all cases, the nonbonded cut-off was 

fixed at 10.0 Å.  

Firstly, each complex was optimized using 500 steps of the steepest descent algorithm followed 

by another 500 cycles of the conjugate gradient scheme. During the minimization, the receptor-

inhibitor complexes were restrained to their respective coordinates with a force constant of 2.0 
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kcal mol−1Å −2. Next, we carried out the minimization without applying any harmonic restraint 

on the solutes to remove any residual steric clashes. After the minimization, the temperature of 

each solvated system was gradually increased from 0 K to 300 K at the NVT (canonical) 

ensemble with a force restraint of 2.0 kcal mol−1Å−2 acting on the solute atoms. After that, a 50 

ps MD simulation with a restraint force constant of 2.0 kcal mol−1Å−2 for all solute atoms at 

constant 1.0 atm pressure was conducted using Berendsen Barostat (Berendsen et al. 1984) at 

a fixed temperature of 300 K. After 1.0 ns of an equilibration phase, the production simulation 

was carried for 100 ns at the NPT ensemble, and the Cartesian coordinates were stored every 

10 ps. Overall, we accumulated 10000 snapshots corresponding to each production simulation.  

2.2 Dynamic cross-correlation map (DCCM) analysis 

The correlated and non-correlated atomic motions of complex protein residues were computed 

with the help of DCCM (McCammon 1984; Hünenberger, Mark & Van Gunsteren 1995) 

analysis using Cpptraj (Roe & Cheatham III 2013) module of AmberTools19. Herein, we avoid 

the apparent correlations between slow side-chain fluctuations and backbone movements. To 

reduce the statistical noise, we considered only Cα atomic coordinates of each residue. We 

avoid initial 10 ns trajectories for system stabilization and used rest 90 ns production simulation 

trajectories for this analysis.   

2.3 Principal component analysis (PCA) 

PCA (Ichiye & Karplus 1991) gives us detailed information about residual correlation 

movements and functional significance of each residue. Similar to DCCM analysis, only Cα 

atomic coordinates were used for this analysis. The atomic fluctuations of Cα-atoms of each 

residue form a covariance matrix, and the diagonalization of the covariance matrix gives us 

eigenvectors and corresponding eigenvalues. The eigenvectors indicate the movements and 

directions, and eigenvalues are movement strength. These eigenvectors and associate 

eigenvalues represent the set of principal components (PCs), which may be used to describe 

the movement characteristics. We also calculate the cosine content via GROMACS (g_covar, 

g_anaeig, and g_analyze modules) (Hess, Kutzner, Van Der Spoel & Lindahl 2008) of first few 

PCs to check the statistical convergence significance of each trajectory. The higher value of 

conformational sampling convergence gives a very lower value of cosine contents. Our first 

few PC’s cosine contents values lie between 0 to 0.6 for each case, which indicates high 

conformational sampling convergence.  

2.4 Free energy landscape 
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The free energy landscape (FEL) calculations were performed by AmberTools19 Cpptraj 

module of AMBER18 using the below equation (1) (Frauenfelder, Sligar & Wolynes 1991); 

𝐺𝐺𝑖𝑖 = −𝑘𝑘𝐵𝐵𝑇𝑇 ln �
𝑁𝑁𝑖𝑖
𝑁𝑁𝑚𝑚

� (1) 

where 𝑘𝑘𝐵𝐵 represents the well-known Boltzmann constant, T is the absolute temperature of each 

simulation system. Ni is the bin i population and Nm is the population of the most populated 

bin. So, bins with no population are an artificial barrier as an indication of the lowest 

probability. To measure the conformational variability of each system in terms of FELs, we 

considered the first principal components (PC1 and PC2) as a main reaction coordinates for 

estimating the landscapes.  

2.5 Energy calculations 

In order to estimate the stabilisation of binding systems, the binding free energies or affinity of 

all four inhibitors against SARS-CoV-2 3CLpro were calculated by a widely used molecular 

mechanics Poisson-Boltzmann surface area (MM-PBSA) method (Kollman et al. 2000; Wang, 

Wang, Kollman & Case 2001; Kar, Seel, Hansmann & Höfinger 2007; Kar, Wei, Hansmann 

& Höfinger 2007). In this study, 2000 structural frames isolated from the last 20 ns of 

trajectories of simulations at an interval of 1 ps were applied to run the MM-PBSA calculations. 

The theory behind the MM-PBSA calculation, we clearly discussed in our WNK1 kinase and 

HIV-1/PR study (Jonniya & Kar 2019; Jonniya, Sk & Kar 2019; Roy, Ghosh & Kar 2020; Sk, 

Roy & Kar 2020) and here we used the same. The normal mode analysis (Xu, Shen, Zhu & Li 

2011) method was used to calculate the configurational entropy (SMM). Due to high 

computational cost, we considered only 50 configurations from last 20 ns simulations for 

entropy calculations. We were also performed the per-residue decomposition of binding energy 

by molecular mechanics generalize- Born surface area (MM-GBSA) scheme to know the 

individual residual contributions of each residue. All the parameters used this calculation were 

developed by Onufreiv and Bashford  (Onufriev, Bashford & Case 2004).  

2.6 Hydrogen bond criterion 

The hydrogen bonds between inhibitors and SARS-CoV-2 residues were analysed using 

AmberTool19 Cpptraj module (Roe & Cheatham III 2013). The formation of hydrogen bond 

defined by a distance and an angle cut-off of ≤ 3.5 Å and ≥120º, respectively; between donor 

(D) and acceptor (A) atom.  
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3. Results and Discussion 

3.1 Structural stability and flexibility analysis 

To verify the convergency of our simulations, we estimated the root mean square deviations 

(RMSDs) of backbone atoms with respect to their energy minimized equilibrated structure, and 

the temporal RMSD of two complexes and apo-3CLpro is shown in Figure 2 (A). From Figure 

2 (A), it is clear that apo 3CLpro reached a stable equilibrium after 30 ns while the 3CLpro/α-

ketoamide system reached equilibrium after 40 ns. In the case of 3CLpro/Z31792168, the 

equilibrium is reached after 60 ns.  

Table 1: Average RMSD, SASA and radius of gyration of 3CLpro-inhibitor complexes and apo 

3CLpro. 

System Backbone RMSD 

(Å) 

SASA (Å2) Radius of gyration 

(Rg) (Å) 

Apo 2.10 (0.01) 14650 (3.5) 22.13 (0.01) 

6Y2G 2.25 (0.01) 13969 (3.2) 22.03 (0.01) 

5R84 1.95 (0.01) 14208 (3.6) 21.96 (0.01) 

 

The average RMSDs for all simulated systems were calculated and reported in Table 1.  The 

average RMSD was found to vary between 1.95 Å and 2.25 Å for all cases. The highest 

deviation (2.25 Å) was obtained for 3CLpro/α-ketoamide, while the lowest RMSD (1.95 Å) was 

obtained for 3CLpro/Z31792168. We also calculated the RMSD of each ligand, and the time 

evolution of ligand RMSD is shown in Figure 2 (B). As can be seen from Figure 2(B), two 

inhibitors reached equilibrium after 50 ns of MD simulations. In the case of α-ketoamide, the 

frequency distribution of RMSD is characterized by a single peak at 2.4 Å while two peaks 

(0.23 Å and 1.1 Å) are obtained for  Z31792168.  
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Figure 2: Time evolution of root-mean-square deviations (RMSD) of (A) backbone atoms of 

3CLpro relative to their respective minimized structure and (B) heavy atoms of inhibitor.  

Next, we investigated the flexibility of different parts of 3CLpro by calculating the root mean 

square fluctuations (RMSFs) of Cα-atoms for all systems and is shown in Figure 3. It is evident 

from Figure 3 that all three systems display more or less similar fluctuations. In the case of 

apo-3CLpro, domain II (residues 102-184) shows slightly higher fluctuations, which gets 

diminished after the ligand binding. In the case of 3CLpro/α-ketoamide, a relatively higher value 

of RMSF is obtained around residue 50 (domain I) compared to apo or 3CLpro/Z31792168.  
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Figure 3: The root-mean-square fluctuations (RMSFs) of Cα atoms for apo (red), 3CLpro/α-

ketoamide (green), and 3CLpro/Z31792168 (blue).  

The structural compactness of each system was analyzed by estimating the radius of gyration 

(Rg) from their respective MD trajectories, and the average values are reported in Table 1. A 

similar Rg is obtained for all systems. Finally, the solvent-accessible surface area (SASA) that 

indicates the degree of solvent exposure was also calculated and reported in Table 1. It is 

evident from Table 1 that SASA values vary between 13969 Å2 and 14650 Å2 for all systems. 

The highest value (14650 Å2) was obtained for apo, while the lowest SASA value (13969 Å2) 

was reported for 3CLpro/α-ketoamide. An intermediate SASA value (14208 Å2) was obtained 

for 3CLpro/Z31792168.   

3.2 Dynamic cross-correlation analysis 

To elucidate the effect of inhibitor binding on the internal dynamics of 3CLpro, the cross-

correlation matrix was calculated by using the coordinates of Cα atoms from MD trajectories, 

and the dynamic cross-correlation map (DCCM) is displayed in Figure 4. Overall, after 

inhibitor binding the apparent anti-correlation motions are observed in both complexes. 
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Figure 4: Cross-correlation matrices of the fluctuations of the coordinates for Cα atoms around 

their mean positions after the equilibrium of MD simulation. The extent of correlated motions 

and anti-correlated motions are color-coded (1 = highly correlated; 0 = neutral; -1 = anti-

correlated). 

For Apo system, the correlation map is different and the domain I and domain II shows highly 

anti-correlated movement but domain III has lower strength of anti-correlation movement. The 

region R1, which is represents the binding cavity area on the map, indictes that after inhibitor 

binding the little bit anti-correlation motion has increased and diagonals are highly correlated. 

Similarly, for 5R84 complex, after inhibitor binding induces more anti-correlation motion as 

compared to 6Y2G complex, see region R1. The region R2 indicates the residual motion of 

domain III for all cases and it is evident that after inhibitors binding the anti-correlation 

movements increases for both complex. Similarly, inhibitor bindings produced different 

motion modes at domaun I, see region R3. The anti-correlation modes are diminishes for the 

case of 6Y2G complex and create a stable environment for inhibitor binding to their respective 

cavity. 
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3.3 Principal component analysis 

 

Figure 5: Two dimensional free energy landscapes (FELs) generated by projecting the 

principal components, PC1 and PC2 of apo (A), 6Y2G (B) and 5R84 (C) complexes in MD 

simulation at 300 K and the representative structures. The representative structures are shown 

on its right panel by K-means clustering analysis. 

To further characterize the effect of inhibitor binding on the dynamics of 3CLpro and extract 

the structural variations in detail, PCA was applied to the coordinates of the backbone atoms 

of inhibitors bounded and apo form 3CLpro. The PCA results in terms of eigenvectors (3N, 3 ⅹ 

306=918) versus eigenvalues obtained by diagonalization of the atomic fluctuations covariance 

matrix for complexes and apo form 3CLpro are shown in Figure S1. The collective motions of 

the localized fluctuations can be defined by the first few principal components. The first 10 
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eigenvectors capture ⁓87%, ⁓88% and ⁓89% of the total motion in apo, 6Y2G and 5R84 

complexes. 

 In general, the two largest  principal components (PC1 and PC2) account for more than 70% 

of the overall fluctuations for apo form and inhibitor-bound 3CLpro. The two dimensional free 

energy landscapes (FELs) of the apo and inhibitor bound 3CLpro for the first two principal 

component (PC) is represented in Figure 5. It is evident from 5, the pattern of a basin on the 

FEL are different for the different systems. It is notable that the conformational space sampled 

by inhibitor-bound 6Y2G system is more restricted, whereas the apo and 5R84 systems sample 

wider conformational spaces, see in Figure S2. These observations suggest that the apo and 

5R84 systems increasing the flexibility, which agrees the RMSF data (Figure 3). The 

conformational space of apo and 5R84 complex showed a two dispersed free energy basin, 

whereas in the case of 6Y2G complex showed a single and stable global free energy minimum 

confined within a basin on the FEL, as is evident from Figure5. Porcupine plots are shown in 

Figure S3, which generated via first mode that shows the largest collective motions of Cα atoms 

which has been mapped onto the average structure  using VMD (Humphrey, Dalke & Schulten 

1996) software Normal Modes Analysis plugin. To visualize the detailed movements for each 

protein, corresponding structures were selected based on K-means (Hartigan & Wong 1979) 

clusters of PCA distributions. The structures were obtained from cluster centers and 

superimposed with each other. Overall, it is observed that the mobility is higher for apo and 

5R84 3CLpro complex compared to 6Y2G 3CLpro complex. 

3.4 Dihedral principal component analysis 

To further discover the conformational alterations of loop (residues 185-200) between domain 

II (residues 102-184) and domain III (residues 201-306), dihedral PCA (dPCA) was performed 

based on the dihedral angles (ϕi,ψi) of the peptide group in loop. Cartesian coordinates based 

PCA does not provie the fully correct internal and overall movements and dPCA gives us the 

information about internal and overall motions pattern. 
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Figure 6: The two dimensional free energy landscapes (FELs) of (A) apo, (B) 6Y2G complex 

and (C) 5R84 3CLpro complex. FEL obtained from dPCA  and their representative structures 

are shown on its right panel by K-means clustering analysis. 

From Figure 6, it is evident that dPCA indicates diverse loop conformations for each systems. 

The apo 3CLpro has one global minimum (70%) and one local minimum (30%). Similarly, 

6Y2G complex has two almost equiprobable free energy basins (51% and 49%). The 

conformational space of 5R84 is quite wider as we see in Figure 6 (C), which contained one 

global free energy basin (46%) and two local free energy minima of 41% and 13%. In this 

analysis we confirmed that this loop play a important role in inhibitor binding as well as defined 
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the dynamical nature of 3CLpro structures. Thus, inhibitor-induced fluctuation of this loop in 

3CLpro is worth paying more attention in the next-generation drug design. 

3.5 Binding affinity of inhibitors with 3CLpro 

To understand the biophysical basis of recognition of inhibitors (I6Y2G and I5R84) with 3CL Pro, 

molecular dynamic simulations in conjunction with Molecular-Mechanics Poisson-Boltzmann 

Surface Area (MM-PBSA) scheme were computed in AMBER18. It provides different 

individual components contribution to total binding free energy such as ∆EvdW, ∆Eelec, ∆Gpol, 

∆Gnp, and T∆S. For binding free energy calculations of both complexes, 2000 structures were 

taken from the stable region, and 50 structures were considered for the entropy calculations. 

 

Figure 7 : Energy components (kcal/mol) for the binding of inhibitors to the 3CLpro. ∆EvdW, 

van der Waals energy; ∆Eelect, electrostatics energy in gas phase; ∆Gpolar, polar solvation 

energy; ∆Gnonpolar, nonpolar solvation energy; T∆SMM, configurational entropy contribution and 

∆Gbind, total binding energy. 

A summary of binding components in the binding free energy of inhibitors with 3CLPro is 

shown graphically in Figure 7, and the data are listed in Table 2. According to Table 2 the 

estimated binding free energy of I6Y2G is higher ( -9.05 kcal mol-1) compared to I5R84  ( -3.25 

kcal mol-1) with the 3CLpro. It is evident from Table 2 that van der Waal (∆EvdW), 

intermolecular electrostatic interactions (∆Eelec) and non-polar solvation energy (∆Gnp) favored 

the binding, where van der Waals interactions play a significant role in the binding of the 
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complexes. For which the I6Y2G complex exhibits a higher value being -61.63 kcal mol-1 than 

I5R84 complex (-31.61 kcal mol-1). Similarly, the electrostatic interaction favored more in  I6Y2G 

complex (-35.23 kcal mol-1 ) than I5R84 complex (-13.64 kcal mol-1). However, the polar 

solvation energy (∆Gpol) and configurational entropy (T∆S) disfavor the complex formation. 

Table 1 suggests that the total polar contribution (∆Eelec + ∆Gpol ) of the inhibitor I5R84 is less 

unfavorable with 3CLpro (13.44 kcal mol-1) compared to the inhibitor I6Y2G (27.71 kcal mol-1). 

Moreover, the disfavoring component of the configurational entropy exhibits low value being 

17.92 kcal mol-1 for the inhibitor I5R84 compared to the inhibitor I6Y2G (30.18 kcal mol-1). 

However, the potency of the inhibitor I6Y2G against 3CLpro is comparatively higher than the 

inhibitor I5R84. It is due to the total non-polar components (∆EvdW + ∆Gnp) coming from the 

hydrophobic residues in the binding pocket that contributes more to the inhibitor I6Y2G being -

66.94 kcal mol-1 compared to the inhibitor I5R84 (-34.6 kcal mol-1).  

Table 2: Energetic components of the binding free energy for SARS-CoV-2-inhibitors 
complexes calculated using MM-PBSA (kcal/mol). Standard errors of the mean (SEM) are 
provided in parentheses. 

Components α-ketoamide Z31792168 LopinavirR(Wang 

2020) 
DarunavirR(Sang 

et al. 2020) 

∆EvdW -61.63 (0.10) -31.61 (0.06) -20.09 (0.63) -41.32 

∆Eelec -35.23 (0.13) -13.64 (0.09) -52.46 (0.33) -5.80 

∆Gpol 62.94 (0.13) 27.08 (0.09) 46.58 (0.56) 29.01 

∆Gnp -5.31 (0.00) -2.99 (0.00) -4.59 (0.02) -4.75 

∆Gsolv a 57.63 (0.13) 24.09 (0.09) 41.99 (0.56) 24.26 

∆Gpol + elec 
b 27.71 (0.18) 13.44 (0.13) -5.88 (0.65) 23.21 

∆EMM 
c -96.86 (0.16) -45.25 (0.11) -30.56 (0.71) -47.12 

 -T∆S d 30.18 (0.81) 17.92 (0.88) -23.93 (0.01) NA 

∆GTotal
e -39.23 (0.11) -21.16 (0.01) -30.56  -22.86 

∆GBind sim -9.05 (0.82) -3.25 (0.88) -6.63 (0.28) NA 

IC50 Exp 0.67 ± 0.18 μM NA NA NA 
 

a∆Gsolv = ∆Gnp + ∆Gpol, b∆Gpol + elec = ∆Eelec + ∆Gpol, c∆EMM = ∆EvdW + ∆Eelec, d∆S = configuration entropy, e∆G = EvdW + ∆Eelec 

+ ∆Gnp + ∆Gpol, ∆GBind sim =  EvdW + ∆Eelec + ∆Gnp + ∆Gpol  - (T∆S), R1 and R5 are references from which data are taken 
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Since no approved drugs have been reported so far for the effective treatment of the SARS-

CoV-2 virus, and with an urgent need for an epidemic situation, it has been a choice to use 

some of the available retroviral drugs. Hence in our study, the binding affinity of inhibitors 

I6Y2G and I5R84 were further evaluated and compared with the FDA approved anti-HIV1 protease 

inhibitors, such as Lopinavir and Darunavir which has been reported as potent drugs against 

3CLpro of SARS-CoV-2. Recently the molecular recognition of the Lopinavir against COVID-

19 3CLpro has been reported with the MMPBSA scheme (Wang 2020), where the estimated 

binding free energy of Lopinavir with 3CLpro was found to be -6.63 kcal mol-1 and showed that 

the electrostatic interaction (-52.46 kcal mol-1 ) favored most compared to the van der Waal 

interaction (-20.09 kcal mol-1). Similarly, one more recent study using the MM-PBSA scheme 

suggests that the Darunavir can be a potent inhibitor against SARS-CoV-2 3CLpro (Sang et al. 

2020).  

Table 3: Decomposition of binding free energy into contributions from individual residuesa 

Residue EvdW Eelec Gpol Gnp Gside_chain Gbackbone Gtotal 

3CLpro/α-ketoamide 

Met165 -2.95 -1.82 1.30 -0.23 -2.03 -1.67 -3.70 
Leu27 -2.05 -0.47 0.23 -0.18 -1.79 -0.68 -2.47 
His164 -1.80 -4.15 3.70 -0.09 -0.31 -2.03 -2.34 
His41 -2.04 -2.49 2.43 -0.22 -2.18 -0.14 -2.32 
Glu166 -3.10 -4.14 5.99 -0.51 -0.37 -1.39 -1.76 
Cys145 -1.86 -0.56 1.26 -0.16 -1.08 -0.24 -1.32 
Pro168 -1.07 -0.02 0.13 -0.23 -0.79 -0.40 -1.19 
His163 -0.54 -2.98 2.56 -0.06 -0.96 -0.06 -1.02 

3CLpro/Z31792168 
Met165 -2.11 -1.07 0.82 -0.20 -1.47 -1.09 -2.56 
His163 -0.37 -2.86 1.74 -0.03 -1.43 -0.09 -1.52 
His164 -0.95 -2.24 2.12 -0.08 -0.23 -0.92 -1.15 

 

a Energetics contributions from the van der Waals (EvdW) and electrostatic interactions (Eelec) as well as polar (Gpol) and 

nonpolar solvation energy (Gnp) and the total contribution of given residue (Gtotal) for SARS-CoV-2-inhibitor complexes are 

listed. Gside_chain and Gbackbone represent the side chain and backbone contributions. Only residues with | ∆G | ≥ 1.0 kcal/mol 

are shown. All values are given in kcal/mol. The standard error of free energy estimated as well as of individual components 

are not larger than 0.4 kcal/mol.  

It shows that for Darunavir, van der Waal interaction being higher (-41.32 kcal mol-1) than 

electrostatic interaction (-5.80 kcal mol-1). As shown in Table 2, if we compare the binding free 

energy among all inhibitors without considering the entropy part. Our study reports that the 
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binding affinity follows the order, α-ketoamide  > Lopinavir > Darunavir > Z31792168 against 

COVID-19 3CLpro. Hence, the inhibitor, α-ketoamide may be considered as a lead compound 

in the discovery of drugs against COVID-19. 

Further to explore the key residues involved in the binding, ligand-residue free energy 

decomposition was performed using the MMGBSA scheme. Along with the electrostatic and 

van der Waal interactions, the solvation effect was taken into account using the Generalized 

Born model.(Onufriev, Bashford & Case 2004) The ligand-reside MM-GBSA interaction 

energy was computed in AMBER18. A hotspot residue is considered in the MM-GBSA 

interaction energy when it is higher than -1.0 kcal.mol-1. The free energy decomposition of 

ligand-residue is shown in Table 3 and plotted in the Figure 7 . It is evident from Table 2 that 

a large number of hotspot residues contributing to the binding is seen in the 3CLpro/α-ketoamide 

complex, including the catalytic dyad C145 and H41 compared to the 3CLpro/Z31792168 

complex, which also suggests the higher binding affinity for the inhibitor α-ketoamide  against 

3CLpro. Significant residues of the 3CLpro/α-ketoamide complex include M165, L27, H164, 

H41, E166, C145, P168, and H163 from the substrate-binding region of domains I and II, 

suggesting that these residues from 3CLpro play a significant role in drug binding. Overall, these 

hotspot residues of the inhibitor-protein can facilitate the rational drug design of novel selective 

inhibitor against COVID-19. 

 

Figure 8: Decomposition of ∆G into contributions from individual residues for (A) 3CLpro/α-
ketoamide and (B) 3CLpro/Z31792168. 
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Subsequently, to compliment the above results, we have performed the hydrogen bond (H-

bond) analysis using the Cpptraj (Roe & Cheatham III 2013) module in AMBER for both the 

complexes on the MD trajectories, and their occupancies are reported in Table 4. It is observed 

from Table 4 that residues H41 (~ 43 %), E166 (~ 43 %), and H164 (~ 42 %) form > ~ 40 % 

H-bond with the inhibitor I6Y2G during the simulations, explaining their high intermolecular 

electrostatic interactions in binding. However, in the case of the I5R84 complex, only E166 form 

the highest H-bond occupancy of ~ 35 %.  Besides, the number of H-bond with the simulations 

time is shown in Figure S4, which also ensures that the highest number of H-bond persists for 

the 3CLpro/α-ketoamide  complex compared to 3CLpro/Z31792168, suggesting the strong bonding 

of the inhibitor  α-ketoamide  with 3CLpro.  

Table 4: The hydrogen bonds formed between SARS-CoV-2 and inhibitor and the 
corresponding average distance and percent determined using the MD trajectories in the MD 
simulations. 

Binding couples MD 

Acceptor Donor Avg. Distance (Å)a Occupancy (%)b 

3CLpro/α-ketoamide 

Lig@O40 His41@NE2 2.88 43.12 

Lig@O22 Glu166@N 2.90 42.53 

His164@O Lig@N38 2.88 41.76 

Lig@O48 His163@NE2 2.83 29.97 

Glu166@O Lig@N23 2.87 24.43 

Glu166@OE2 Lig@N49 2.84 23.06 

Glu166@OE1 Lig@N49 2.84 13.17 

Leu27@HD23 Lig@N36 2.82 10.33 

Lue27@HD21 Lig@N36 2.83 10.25 

Leu27@HD22 Lig@N36 2.84 09.78 

Asn142@OD1 Lig@N36 2.82 09.56 

Lig@O41 Gly143@N 2.84 07.98 

Lig@H20 Gln189@N 2.85 05.10 

3CLpro/Z31792168 
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Lig@O Glu166@N 2.87 34.55 

His164@O Lig@N 2.84 25.34 

Lig@N1 His163@NE2 2.91 09.19 

 

 

Figure 9: The receptor-ligand interaction profile for (left) α-ketoamide  and (right) Z31792168. 

The plots are generated by using Ligplot+. Hydrogen bonds are shown as green dotted lines. 

The residues involved in the hydrophobic contacts are shown by red semicircles and residues 

involved in hydrogen bonds are represented in green. The inhibitors are represented as ball and 

sticks. 

 

The detailed interactions profile of residues involving H-bond and hydrophobic interactions is 

also computed using the LigPlot (Wallace, Laskowski & Thornton 1995) program and shown 

in Figure 9. It suggests that the residue of the catalytic dyad H41 plays a significant role in 

forming a strong H-bond with inhibitors. Also, the hydrophobic contacts resulting from the 

hydrophobic residues for both the complexes throughout the simulations were computed and 

shown in  Figure S5. It also suggests the highest number of hydrophobic contacts remain in the 

simulations for the inhibitor I6Y2G complex in agreement with the above results of binding free 

energy. Overall, the binding free energy and its decomposition analysis reveal that I6Y2G 

inhibitor is a more potent lead molecule against the novel CIVID-19 protease (3CLpro)  in 
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comparison with FDA approved anti-HIV1 protease inhibitor such as Lopinavir and Darunavir 

which is being recently focused in the treatment of COVID-19. 

4. Conclusion 

The recent outbreak of COVID-19 has caused a severe strain in the public health system in 

many countries. COVID-19 can cause mild to severe illness. The current situation demands an 

efficacious vaccine or novel antiviral drugs targeting COVID-19. Herein, we have studied the 

mechanism of binding of two potential inhibitors, namely α-ketoamide and Z31792168 to 

COVID-19 main protease (3CLpro) by using an atomistic molecular dynamics simulation of 

100 ns in conjunction with the widely used molecular mechanics/Poisson-Boltzmann surface 

area (MM/PBSA) scheme. Out study shows that the 3CLpro-inhibitor complexation is favored 

by the intermolecular van der Waals and electrostatic interactions as well as nonpolar solvation 

free energy. We have also shown that the inhibitor α-ketoamide  is more potent compared to 

Z31792168 due to an increased favourable contribution from the intermolecular van der Waals 

and electrostatic interactions relative to Z31792168. Furthermore, in the case of α-ketoamide, 

the nonpolar component of the solvation free energy is also slightly more favourable compared 

to Z31792168. We have also identified the hotspot residues controlling the receptor-ligand 

binding. Finally, our study also reveals that α-ketoamide has better binding affinity compared 

to anti-HIV retroviral drugs, such as darunavir and lopinavir. Overall,  α-ketoamide can be used 

as a lead compound in the development of drug targeting SARS-CoV-2 3CLpro and our study 

might play an useful role for the same.  
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Figure S1: Comparison of the eigenvalues plotted against the corresponding eigenvector indices 
from the Cα covariance matrix constructed from the MD trajectories of apo and complexes. 
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Figure S2: The maps of PC1 and PC2 during MD simulation of apo form of 3CLpro and complex and 
colour codes represents the simulation time. 
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Figure S3: Porcupine plots showing prominent motions for (A) apo, (B) 6Y2G and (C) 5R84. Green 
represent eigenvector showing the direction of prominent movements. Length of the eigenvectors 
represents the magnitude of the movements. 
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Figure S4: Time evolution of hydrogen bond distances and probability distribution of (A) 6Y2G and 
(B) 5R84 complexes. 
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Figure S5: The time evolution of hydrophobic contacts of I6Y2G and I5R84.  

 

 


