
1 
 

Combined Molecular Graph Neural Network and Structural Docking 

Selects Potent Programmable Cell Death Protein 1/Programmable 

Death-Ligand 1 (PD-1/PD-L1) Small Molecule Inhibitors 

Prageeth R. Wijewardhane,#,1 Krupal P. Jethava,#,1 Jonathan A. Fine,#,1 Gaurav Chopra*,1,2 

1Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, USA 

2Purdue Institute for Drug Discovery, Integrative Data Science Institute, Purdue Center for Cancer 

Research, Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue 

Institute for Integrative Neuroscience, West Lafayette, IN, USA 

 

# These authors share an equal contribution to this work 

*Corresponding author 

  



2 
 

ABSTRACT 

The Programmable Cell Death Protein 1/Programmable Death-Ligand 1 (PD-1/PD-L1) interaction 

is an immune checkpoint utilized by cancer cells to enhance immune suppression. There exists a 

huge need to develop small molecules drugs that are fast acting, cheap, and readily bioavailable 

compared to antibodies. Unfortunately, synthesizing and validating large libraries of small-

molecule to inhibit PD-1/PD-L1 interaction in a blind manner is a both time-consuming and 

expensive. To improve this drug discovery pipeline, we have developed a machine learning 

methodology trained on patent data to identify, synthesize and validate PD-1/PD-L1 small 

molecule inhibitors. Our model incorporates two features: docking scores to represent the 

energy of binding (E) as a global feature and sub-graph features through a graph neural network 

(GNN) to represent local features. This Energy-Graph Neural Network (EGNN) model outperforms 

traditional machine learning methods as well as a simple GNN with an average F1 score of 0.997 

(± 0.004) suggesting that the topology of the small molecule, the structural interaction in the 

binding pocket, and chemical diversity of the training data are all important considerations for 

enhancing model performance. A Bootstrapped EGNN model was used to select compounds for 

synthesis and experimental validation with predicted high and low potency to inhibit PD-1/PD-L1 

interaction. The new potent inhibitor, (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-

methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, is a hybrid of two known bioactive scaffolds, 

and has an IC50 values of 339.9 nM that is comparatively better than the known bioactive 

compound. We conclude that our EGNN model can identify active molecules designed by scaffold 

hopping, a well-known medicinal chemistry technique and will be useful to identify new potent 

small molecule inhibitors for specific targets. 
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INTRODUCTION 

Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor implicated for 

the creation of new cancer therapeutics.1 The prolonged interaction between the T-cell receptor 

and the major histocompatibility complex (MHC) leads to upregulation of PD-1 on the activated 

T-cell surface.2 Activated T cells produce cytokines, such as Interferon-γ, which in turn cause 

tumor cells to express programmed death ligand 1 (PD-L1) on the their cell surface.2 Tumors 

escape the action of immune system by utilizing the interaction between PD-1 and ligand PD-L1 

resulting in lower effector T-cell function and survival, as such resulting in a suppressive immune 

response in the tumor microenvironment.2 The inhibition of the PD-1/PD-L1 interaction can 

enhance anti-tumor immunity and a large amount of work has been done to develop monoclonal 

antibodies as inhibitors of PD-1/PD-L1 interaction inhibitors.3,4 For example, Pembrolizumab and 

cemiplimab, and nivolumab are three FDA approved anti-PD-1 antibodies.4 The discovery of 

small-molecule inhibitors would be an advantageous over antibodies, such as being fast-acting, 

simple for in vivo administration, ability to penetrate through cell membranes and interact with 

the cytoplasmic domains of cell surface receptors.5 Since a few years, there has been significant 

development in designing PD-1/PD-L1 inhibitors.6,7 Specifically, Bristol-Myers Squibb (BMS) 

discovered a set of potent PD-1/PD-L1 small molecule inhibitors based on the peptidomimetic 

molecules and non-peptidic small molecules.6,7  In particular, BMS revealed a 2-methyl-3-

biphenyl-methanol scaffold containing chemical libraries. Later, Holak et al. studied the 

interaction of BMS molecules with PD-L1 suggesting that BMS molecules induce PD-L1 

dimerization and also reported crystal structures of compounds with dimeric PD-L1.8,9 Based on 
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these findings, we envisioned to develop a machine learning (ML) framework for selecting and 

testing new PD-1/PD-L1 inhibitors. 

Traditionally, the development of small-molecule inhibitors requires high throughput 

screening of a large library of diverse drug-like compounds10 or a medicinal chemist iterating over 

a scaffold with weak receptor activity to enhance potency.11 This entire process is – (i) time 

consuming; (ii) needs expensive instrumentation and robotics; (iii) based on trial-and-error; and 

(iv) highly inefficient to identify several new scaffolds rapidly.12 In addition, virtual screening using 

docking methods have been developed to improve this process but with limited success.13 

Further, ML architectures such as Support Vector Machine (SVM)14–16, Random Forest (RF)17–19, 

Graph Convolution Network20, and Graph Neural Networks (GNN)21,22 have been used for drug 

design and predicting drug-target interactions23,24. Recently, new architectures utilizing a 

combination of graph features in the binding site of a protein have shown great promise for 

calculating binding affinities and determining whether a compound will bind to a target.20,22 

Several new neural network-based architectures have also been proposed that show 

promise to identify potent scaffolds, but many have not been tested experimentally,15,16,25–28 and 

developments in the ability to mine and characterize protein crystallography data hopes to drive 

the creation of these models.29 Recently, it has been shown that molecular sub-graph features 

incorporated through a GNN and protein features encoded by their sequence can be combined 

to predict if a compound can target a given protein.24 Inspired by this work and based on our 

interest in developing methods for drug design and immunology29–36, we have developed a new 

machine learning model to predict if a compound can inhibit the PD-1/PD-L1 interaction. Our 

method replaces the protein sequence features with docking scores representing the free energy 
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of binding and due to this global energetic interaction of the small molecule in the binding pocket, 

we have termed this model as an “Energy Graph Neural Network” (EGNN). The three-dimensional 

atomic interaction energetic scores are calculated using CANDOCK31 (Figure 1B) and are 

combined with local molecular graph features (Figure 1A) using an end-to-end training 

methodology (Figure 1C-D). In this work, we use this EGNN model to select designs for synthesis, 

and experimentally test a curated list of compounds from these predictions to prospectively 

identify potent PD-L1 small molecule inhibitors using the Homogenous Time-Resolved 

Figure 1. The EGNN model takes advantage of a combination of local (A) and global (B) features. The local features 

are calculated from the molecular graph of a molecule using a GNN to assign weights to various sub-graphs of the 

molecule. The global features are a collection of docking scores used to represent the interactions between the 

compound and protein. These two features are combined to create a concatenated vector (C) which is passed 

through a SoftMax layer and bootstrapped to classify a molecule as having ‘low’ or ‘high’ potency against PD-1/PD-

L1 interaction. 
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Fluorescence (HTRF) assay. We also tested negative predictions suggesting the utility of the model 

to be used for selecting potent leads as PD-1/PD-L1 inhibitors.  

RESULTS  

Patent Data for Training the EGNN Model 

We used PD-1/PD-L1 small molecule inhibition data for 464 compounds from three patents to 

train our models: WO 2015/160641 A2 by BMS (376 compounds)6, and WO 2018/119263 A137 

and US 2018/0273519 A138 by Incyte Corporation (88 compounds).  We did not consider the 

Figure 2. (A) Upper: Classification of Training Data in BMS and Incyte Patents. Bottom: Left: Main PD-L1 inhibitor 

scaffolds of BMS patents. R group can be CN, Cl, Br, or CH3. Right: Main PD-L1 inhibitor scaffolds of Incyte patents. 

Here A and B denote sub-scaffolds. (B) & (C) Heatmaps of pairwise Tanimoto similarity scores of BMS and Incyte 

compounds respectively. 
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other BMS patent WO 2015/034820 A17 as it contains similar scaffold present in the WO 

2015/160641 A2 patent6 with minor changes. A homogeneous time-resolved fluorescence 

(HTRF) binding assay was used to show activity against PD-1/PD-L1 interaction in the patents. 

However, the patents did not list individual IC50 values for all compounds but provided a range of 

inhibition with the different molecules. Therefore, we trained a binary classifier with cutoffs for 

both datasets to treat a molecule as “High potency” or “Low potency” (Figure 1). If the reported 

IC50 of a molecule is less than or equal to 100 nM in the patent it was considered as a “High 

potency” molecule, otherwise it was considered as a “Low potency” molecule. This threshold 

yields 307 high potency molecules and 157 low potency molecules for use in training and 

validating machine learning models; approximately 2:1 split between high potency and low 

potency molecules. It should be noted that the actual value of IC50 should not be considered here 

as our experiments with multiple replicates were not able to obtain exactly reported results for 

some molecules in the patents (see IC50 value of compound 4a in Table 2, BMS-1 with 6-100 nM 

annotated in the WO 2015/034820 A1 patent7). Therefore, we consider positive prediction (high 

potency) based on our experimental IC50 value as compared to the upper limit of a BMS control 

molecule (compound 4a/BMS-1) in WO 2015/034820 A1 patent7 that is not included in the 

training set. The annotated training dataset of 464 small molecules is shown in Supporting 

Information File (TrainingData.xlsx). 

We selected the BMS and Incyte patents to include chemical diversity of the molecules in the 

training data set. Figure 2A shows the distribution of low and high potency molecules and general 

scaffolds in the BMS and Incyte patents. The BMS patent has 260 high potency compounds and 

116 low potency compounds while the Incyte patents has 47 high potency compounds and 41 
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low potency compounds respectively. The BMS patent scaffolds contains 246 derivatives of (2-

methyl-3-biphenylyl)methanol and 130 derivatives of [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-

methylphenyl]methanol shown in Figure 2A (bottom - left) with R groups as CN, Cl, Br, and CH3. 

On the other hand, Incyte patent scaffolds have distinct sub-scaffolds, denoted as A and B in 

Figure 2A (bottom – right). For Incyte scaffolds, X denotes for either N or C—R groups (R: Alkyl 

groups). These scaffolds suggest that the chemical diversity of Incyte compounds is higher than 

that of the BMS patent because the general structures of the compounds in Incyte patents have 

more structural diversity for sub-scaffolds and atoms. We validated this observation using 

pairwise Tanimoto similarity scores of BMS and Incyte compounds as shown as heatmaps in 

Figure 2B and 2C, respectively. Morgan fingerprints with radius of 2 and default bit length were 

used to calculate pairwise Tanimoto similarities. High red color areas in the BMS heatmap 

indicates that the molecular pairs are structurally similar to each other. Low red areas in the 

Incyte heatmap suggests it has more chemical diversity in molecular structures. Furthermore, the 

average pairwise Tanimoto39 similarity score of all BMS compounds was found to be 0.5213 and 

0.3799 for all Incyte compounds, confirming higher chemical diversity in Incyte compounds as 

compared to BMS compounds.  

PD-L1 homodimer and PD-1/PD-L1 Crystal Structures Reveals a Binding Site for Docking  

It has been shown previously that BMS compounds inhibit the PD-1/PD-L1 interaction by inducing 

dimerization of PD-L1.8,9 Therefore, a PD-L1 homodimer crystal structure (PDB ID: 5N2F) was 

selected for docking all the compounds in this manuscript. A PD-1/PD-L1 crystal structure (PDB 

ID: 4ZQK) was also used to check whether the binding site location of PD-L1 in the homodimer 

crystal structure (5N2F) overlapped and aligned with each other using the PyMol software 
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package40(Figure 3A). In Figure 3B, the selected binding site of the PD-L1 homodimer on the 

overlapped and aligned crystal structures is shown to indicate that the formation of the 

homodimer of PD-L1 with small molecules blocks the PD-1/PD-L1 interaction. A known inhibitor 

of the PD-1/PD-L1 interaction (ligand ID: 8HW)8 in the selected binding site (Figure 3C) suggests 

that the selected binding site corresponding to PD-L1 homodimers is relevant to develop PD-

1/PD-L1 inhibitors. Therefore, the docking interactions of the PD-L1 homodimer will be relevant 

towards identifying PD-1/PD-L1 inhibitors.  

 CANDOCK31 was used to generate docking conformations of small molecules with PD-L1 

homodimer (see Experimental Section on Generation of Energy Features with Docking and 

Energy Vector (E) in EGNN for details). Before developing a machine learning method, we also 

assessed the ability of only using the docking scores for compounds in the training set for each 

Figure 3. The light pink chain represents the PD-1 protein and the pale cyan chain represents the PD-L1 protein in 

the PD-1/PD-L1 complex crystal structure (PDB ID: 4ZQK). The wheat color chain represents the PD-L1 chain A and 

the blue white color represents the PD-L1 chain B in the PD-L1 homodimer crystal structure (PDB ID: 5N2F) (A) 

Overlapped and aligned PD-1/PD-L1 (4ZQK) and PD-L1 dimer (5N2F) crystal structures. (B) Overlapped and aligned 

two crystal structures with the determined binding site (grey color mesh) of the PD-L1 dimer (5N2F). (C) The PD-L1 

dimer (5N2F) crystal structure with the small molecule (ligand ID: 8HW) at its binding site (grey color mesh). 
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96 potential energy scoring function31 in CANDOCK to classify the active vs inactive molecules. 

Two methods were used to select the best scoring function to differentiate between the high and 

low potency classes. First, Area Under the Receiver Operator Characteristic Curve (AUROC) values 

were used (Table S1). The scoring function, normalized frequency cumulative reduced 15 (FCR15) 

acquired the highest AUROC value of 0.7855. Second, the best scoring function was selected by 

comparing the largest difference between the mean docking scores for the high potency and low 

potency classes (Table S2). It suggested that the normalized frequency-mean-complete-15 

(FMC15)31 scoring function has the highest difference to separate high and low potency classes. 

Additionally, the AUROC of this function is 0.7729 and is close to that of FCR15. This result is 

consistent with our previously published assessment of CANDOCK scoring functions to assess 

biological activity31. However, both FCR15 and FMC15 scores were not able to clearly separate 

all the high and low potent classified molecules in the training data (see Violin plots in Figure S1). 

Using only one scoring function is not sufficient to capture the different states of PD-1/PD-L1 

inhibition with small molecules. Therefore, we developed an EGNN model with 96 different 

potential function to represent the global features (see Experimental Section on Generation of 

Energy Features with Docking and Energy Vector (E) in EGNN for details). 

EGNN Model with Hyperparameter Optimization Outperforms GNN and Other Baseline Models 

A detailed description of the EGNN model including a combination of molecular GNN combined 

with docking is given in the Experimental Section. Figure 1 shows that the EGNN model is a 

combination of local features of the small molecule represented as a GNN (see Graph Neural 

Network for Molecular Graphs in EGNN) along with global features of protein-ligand interaction 

represented as docking scores (see section Generation of Energy Features with Docking and 
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Energy Vector (E) in EGNN).  The EGNN was trained with 464 small molecules with high and low 

potency for PD-1/PD-L1 inhibition extracted from patent literature (see Patent Data for Training 

the EGNN Model). We calculated variation in the average F1 score (over five cross-validated 

folds) compared to number of epochs for different hyperparameters (Figure S2). Optimal 

hyperparameters were selected for EGNN include: dimension of the hidden molecular vector 

(dim) = 7, sub-graph radius = 2, and number of hidden layers = 1 (see Experimental Section on 

EGNN Training and Hyperparameter Optimization).  

The EGNN and GNN models were trained with different training sets to examine the effect 

of chemical diversity on model performance for classification of active and inactive molecules. 

Two datasets (BMS and Incyte) were used separately and in combination to train the EGNN model 

and determine the best dataset to predict PD-1/PD-L1 inhibitors. Here, F1 score and Area Under 

the Receiver Operator Characteristic Curves (AUROC) were measured to compare three models 

trained with BMS data only, Incyte data only and BMS-Incyte combine data. AUROC was 

measured for the model trained only on BMS data while predicting for Incyte data, and vice versa.  

Figure 4A shows average F1 scores (over five-fold cross-validation) for both models 

trained with BMS compounds, Incyte compounds, and the union of these sets.  The average F1 

scores of the EGNN and GNN models trained with Incyte data were 0.956 (±0.051) and 0.678 

(±0.157), respectively (Figure 4A). This result suggests that the EGNN trained model with Incyte 

data that contains diverse chemical scaffolds (Figure 2C) performs much better than the GNN 

trained with the same data set. However, when the same test was done with only BMS 

compounds with lower chemical diversity than Incyte, the average F1 score is comparable for 

both models with 0.992 (± 0.007) for the EGNN model and 0.948 (± 0.022) for the GNN model. 
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This suggests that the GNN model performs well with smaller chemical diversity in the training 

data as compared to larger chemical diversity in training data. However, the EGNN model 

performs well with both datasets, indicating that it is a superior model to the GNN. 

When both BMS and Incyte datasets were combined, the average F1 score of the EGNN 

model was 0.997 (± 0.004) and 0.891 (± 0.030) for the GNN model. Although the average F1 score 

of the EGNN increased slightly by combining both datasets, the average F1 score of the GNN 

model decreased compared to GNN trained only with BMS compounds (previously 0.948± 0.022). 

Figure 4. (A) F1 scores for EGNN and GNN with different training and validation/test sets. (B) Area under the 

curve values for EGNN and GNN models with different training and validation/test sets. (C) ROC curves for 

different EGNN and GNN models trained on BMS or Incyte data and predict for the other dataset. (D) ROC curves 

for EGNN, GNN, RF and SVM models trained with combined BMS and Incyte data. 
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A similar trend is observed for the AUROCs for the three different training set comparisons 

(Figure 4B). These results suggest that the EGNN model outperforms the GNN model for 

chemically diverse training and validation sets. We believe this to be due to the addition of 

‘global’ energy features captured by the docking scores of PD-L1 homodimers as training data in 

EGNN compared to only the ‘local’ structural features of small molecules in the training data for 

the GNN model. 

We also investigated the ability of the EGNN and GNN models trained on one compound 

set to predict high and low potency inhibitors of PD-1/PD-L1 in the other compound set. These 

results are represented as ROC curves in Figure 4C. When the EGNN and GNN models are trained 

on BMS compounds and used to predict Incyte compounds, a near random prediction curve is 

observed for both models with AUROC of 0.6038 for the EGNN and 0.5854 for the GNN. However, 

the ROC curves for both models improved when they were trained with Incyte data and used to 

predict the BMS compounds (AUROC of EGNN = 0.8139, GNN = 0.8287). These results suggest 

that even though there is marked improvement in AUROC values for the EGNN model versus the  

GNN model, there is no improvement seen in the F1 scores for both EGNN and GNN models (see 

Table S3 for details). This highlights the importance of chemical diversity in training data, in that, 

it is not enough to use only BMS or only Incyte data alone to train the final model to make 

predictions for unknown molecules. Therefore, we selected the combined BMS-Incyte dataset to 

train the EGNN model which improved both models (Table S3). 

Finally, we compared the cross-validated EGNN model with GNN, SVM, and RF baseline 

models trained with BMS-Incyte combined training data. Both SVM and RF models are trained on 

96 docking scores obtained by CANDOCK (‘global’ energy features). Precision, recall, AUROC and 
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F1 score values are tabulated in the Table 1 for all four models. The SVM model was trained using 

the caret package with the "svmRadial" method41 and the RF was trained using the 

‘randomForest’ library in R with 500 trees using caret41 package for statistics precision, recall and 

F1 score. AUROC values were calculated using pROC42 library. The EGNN model outperforms all 

other models with values of 0.996, 0.997, 0.999, and 0.997 for precision, recall, AUROC and 

average F1 score, respectively (Table 1). Comparing ROC curves of these four models (Figure 4D) 

also confirmed that the EGNN model outperforms all three other models. Hence, neither only 

topology of the small molecules (‘local’ features), nor only the docking scores (‘global’ features) 

of compound-protein interactions are enough to classify small molecules as PD-1/PD-L1 high and 

low potency inhibitors. Taken together, the combined local and global features in EGNN gives the 

best performance on BMS-Incyte combined training and validation set. 

Table 1. Precision, Recall, AUROC and F1 Score of the EGNN for PD-1/PD-L1 inhibitor predictions compared 

to other baseline models, such as, Random Forest, SVM, and GNN models. All models were trained on the 

combined BMS and Incyte dataset. 

Measure 
Model 

Random Forest SVM GNN EGNN 

Precision 0.720 0.778 0.866 0.996 

Recall 0.688 0.758 0.921 0.997 

AUROC 0.881 0.900 0.910 0.999 

Average F1 Score 0.704 0.768 0.891 0.997 
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Synthetic Selection and Validation of EGNN Predictions for PD-1/PD-L1 Inhibition 

The EGNN model trained with optimum hyperparameters and the combined dataset was used to 

get predictions for an in-house database of small molecular designs. We developed a 

bootstrapped EGNN model to predict compounds with high and low potency for PD-1/PD-L1 

inhibition using 1000 EGNN models (see section Bootstrapping the EGNN model). Bootstrapping 

is an essential statistical technique that can be used to select confident molecules for synthesis 

and experimental validation based on agreements among multiple models. The bootstrapped 

GNN model identified high and low potency small molecules as PD-1/PD-L1 inhibitors that were 

synthesized and then experimentally verified with HTRF binding assay (see Table 2 for summary). 

Specifically, we selected 3 molecules predicted to be active or inactive for PD-1/PD-L1 inhibition 

for testing based on bootstrapped EGNN SoftMax average scores and standard deviation (see 

EGNN SoftMax scores in Table 2). 

Out of EGNN bootstrapped predictions, we have selected 1 molecule as active (compound 

4b) and 2 molecules with different scaffolds as inactive (compound 4c and 4d) for further testing. 

Specifically, all 1000 EGNN models resulted in an average SoftMax score of 0.9997 (±0.0029) for 

compound 4b suggesting active PD-1/PD-L1 inhibitor prediction. In contrast, only 849 EGNN 

models resulted in an average SoftMax value of 0.8362 (±0.3025) for compound 4c and 617 EGNN 

models resulted in an average SoftMax value of 0.6107 (±0.4351) for compound 4d suggesting 

inactive predictions. We also synthesized a BMS scaffold (compound 4a a known PD-1/PD-L1 

inhibitor) for use as a positive control for our HTRF experiments. The compound structures are 

shown in Scheme 1 and 2 (see Experimental Section for procedures and characterization). The 

predicted active molecule (compound 4b) is (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-
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methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, a hybrid of two BMS molecules, 4a (BMS-1) 

and BMS-1002 containing (2-methyl-3-biphenylyl)methanol and [3-(2,3-dihydro-1,4-

benzodioxin-6-yl)-2-methylphenyl]methanol, respectively (Figure 5A). This suggests the ability of 

EGNN model to do scaffold hopping since analogs of BMS-1 and BMS-1002 scaffolds exist in the 

training data6. 

Scheme 1. Representative Synthesis Schemea 

 

Compound Y R1 R2 R3 

4a (KPGC01S94) Y2 OMe OMe 

 

4b (KPGC01S32) Y1 OMe OMe 

 

4c (KPGC01S138) Y2 OMe OMe 

 

a Reaction conditions: (i) BH3•THF complex (1.0 M in THF), Anhydrous THF, 0 °C to rt, 2 days; (ii) PPh3, DIAD, 

0 °C to rt, 20 h, anhydrous THF; (iii) amine component, NaBH3CN, cat. AcOH, DMF, 80 °C or room 

temperature, 1h or 3 h or overnight. 
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Scheme 2. Synthesis of 4d (GCL2) 

 

The top docked pose in PD-L1 homodimer (PDB ID: 5N2F) for compound 4b interacts in a 

similar manner as shown previously for the co-crystal structures8 (Figure 5B). Specifically, for 

compound 4b, the 2,3-Dihydro-1,4-benzodioxine group facilitated the movement of the amino 

acid residue Tyr56 in chain A of the PD-L1 homodimer (ATyr56). It is known that this ATyr56 does 

not close the hydrophobic pocket from one end if this 2,3-Dihydro-1,4-benzodioxine group is 

present8 creating a hydrophobic tunnel (Figure 5B inset) rather than a hydrophobic cleft in the 

docked conformation. Additionally, the aromatic ring of compound 4b (2,3-Dihydro-1,4-

benzodioxine) was stabilized by π-π stacking interactions with the amino acid residue ATyr56 

(Figure 5C). The central methylbenzyl ring (magenta color in 4b in Figure 5A) in the structure is 

rotated by approximately 30o to 2,3-Dihydro-1,4-benzodioxine ring and the methyl group of the 

methylbenzyl ring point towards chain B of the PD-L1 homodimer. This orientation results in 

hydrophobic interactions with Met115 of both chain A and B of the homodimer and with BAla121. 

The D-serine end of the 4b compound forms hydrogen bonds with AThr20 and AAla121 along with 

a plausible hydrogen bond formation between backbone NH of ATyr123 and the oxygen in one of 

the two methoxy groups of the 4b molecule (Figure 5C). These results suggest favorable 

interactions of compound 4b that could dimerize PD-L1 will result in PD-1/PD-L1 inhibition. 
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 The HTRF assay confirmed that compound 4b has an IC50 of 339.9 nM (see Experimental 

Section for details) to inhibit PD-1/PD-L1 interaction (Figure 5D). This is comparatively better 

Figure 5. A. EGNN predicted a new PD-1/PD-L1 inhibitor, compound 4b, by scaffold hopping of BMS compounds, 4a 

or BMS-1 and BMS-1002. Blue colored parts of the 4b are added from the BMS-1002 and pink color part was added 

from the 4a (BMS-1). B. Showing location of top docked pose of the compound 4b in PD-L1 homodimer crystal 

structure (PDB ID: 5N2F). Inset showing hydrophobic tunnel for compound 4b.  C. Showing chemical interactions of 

top docked pose interactions of the compound 4b in PD-L1 homodimer. Blue and pink colored parts are shown as 

sticks for 4b. The dotted yellow lines between the compound and the residues AThr20 and AAla121 represent 

hydrogen bonding. The orientation of the aromatic ring of tyrosine, ATyr56, suggests a plausible p- p interaction with 

2,3-dihydro-1,4-benzodioxin blue colored aromatic ring in the compound 4b. D. Comparison of IC50 values of 4a 

(BMS-1 control compound, red color) and new compound 4b (blue color). The DMSO controls for positive (PC-DMSO, 

purple color) and negative controls (NC-DMSO, green color) of the assay are shown for each tested concentration. 
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than the IC50 of 521.5 nM for the BMS compound 4a that was synthesized and tested in our lab 

(BMS-1 molecule in the BMS patent WO 2015/034820 A1). It should be noted that the BMS-1 

molecule was denoted with the IC50 of 6-100 nM with HTRF assay in the BMS patent7 . However, 

multiple replicates of our experiments did not result in the IC50 value less than 100 nM to inhibit 

PD-1/PD-L1 interaction (see Calculation of IC50 values section and Supporting File 

HTRF_IC50_Data.xlsx). As mentioned previously, this result does not affect our machine learning 

method since we have classified molecules based on high and low potency, compared to 

developing a model to estimate the specific IC50 value. A possible explanation of this difference 

in experimental results between our work and the patent could be the exact protocol used to 

perform the HTRF assay and calculation of IC50 values. For this reason, we have included a 

detailed account of HTRF assay protocol, analysis of data for calculation of IC50 and supporting 

data files for use by the scientific community (see Experimental Section).  In order to test the 

validity of our bootstrapped EGNN model to correctly identify inactive or low potency 

predictions, we also tested compounds 4c and 4d resulting in no inhibition to PD-1/PD-L1 

interaction (Table 2). The IC50 plots for each compound tested (Figure S3) as well as the 13C and 

1H NMR spectra are provided as Supporting Information. Taken together, these results suggest 

that bootstrapped EGNN model can be used to select molecules for synthesis and experimental 

validation of PD-1/PD-L1 inhibition. 

Table 2. IC50 values for predicted active and inactive compounds with EGNN SoftMax scores 

Compound IC50 value SoftMax score Prediction 

4a (KPGC01S94) 521.5 nM Control* Control* 

4b(KPGC01S32) 339.9 nM 0.9997 +/- 0.0029 Active 
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4c (KPGC01S138) no inhibition 0.8362 +/- 0.3025 Inactive 

4d (GCL.2) no inhibition 0.6107 +/- 0.4351 Inactive 

*denotes BMS active compound 

DISCUSSION AND CONCLUSION 

Cancer immunotherapy marks a major step in treating cancer and the development of PD-1/PD-

L1 immune checkpoint inhibitors have been an important area of research for treatment of 

several tumors. Currently, six therapeutic antibodies targeting both PD-1 (pembrolizumab, 

nivolumab, and cemiplimab) and PD-L1 (atezolizumab, durvalumab, and avelumab) have been 

approved by U.S. FDA. Recently, several new small molecules PD-1/PD-L1 inhibitors have been 

developed43 along with structure determination of human PD-1/PD-L1 complex and cocrystals of 

inhibitory ligands44–46. Still the field is very active in search for new small molecules to inhibit this 

important checkpoint and we hope to enhance the speed of this search with the use of new 

structure-based ML methods that have been benchmarked extensively and tested prospectively.  

We have developed a new ML methodology, EGNN, based on combining local features of 

the small molecule topology and global features of the small molecule interacting within the 

binding pocket as energetic scores to select, synthesize and experimentally validate potent 

inhibitors of PD-1/PD-L1 interaction. Specifically, EGNN outperforms traditional ML 

architectures, such as, RF, SVM that include only global features, as well as the GNN model that 

uses only local features of small molecular topology. When benchmarked with known PD-1/PD-

L1 inhibitors from BMS and Incyte patents data, we concluded that topology of the small 
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molecule, the structural interaction in the binding pocket, and chemical diversity of the training 

data are all important considerations for enhancing model performance. 

We used a bootstrapped EGNN model (based on 1000 EGNN models) for prediction and 

confident selection of new molecules for chemical synthesis and subsequent testing of inhibition 

using HTRF PD-1/PD-L1 inhibition assay. We believe that bootstrapping is an important statistical 

technique to use with ML methods to confidently select molecules for experimental validation in 

drug design. The predicted active molecule, (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-

methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, is a hybrid of two BMS active molecular 

scaffolds, and has an IC50 value of 339.9 nM for inhibiting PD-1/PD-L1 interaction, suggesting  the 

ability of EGNN model to do scaffold hopping to identify new inhibitors. Accurate selection of 

inactive molecules with different scaffolds suggests practical utility of our bootstrapped model 

for selection of compounds for synthesis, a hard problem in the field of ML based drug design.   

Our EGNN methodology can be further developed with the addition of more chemically 

diverse publicly data, in-house training and validation dataset, and incorporating reinforcement 

iterative learning with experiments performed in each step for developing a library of structurally 

diverse small molecule inhibiting PD-1/PD-L1 interaction to guide structure-activity relationships. 

Given the general nature of the machine learning model and docking methodology that is readily 

available for use, this approach can be adapted to identify small molecule immunomodulators by 

targeting other immune checkpoints, as well as, generally used to include local and global 

features for target-based drug design. 
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EXPERIMENTAL SECTION 

Homogenous Time-Resolved Fluorescence (HTRF) Assay to Test Inhibition of Predicted 

Compounds 

Inhibition of PD-1/PD-L1 interaction was tested for 3 active and inactive predicted compounds 

using the PD1/PD-L1 HTRF assay kit from Cisbio US, Inc. The assay protocol was used as 

mentioned in the kit for each predicted compound (4b, 4c, GCL.2) and the BMS control 

compound (4a). Briefly, 2 µL of the compound, 4 µL from a 25 nM Tag1-PD-L1 protein solution 

and 4 µL from a 250 nM Tag2-PD1 protein were added into a Cisbio’s HTRF 96-well low volume 

white plate. Then, the plate was incubated for 15 minutes at room temperature. Next, 10 µL from 

pre-mixed anti-tag detection reagents (5 µL from 1X anti-Tag1-Eu3+ and 5 µL from 1X anti-Tag2-

XL665) were added and the sealed plate was incubated for 2 hours at room temperature. Finally, 

the plate sealer was removed, and measurements were taken using a HTRF® compatible reader. 

This protocol used 12 different concentrations of each compound where the maximum and 

minimum assay concentrations are 10,000 nM and 0.001 nM respectively. Several replicates at 

different concentration were done for active prediction compound 4b (36 data points) and 

positive control compound 4a (48 data points). The fitted curve for normalized signal denoted by 

∆𝐹/∆𝐹𝑚𝑎𝑥 (calculated using HTRF ratio 665 nm/620 nm) versus log[concentration] was used to 

determine the 50% inhibitory concentrations (IC50) of the compounds (see next section on 

Calculation of IC50 values).  

To calculate ∆𝐹/∆𝐹𝑚𝑎𝑥, first the HTRF ratio is calculated as follows; 

𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜 = 	
𝑆𝑖𝑔𝑛𝑎𝑙	665	𝑛𝑚
𝑆𝑖𝑔𝑛𝑎𝑙	620	𝑛𝑚 × 10000 
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A multiplication factor of 10000 factor was used to not deal with decimal values that improves 

data accuracy during calculation. The ΔR ratio indicating “specific signal” of the compound 

disrupting the PD-1/PD-L1 interaction was calculated by subtracting background HTRF ratio 

(negative DMSO control in our work) from each compound (sample) HTRF ratio as follows; 

∆𝑅 = 𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) 

Next, data normalization was done to minimize variation in values on different days, different 

plate reader instruments, or if the assay was done by different individuals. The normalization was 

done with respect to the background HTRF ratio and was calculated as follows; 

∆𝐹 =
𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) × 100% 

Finally, the ∆𝐹/∆𝐹𝑚𝑎𝑥 ratio was calculated to enable comparison of values between multiple 

experiments. 

∆𝐹/∆𝐹𝑚𝑎𝑥 =
∆𝐹	(𝑠𝑎𝑚𝑝𝑙𝑒)
∆𝐹	𝑚𝑎𝑥  

where ∆𝐹	𝑚𝑎𝑥 is taken as the ∆𝐹 of the positive DMSO control in the assay. 

Calculation of IC50 values 

The IC50 value for PD-1/PD-L1 inhibition was determined by analyzing the log of the 

concentration−response curves to fit a sigmoid curve with four-parameter logistic (4PL) 

regression using the GraphPad Prism Software version 8.3.0 for Windows, GraphPad Software, 

La Jolla California USA, www.graphpad.com. The IC50 values are provided in Table 2. Following 

equation defines the regression curve. 
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𝑌 = 𝐵𝑜𝑡𝑡𝑜𝑚 +
(𝑇𝑜𝑝 − 𝐵𝑜𝑡𝑡𝑜𝑚)

I1 + 10I(JKLMNOPQR)×STUUVUKWXYY
 

where 𝑋 = Log of concentration, 𝑌 = Response ∆𝐹/∆𝐹𝑚𝑎𝑥, 𝑇𝑜𝑝 and 𝐵𝑜𝑡𝑡𝑜𝑚 = Plateaus in same 

units as Y, 𝐿𝑜𝑔𝐼𝐶50 = Same log units as X, 𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒 = Slope factor or Hill Slope, Unitless. Using 

the above equation,	𝐿𝑜𝑔𝐼𝐶50, is calculated to obtain the IC50 value for each compound. The 

HTRF_IC50_Data.xlsx data file with all replicates is provided as a Supporting File for use in 

GraphPad Prism Software to calculate IC50 values. 

 

Machine Learning Architecture of the EGNN model 

The EGNN model was developed using PyTorch47. All scripts for implementing the machine 

learning model and results are provided on GitHub at https://github.com/chopralab/egnn. The 

Figure 1 shows the overview of the EGNN machine learning architecture. We implemented the 

Graph Neural Networks for the molecular graph by Tsubaki and coworkers.24. Briefly, the 

molecular structures were converted into SMILES strings using ChemAxon MolConverter48 

software. Then RDKit49 software package and the Weisfeiler-Lehman algorithm was used to 

extract r-radius subgraphs graphs for molecules (Figure 1A). The following sections include 

details of the EGNN architecture. 

Graph Neural Network for Molecular Graphs in EGNN 

The following equations and notations with details for molecular GNN have been reproduced 

here from the original work24 with minor modifications for clarification. The lowercase bold face 

letters (e.g.  𝐯 ∈ ℝa	) indicate vectors, uppercase bold face letters (e.g.  𝐌 ∈ ℝc	×	d	) indicate 
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matrices, and Italicized non-bold letters (e.g.  𝑆, 𝐺, 𝑣, and	𝑒	) indicate scalars, sets, graphs, 

vertices, and edges. The GNN converts a molecular graph into a low dimensional real valued 

vector 𝐲 ∈ ℝa  with two neural network-based functions; transition and output.21 In a graph 𝐺, 

each vertex (𝑣) is updated with considering the information of its neighboring vertices and edges 

by the transition function. These vertices have been mapped into a real valued vector 𝐲 ∈ ℝa  by 

the output function. Both functions are differentiable. All the input features and weights of the 

GNN model are updated using back propagation with the help of the cross-entropy loss function. 

A graph can be defined as 𝐺 = (𝑉, 𝐸), here; 𝑉 and 𝐸 are sets of vertices and edges respectively. 

When applied to chemistry, atoms can be defined as vertices and chemical bonds can be defined 

as edges. First, all the atoms and chemical bonds will be embedded as real valued vectors with 

d-dimensions based on their different types. Since the diversity of atoms (eg: C, N, O, etc.) and 

bonds (eg: single bonds, double bonds, triple bonds, etc.) in a small molecule is limited, the 

number of learning parameters are limited. Therefore, a strategy called r-radius sub-graphs50 was 

used to avoid this limitation. 

r-radius Sub-graphs 

The set of all atoms within a defined 𝑟 radius an atom 𝑖 can be represented as 𝑁(𝑖, 𝑟). When the 

𝑟 = 0,	   𝑁(𝑖, 𝑟) 	= 	 {𝑖}, which is the set of all atoms in the molecule. The r-radius sub-graph of 

the 𝑖th vertex (𝑣T) is defined as follows; 

𝑣T(q) 	= 	 (𝑉T(q), 𝐸T(q)) 

Here, 
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𝑉T(q) 	= 	 {𝑣r	|	𝑗 ∈ 	𝑁(𝑖, 𝑟)} 

𝐸T(q) 	= 	 {𝑒cd ∈ 	𝐸	|	(𝑚, 𝑛) 	∈ 		𝑁(𝑖, 𝑟) 	× 𝑁(𝑖, 𝑟 − 1)} 

The r-radius sub-graph for the edge between 𝑖th and 𝑗th atoms (𝑒Tr) was defined as follows; 

𝑒Tr(q) 	= 	 (𝑉T(qQu) ∪ 𝑉r(qQu), 𝐸T(qQu) ∩ 𝐸r(qQu)) 

Randomly initialized embeddings (Figure 1) are assigned to each r-radius edge 𝑒Tr(q) and vertex 

(𝑣T
(q)) based on the type. Backpropagation has been used to train these random embeddings.  

Vertex Transition Function 

Say 𝐯T
(x) ∈ ℝa  is the embedded vector for the 𝑖	th vertex of a given molecular graph 𝐺 at time 

step 𝑡. Then the updated 𝐯T
(xyu) ∈ ℝa  vector can be written as follows; 

𝐯T
(xyu) 	= 	𝜎 {	𝐯T

(x) + | 𝐡Tr
(x)

𝒋	∈	�(T)

� 

Here,	𝑁(𝑖) is denoting the set of neighboring atoms, 𝜎 is the sigmoid function which is defined 

as 𝜎(𝑥) = u
uyX�

 , and 𝐡Tr
(x) ∈ ℝa  is the hidden vector which defines the neighborhood and can be 

calculated as follows; 

𝐡Tr
(x) 	= 	𝑓 �𝐖dXTL��Kq �

𝐯r
(x)

𝐞Tr
(x)� + 𝐛dXTL��Kq� 

Here, 𝑓 is the Rectified Linear Units (ReLU), a non-linear activation function such 𝑓(𝑥) =

𝑚𝑎𝑥(0, 𝑥). 𝐖dXTL��Kq ∈ ℝa×�a  and  𝐛dXTL��Kq ∈ ℝa×�a  are the weight matrix and the bias vector 
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respectively. The vector between the 𝑖th and	𝑗th atoms (vertices) of the molecular graph after 

the time step 𝑡 is defined as 𝐞Tr
(x). 

Edge Transition Function 

As mentioned before, edge transition function is used to update each embedded edge vector 𝐞Tr
(x)  

during the training process. 

𝐞Tr
(xyu) = 𝜎�𝐞Tr

(x) + 𝐠Tr
(x)� 

𝐠Tr
(x) = 𝑓 �𝐖XaLX�𝐯T

(x) + 𝐯r
(x)� + 𝐛XaLX� 

Here, 𝐖XaLX ∈ ℝa×a, 𝐛XaLX ∈ ℝa×u are the weight matrix and the bias vector respectively. 

Moreover, 𝐯T
(x) and 𝐯r

(x) are added, because there is no direction for edges in molecular graphs. 

Molecular Vector Output of Molecular GNN  

The transition function generates an updated set of atom (vertex) vectors �𝑉 =

�𝐯u
(x), 𝐯�

(x), . . . , 𝐯|�|
(x)��. Then the output function uses this set of atom vectors to obtain an unique 

molecular vector 𝐲cKUX��UX ∈ ℝa  (Figure 1A), which is defined as follows; 

𝐲cKUX��UX =
𝟏
|𝑉||𝐯T

(x)
|�|

T�u

 

Here, the total number of vertices in the full molecular graph is denoted by the |𝑉|.Generation 

of Energy Features with Docking and Energy Vector (E) in EGNN 
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First, all the reported molecules were carefully drawn using MarvinSketch51 software. Then, all 

the drawn molecules were cleaned in 3D and converted into a sybyl.mol2 file,  which was used 

for docking with our in-house CANDOCK31 software package (version 0.6.0) using default 

parameters with 20% top seed percent (Figure 1B).  CANDOCK source code is available on GitHub 

at https://github.com/chopralab/candock/releases/tag/v0.6.0. The docking was done with a PD-

L1 homodimer crystal structure (PDB ID: 5N2F). We selected the binding site based on the 

coordinates of the crystal ligand in the protein structure (ligand ID:8HW). Then, radial-mean-

reduced-6 (RMR6)31 was used as “Selector” parameters for docking to select the top pose31. Next, 

the top pose of each docked compound was selected, and its docking score was recalculated 

using all the available 96 different potential energy functions in CANDOCK31 software (Figure 1B). 

All 96 CANDOCK docking energy scores of each molecule were normalized for each potential 

energy function to use as a vector in the EGNN model; 

𝑆�T,r = �
𝑆T,r 	− 	𝑚𝑖𝑛(𝑆r)

𝑚𝑎𝑥(𝑆r) 	− 	𝑚𝑖𝑛(𝑆r)
� 

Where, 𝑖:	1 → 𝑛 and 𝑗:	1 → 𝑚. Here, 𝑛 is the number of potential energy scoring functions and 

𝑚 is the number of molecules in the dataset. 𝑆�T,r  is the normalized docking energy value for the 

energy score with 𝑖th potential energy function for the 𝑗th docked molecule. Similarly, 𝑆T,r  is the 

docking energy score before normalization. Also, 𝑚𝑎𝑥(𝑆r) and 𝑚𝑖𝑛(𝑆r) are the maximum and 

minimum energy values within the 𝑗th scoring function for all docked molecules. Thus, the 

normalized docking score vector for each molecule in the EGNN model is represented using all 

96 normalized different potential energy scoring functions as  𝐲XdXqL� ∈ ℝ�� (Figure 1B). 

Output of EGNN 
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As represented in Figure 1C, the normalized docking energy score vector (𝐲XdXqL�) is 

concatenated with the molecular vector output of the GNN (𝐲cKUX��UX). Then, the concatenated 

long vector (𝐲cKUX��UX ⊕ 𝐲XdXqL�) ∈ ℝ(ay��) was used for the training as follows to obtain an 

output vector 𝐱K�xW�x ∈ ℝ�; 

𝐱K�xW�x = 𝐖K�xW�xI𝐲cKUX��UX ⊕ 𝐲XdXqL�Y + 𝐛K�xW�x 

Here ⊕ denotes concatenation, 𝐖K�xW�x ∈ ℝ�×(ay��) denotes the weight matrix and the 

𝐛K�xW�x ∈ ℝ� denotes the bias vector. Then, a SoftMax classifier (Figure 1D) is added on to the 

top of the  𝐱K�xW�x = [𝑦P, 𝑦u] vector to get the active or inactive probabilities.  

𝑝x =
𝑒(�¥)

∑ 𝑒(�§)T
 

Here, 𝑡 ∈ {0,1}; 0 indicates less potent and 1 indicates highly potent, and the 𝑝x is the probability 

of the given 𝑦x. 

Bootstrapping the EGNN model 

The model uses a random number to initialize edge and vertex vectors. Therefore, bootstrapping 

was used with the final model to get predictions. One thousand different models with distinct 

random seeds were trained and predictions were obtained for an in-house molecular designs test 

set. Averaged SoftMax scores were used as the final prediction results of the bootstrapped 

model. Finally, molecules in the test set were classified as high Potency or low potency based on 

the averaged SoftMax score. If it is greater or equal to 0.5, it was considered as high Potency, 

else low potency (Figure 1). Thus, the EGNN model will be trained with back propagation with 

given SMILES strings, the vectors of all 96 scores generated by CANDOCK31 and their high potency 
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or low potency status with the PD-L1 protein. The trained model can be used to predict the 

probability of a given molecule to be a high or low potent molecule towards the PD-L1 protein. 

EGNN Training and Hyperparameter Optimization 

The model takes a SMILES string and a docking energy score string for a given molecule as inputs. 

Hyperparameters of the model were optimized before using it for predictions. Dimension of the 

GNN hidden vector (dim), number of hidden layers of the GNN, and sub-graph radius was 

optimized by considering the five-fold cross validated F1 score. Six values were used for the 

dimension of the GNN hidden molecular vector output (i.e. dim = 5, 6, 7, 8, 10 and 20). Numbers 

1, 2, and 3 were used to check for the optimum number of hidden layers in the GNN. Finally, the 

optimum sub-graph radius for the model was selected out of radius = 2 and 3. 

Synthesis 

Unless noted otherwise, all reagents and solvents were purchased from commercial sources and 

used as received. All reactions were performed in a screw-capped vial. The proton (1H) and 

carbon (13C) NMR spectra were obtained using a 500 MHz using Me4Si as an internal standard 

and are reported in δ units. Coupling constants (J values) are reported in Hz. Column 

chromatography was performed on silica gel using flash chromatography (Teledyne ISCO EZprep). 

High-resolution mass spectra (HRMS) were obtained using the electron spray ionization (ESI) 

technique and as TOF mass analyzer. Organic solvents and starting materials were used as 

received. The BMS compound 4a (BMS-1 or KPGC01S94)7 as well as compounds 4b-c were 

synthesized according to the reported procedures starting from compound 1, 2a-b, 3a-b  and 

spectral data were in accordance with reported data. 6–8 
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Compound 4a (BMS-1 or KPGC01S94), (S)-1-(2,6-dimethoxy-4-((2-methyl-[1,1'-biphenyl]-3-

yl)methoxy)benzyl)piperidine-2-carboxylic acid: 3b from scheme 1 (45 mg, 0.125 mmol), (S)-

piperidine-2-carboxylic acid (64.5 mg, 4 equiv, 0.5 mmol), sodium cyanoborohydride (40.8 mg, 

5.2 equiv, 0.65 mmol), were dissolved in DMF (1 mL) and then added acetic acid (2 drops). The 

reaction mixture was allowed to stir at 80 oC for 1 hour. The reaction was monitored by TLC. The 

crude was purified by 0-20% MeOH:DCM to afford desire product as an off-white solid (31.5 mg, 

53% yield). 1H NMR (500 MHz, DMSO-d6) δ 7.49 – 7.41 (m, 3H), 7.39 – 7.34 (m, 1H), 7.32 – 7.25 

(m, 3H), 7.19 (dd, J = 7.7, 1.5 Hz, 1H), 6.41 (s, 2H), 5.17 (s, 2H), 4.08 (s, 2H), 3.78 (s, 7H), 3.11 (t, J 

= 5.5, 5.5 Hz, 1H), 3.08 – 2.99 (m, 1H), 2.60 (dd, J = 13.5, 6.7 Hz, 1H), 2.20 (s, 3H), 1.80 (q, J = 6.0, 

5.9, 5.9 Hz, 2H), 1.55 (q, J = 6.7, 6.1, 6.1 Hz, 2H), 1.37 (ddt, J = 18.4, 12.8, 6.5, 6.5 Hz, 3H); 13C NMR 

(126 MHz, DMSO-d6) δ 172.0, 161.47, 160.32, 142.70, 141.85, 135.83, 134.59, 130.25, 129.63, 

128.86, 128.72, 127.44, 126.04, 92.05, 69.23, 64.35, 56.42, 48.70, 46.21, 31.16, 26.11, 22.13, 

21.27, 16.41. 

Compound 4b (KPGC01S32), (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-methylbenzyl)oxy)-

2,6-dimethoxybenzyl)-D-serine: 3a from scheme 1 (35.6 mg, 0.104 mmol), D-serine (32.8 mg, 3 

equiv), sodium cyanoborohydride (19.6 mg, 3 equiv), were dissolved in DMF (1 mL) and then 

added acetic acid (0.104 mmol, 1 equiv, 2 drops). The reaction mixture was allowed to stir 

overnight at room temperature. The reaction was monitored by TLC. The crude was purified by 

0-20% MeOH:DCM to afford desire product as an off-white solid (42% yield). 1H NMR (500 MHz, 

DMSO-d6) δ 7.42 (dd, J = 7.6, 1.5 Hz, 1H), 7.22 (t, J = 7.6, 7.6 Hz, 1H), 7.15 (dd, J = 7.6, 1.5 Hz, 1H), 

6.90 (d, J = 8.2 Hz, 1H), 6.76 (d, J = 2.1 Hz, 1H), 6.73 (dd, J = 8.2, 2.1 Hz, 1H), 6.37 (s, 2H), 5.13 (s, 

2H), 4.26 (s, 4H), 3.86 (s, 2H), 3.77 (s, 6H), 3.58 (dt, J = 8.5, 3.4, 3.4 Hz, 2H), 2.94 (t, J = 6.0, 6.0 Hz, 
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1H, NH), 2.20 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ 172.85, 160.75, 159.69, 159.53, 143.42, 

142.96, 142.12, 135.85, 134.96, 134.65, 130.20, 128.56, 125.93, 122.59, 118.17, 117.26, 104.65, 

92.06, 69.18, 64.57, 62.51, 61.34, 56.43, 56.32, 16.41; HRMS (ESI): for C28H32NO8 [M + H]+ found, 

510.2132 m/z; calculated mass, 510.2128. 

Compound 4c (KPGC01S138), N-(2,6-dimethoxy-4-((2-methyl-[1,1'-biphenyl]-3-yl)methoxy) 

benzyl)-3,3,3-trifluoro-1-phenylpropan-1-amine: 3b from scheme 1 (8 mg, 0.022 mmol), 3,3,3-

trifluoro-1-phenylpropan-1-amine (16.7 mg, 0.088 mmol, 4 equiv), sodium cyanoborohydride 

(7.2 mg, 0.114 mmol, 5.2 equiv), were dissolved in DMF (0.5 mL) and then added acetic acid (1 

drop). The reaction mixture was allowed to stir at 80 oC for 3 hours. The reaction was monitored 

by TLC. The crude was purified by 0-20% MeOH:DCM to afford desire product as oily product 

(68% yield). 1H NMR (500 MHz, CDCl3) δ 7.45 – 7.38 (m, 5H), 7.38 – 7.30 (m, 6H), 7.30 – 7.27 (m, 

1H), 7.26 (d, J = 5.4 Hz, 1H), 6.22 (s, 2H), 5.08 (s, 2H), 3.96 (t, J = 6.5, 6.5 Hz, 1H), 3.75 (s, 6H), 3.73 

(d, J = 6.5 Hz, 2H), 2.46 (s, 1H), 2.27 (s, 3H), 1.29 – 1.24 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 

160.23, 159.41, 143.06, 141.94, 135.1, 134.49, 132.81, 130.34, 129.40, 128.49, 128.32, 128.11, 

127.91, 127.62, 127.18, 126.90, 125.65, 91.17, 69.34, 56.21, 55.53, 39.11, 16.23; HRMS (ESI): for 

C32H33F3NO3[M + H]+ found, 536.2419 m/z; calcd mass, 536.2413. 

Compound 4d (GCL.2), (7R,8R,9S,13S,14S,17R)-17-ethynyl-17-hydroxy-7,13-dimethyl-

1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one: 

Tibolone (156 mg, 0.5 mmol) was taken in a round bottom flask containing 10 mL of THF and 100 

µL of water was added. Next, p-toluene sulfonic acid (85 mg, 0.5 mmol) was added to it and the 

mixture was refluxed at 80 oC for 48 hours and the progress of the reaction was monitored by 

TLC. The organic solvent was then evaporated to dryness to get the crude product, which was 
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purified by flash column chromatography using 20% ethyl acetate in pet-ether solvent mixture 

as eluent to give off-white solid pure compound GCL2 (53% yield). 1H NMR (500 MHz, MeOD) δ 

5.80 (t, J = 2.1, 2.1 Hz, 1H), 2.88 (s, 1H), 2.56 (ddt, J = 14.1, 5.4, 1.6, 1.6 Hz, 1H), 2.42 – 2.28 (m, 

4H), 2.27 – 2.19 (m, 1H), 2.18 – 2.13 (m, 1H), 2.06 – 1.90 (m, 3H), 1.77 – 1.53 (m, 6H), 1.44 – 1.25 

(m, 2H), 1.14 (qd, J = 11.0, 11.0, 10.9, 4.2 Hz, 1H), 0.91 (d, J = 0.7 Hz, 3H), 0.79 (d, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, MeOD) δ 201.06, 167.84, 125.32, 87.28, 78.82, 73.45, 48.12, 47.95, 47.78, 

47.61, 47.44, 47.27, 47.10, 46.67, 45.82, 43.05, 42.76, 42.18, 38.28, 36.02, 32.25, 30.66, 26.44, 

26.41, 21.71, 11.79, 11.77. 
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