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Abstract: The use of methyliminodiacetic acid (MIDA) boronates as 
protected boronic acids has broadly enabled the automatable lego-
like synthesis of many different types small organic molecules and 
materials. However, many MIDA boronate building blocks remain 
challenging to access. This is because the current best approach for 
making them is harsh and operationally complex, which limits both the 
types of boronic acids that can be employed and the types of people 
that can do it. Specifically, the current approach involves condensing 
a boronic acid and MIDA with concomitant removal of two equivalents 
of water at 110 oC using a specialized Dean-Stark apparatus. To 
improve and democratize this process, we found that a pre-dried form 
of MIDA, MIDA anhydride 1, can serve as both the reagent and in situ 
desiccant to promote a mild and simple MIDA boronate synthesis 
procedure that is much more effective with a range of sensitive 
boronic acid substrates. Leveraging the unique solubility and 
chromatographic profile of MIDA boronates and the operational 
simplicity of this approach, we have further developed a “MIDA 
Boronate Maker Kit” which only requires heating and centrifugation 
equipment that is widely available in many labs not specialized in 
organic synthesis.  

Methyliminodiacetic acid (MIDA) boronates are bench 
stable building blocks1 that have found widespread use, in 
automated lego-like small molecule synthesis,2 including 
synthesis of many different types of natural products3 and drug 
candidates4 for a range of biological targets which include 
cancer3a,4l,m Parkinson’s disease,4n fibrosis,4g bacterial 
infections,3c and HIV4j, polymer science,5 preparation of complex 
boronic acids,6 ligands for characterization of approved 
pharmaceutical ingredients,7 liquid crystal technology,8 and 
numerous other applications.9 However, access to many MIDA 
boronates remains limited by the harsh and complex method that 
is typically used to make them. Specifically, the most widely used 
procedure involving condensation of a boronic acid with the diacid 
MIDA, requires the use of high temperatures and a Dean-Stark 
apparatus to remove two equivalents of water and thus drive the 
reaction forward. These harsh acidic conditions can lead to 
competitive protodeboronation10 and are thus incompatible with 
many types of boronic acids.11 Moreover, the specialized 
glassware and nature of this procedure limits its accessibility to 
only those labs that specialize in organic synthesis.11 To 

overcome both of these limitations, we sought a new method for 
making MIDA boronates that is milder and simpler. 
 We hypothesized that a pre-dried form of MIDA, MIDA 
anhydride (1),12 could act as both a source of the MIDA ligand and 
an internal desiccant to promote the conversion of boronic acids 
to MIDA boronates (Figure 1). If 1 were to be used in excess, we 
reasoned that the only byproduct generated would be a single 
equivalent of MIDA, which might be selectively precipitated 
depending on the solvent used. Such a procedure could 
significantly reduce acid-mediated decomposition pathways and 
render MIDA boronate synthesis both mild and simple.  

After a series of exploratory studies with model bifunctional 
haloboronic acid 2, we found that 3 equivalents of MIDA 
anhydride in dioxane at 70 oC for 24 h led to formation of the 
desired MIDA boronate 3 in excellent yield (Figure 2, entry 1). 
With this substrate, the same yield was achieved after only 3 h 
(entry 2). Two equivalents of 1 were also effective and provided 
modestly reduced yield (90%, entry 3). These complexations 

Figure 1. Sensitive boronic acid building blocks are incompatible with the 
harsh conditions for dehydrative MIDA boronate synthesis. The pre-dried 
reagent MIDA anhydride 1 pre-loads one of the two required dehydrations and 
acts as an in situ desiccant rendering MIDA boronate synthesis mild and 
simple. 
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could also be run at room temperature, but longer reaction times 
were required to achieve good yields (entries 4 and 5). Other polar 
aprotic solvents such as DMSO, DMF, MeCN, and THF were also 
effective (entries 6-9). From all of these studies, we noted that the 
one equivalent of MIDA formed during this reaction was insoluble 
in dioxane. This solvent was thus chosen for further studies with 
more sensitive substrates to minimize the potential negative 
impact of the generated diacid.  

We tested the effectiveness of this new method with the 
synthesis of MIDA boronates from sensitive boronic acids that are 
largely incompatible with the high temperature, acidic conditions 
associated with standard Dean-Stark complexations (Figure 3). 
Polyfluorinated boronic acids are notoriously sensitive to 
protodeboronation.10c Unsurprisingly, pentafluorophenylboronic  

acid was found to decompose and provided no yield of the 
targeted MIDA boronate when using the harsh Dean-Stark 
protocol. In contrast, using the mild and non-acidic MIDA 
anhydride method pentafluorophenyl MIDA boronate 4 was 
isolated in 81% yield.  

Heterocyclic boronic acids are an important class of building 
blocks for the synthesis of pharmaceuticals and functional 
materials but they are also known to be susceptible to 
protodeboronation,10a requiring the development of highly 
specialized methods to access these challenging heterocyclic 
MIDA boronate building blocks.11a Using our mild MIDA anhydride 
protocol we were able to isolate pyrimidine 5, isoxazole 6 and N-
methylpyrazole 7 in substantially improved yields compared to the 
corresponding Dean-Stark complexations.  

As a final demonstration of the enabling capacity of 1, we 
targeted ethynyl MIDA boronate 8 as it has been shown to be a 
highly versatile bench stable equivalent of the exceptionally 
unstable ethynyl boronic acid.11e, 13 The Dean-Stark approach 
previously proved to be ineffective, and the preparation of 8 
required development an alternative highly specialized 
procedure.11e  Using the mild conditions enabled by 1, we 
developed a convenient process involving reaction of readily 
available ethynyl magnesium bromide and trimethylborate 
followed by hydrolysis mild aqueous acid,14 and then treatment of 
the resulting solution with 1 under Conditions B to yield ethynyl 
MIDA boronate 8 in 80% yield (Fig. 3). Attempts to alternatively 
make 8 from the same intermediate using Dean-Stark conditions 
(Conditions A) gave a 0% yield.  

As progress toward automated lego-like synthesis of small 
molecules continues to be made,2,15 it will also be impactful to 
enable non-specialists in organic synthesis to access many 
different types of building blocks for specific projects. Notably, 
more than 14,000 boronic acids are currently commercially 
available. Thus, having demonstrated the superior capacity of this 
mild method to convert boronic acids into their MIDA boronate 
counterparts, we next sought to leverage the simplicity of this 
process to make it broadly accessible to non-specialists in organic 
synthesis. 

 Many labs that do not have rotary evaporators do have 
centrifuges. And many of those same labs have experience using 
kits, such as Qiagen® kits,16 to prepare and purify DNA, RNA and 
other biological reagents. We thus sought to develop an 
analogous MIDA boronate maker kit that only requires standard 
heating and centrifugation equipment. Advantageously, MIDA 
boronates have a unique binary affinity for silica gel: they are 
minimally mobile in Et2O and rapidly eluted with THF, and this 
feature was previously harnessed to enable the automated 
iterative assembly of MIDA boronate building blocks.2 Notably, 
Qiagen kits® use a related binary affinity of DNA for silica gel to 
easily extract DNA in pure form using a wash-elution-precipitation 
sequence and a centrifuge.16 We accordingly developed a similar 
centrifuge-based method to simplify the purification of MIDA 
boronates (Figure 4).  

Specifically, a crude reaction mixture from the complexation 
of 2 with 1 was poured into a prepacked silica gel centrifuge 
column containing hexane/Et2O (1:1). Centrifugation was used to 
remove the solvent and solubilized impurities while the MIDA 
boronate was caught on the silica gel in the cartridge and/or 
precipitated above (Catch).17 The centrifuge column was then 
washed with Et2O and centrifuged three times to elute excess 
MIDA anhydride and residual boronic acid (Wash). Finally, we 

Figure 2. Deviation from standard conditions in the preparation of MIDA 
boronate 3 using MIDA anhydride 1 (0.5 mmol of 2). 
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Figure 3. MIDA anhydride 1 enables direct preparation of bench stable MIDA 
boronates from sensitive boronic acids which decompose under Dean-Stark 
conditions. 
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found that addition of 1% MeOH in acetone followed by 
centrifugation caused elution of a solution of the desired MIDA 
boronate (Release) [see Supplementary Figure 1]. To avoid any 
requirement for evaporation steps and thereby maximize the 
operational simplicity of this protocol, the product solution was 
then diluted with hexane causing precipitation of the desired MIDA 
boronate (Precipitate). Pelleting of the resultant precipitate by a 
final centrifugation step followed by decantation of the 
supernatant and air drying overnight afforded clean MIDA 
boronate product 3 in 93% isolated yield. Importantly, this 
approach to MIDA boronate purification uses only solvent 
transfers and centrifugation – rendering this procedure highly 
accessible to non-specialists in organic synthesis.  

 Leveraging the simplicity of this 
method and new purification process, we 
prepared a “MIDA Boronate Maker Kit” 
(Figure 6).18 Using only these kits, a 
standard stirrer/hot plate, and a centrifuge, a 
wide range of structurally distinct boronic 
acids were readily transformed into their 
MIDA boronate counterparts in preparatively 
useful yields. The process involves mixing 
reagents and solvents, heating, and 
centrifuging per simple kit instructions (See 
Supporting Information).18 The building 
blocks that were formed included a range of 
aryl (3, 9-13), alkyl (15, 16) and heterocyclic 
(5, 6, 17-25) MIDA boronates (Figure 5). 
This protocol was also easily scaled tenfold 
(5 mmol) to provide gram quantities of MIDA 
boronates 3 and 19. Importantly, the same 

catch-release-precipitate approach to MIDA boronate isolation 
provided pure product regardless of the identity of the organic 
fragment attached to the MIDA boronate motif. This process also 
does not require any specialist-dependent synthetic 
manipulations such as aqueous workup, column chromatography, 
or rotary evaporation. 

 
In summary, we have developed a mild and simple method 

for the synthesis of MIDA boronates. This process expands the 
scope of boronic acids that can be readily converted into their 
MIDA boronate counterparts. Moreover, we leveraged this new 
method to create a MIDA Boronate Maker Kit (Figure 6) which 
will empower non-specialists to more readily participate in the 
molecular innovation process. 
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Figure 4 Centrifuge purification of crude MIDA boronate 3 using a catch-release-precipitate protocol.  
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Existing methods for making MIDA boronates require harsh conditions and complex procedures to achieve dehydration. Here we 
disclose that a pre-dried form of MIDA, MIDA anhydride, acts as both a source of the MIDA ligand and an in situ desiccant to enable a 
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equipment that is widely available in labs that do not specialize in organic synthesis. 
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