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Abstract 

The development of a versatile sensing strategy for the damage-free characterization of cultured cells is of great 

importance for both fundamental biological research and industrial applications. Here, we present a pattern-

recognition-based cell-sensing approach using a multichannel surface plasmon resonance (SPR) chip. The chip, 

in which five cysteine derivatives with different structures are immobilized on Au films, is capable of generating 

five unique SPR sensorgrams for the cell-secreted molecules that are contained in cell culture media. An 

automatic statistical program was built to acquire kinetic parameters from the SPR sensorgrams and to select 

optimal parameters as “pattern information” for subsequent multivariate analysis. Our system rapidly (~ 10 min) 

provides the complex information by merely depositing a small amount of cell culture media (~ 25 µL) onto the 

chip, and the amount of information obtained is comparable to that furnished by a combination of conventional 

laborious biochemical assays. This non-invasive pattern-recognition-based cell-sensing approach could 

potentially be employed as a versatile tool for characterizing cells.  
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Introduction 

With the remarkable development in stem-cell- and genome-editing technologies, cell culture systems 

for models to understand, diagnose, and treat diseases have received increasing attention as an 

alternative to conventional animal experiments.1 Recent advances in three-dimensional culturing,2 

microfluidic technologies (so-called organ-on-a-chip),3 and high-throughput automated cell culture 

systems4 are paving the way for the use of cultured cells for industrial applications. While such 

technologies to control cell culture have grown rapidly, there still remain issues associated with 

assessing cells in culture. Representative methods for characterizing cells (e.g., types, functions, and 

states) include biochemical assays,5 gene expression profiling,6 immunofluorescence microscopy,7 and 

flow cytometry.8 However, prior to analysis, most of these require multi-step cell-damaging pre-

treatments, such as trypsinization, fixing, lysis, and/or labelling; thus, rapid screening is limited and 

reusing cells for further culture or analysis after the assay is problematic. Although several non-invasive 

and label-free techniques based on Raman spectroscopy or unstained images of cell morphology have 

been proposed, these still require specialized equipment and knowledge in order to obtain large amounts 

of spectral or image data quickly and reproducibly.9  

Holistic analysis strategies of molecules in cell culture media offer the possibility of damage-free 

sensing for cell characterization. Cultured cells consume and release a variety of molecules, which 

reflect their states and surrounding environments. These changes are regarded as a rich source of 

information that can help identifying various cellular characteristics.10 For instance, metabolite profiling 
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of cell culture media has been proposed as a method to examine cancer cell proliferation11 and stem cell 

differentiation.12 Encouraged by the potential of cell culture media as target analytes, we have recently 

reported a pattern-recognition-based sensing strategy for characterizing cells based on holistic 

information.13,14 These sensing methods utilize “pattern information” of optical responses coupled to 

differential interactions between analytes and multiple cross-reactive macromolecular probes. Because 

the resulting patterns include chemical properties of various components in the media, pattern-

recognition using multivariate analysis can be used to accurately identify cellular properties without a 

highly specific molecular design.15,16  

In previous examples of pattern-recognition-based cell sensing, including our noninvasive 

approaches,13,14 response patterns are generally obtained from the use of 

chromogenic13,14,17/fluorogenic18–21 probe materials in microplate assay platforms; however, the 

experimental processes, such as dispensing the probe/analyte solutions into the wells of the microplate 

and reading the optical signals from each well, must be repeated for the number of probes/analytes. This 

results in multi-step procedures, which is time consuming and prone to human error, as well as the 

inevitable separation of evaluation systems from cell culture systems. If the response patterns could be 

obtained quickly and seamlessly in one step without damaging the cells, the versatility of analytical 

methods based on pattern-recognition could be expanded significantly.  

Inspired by the recent widespread use of microfluidic technologies in the field of cell culture,22 we 

hypothesized that the application of the pattern-recognition-based sensing strategy to microfluidic 
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devices could adequately address the aforementioned cell-assessment challenges. In this study, we 

present a pattern-recognition-based sensing method using a microfluidic sensing device equipped with 

a multichannel sensing chip. Surface plasmon resonance (SPR) was selected as the detection mode 

because it is suitable for real-time, label-free,23 and high-throughput analysis,24,25 and the optical system 

can be miniaturized for implementation on hand-held instruments.26 Our system provided an SPR 

response pattern that reflected the state of drug-treated cells in a single run of cell culture medium, thus 

allowing an easy, rapid, damage-free cell-based assay. 

 

Results  

Fabrication of multichannel chips. In SPR detection systems, the binding of analyte molecules on thin metal 

layers changes the refractive index in the vicinity of these thin metal layers (the so-called SPR angle shifts), 

which is detected as responses.23 In this study, we used a portable SPR instrument that is capable of detecting 

the line profile of the SPR angle shifts. In order to obtain a SPR response pattern of cells based on just one 

passing of cell culture medium, we attempted to fabricate a multichannel-type chip on which various probe 

molecules are immobilized on separated Au films.  

To construct such a sensing chip, the probe molecules should preferably be immobilized on the Au 

film via Au-thiol interactions and water-soluble to facilitate processing procedures such as spotting and 

washing. Therefore, we employed five cysteine derivatives as model cross-reactive probes to test the 

effectiveness of the sensing scheme [L-cysteine (Cys), N-acetyl-L-cysteine (Ac-Cys), L-cysteine ethyl 
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ester (Cys-OEt), N-Boc-L-cysteine (Boc-Cys), and L-penicillamine (Pen)] (Fig. 1a). As these cysteine 

derivatives possess distinct functional groups, analytes were expected to interact differently with the 

surfaces modified with each probe. 

A photograph of the multichannel chip fabricated in this study is shown in Fig. 1b. The chip (18 × 

18 × 4.5 mm3) consists of main three parts (Fig. 1c): A polydimethylsiloxane (PDMS) part with two 

holes for the inlet and outlet of the flow path; a spacer part for the construction of a flow path with a 

size of 2 × 12 × 0.085 mm3; and a substrate part with different cysteine-derivative-containing Au films 

in five separated compartments of a glass. In the substrate part, each compartment (width: 0.88 mm) is 

located at intervals of 0.54 mm (Fig. 1d). The chip was prepared by simply stacking these three parts; 

for details of the fabrication procedure of the chip, see Methods and Supplementary Fig. S1. 

 

The concept of SPR sensing. A schematic illustration of pattern-recognition-based SPR sensing is summarized 

in Fig. 2. When an analyte solution is flown into the chip, components in the cell culture media interact non-

specifically with the cysteine derivatives immobilized on the Au surfaces, thus enabling the simultaneous 

acquisition of SPR sensorgrams corresponding to each cysteine derivative (Fig. 2a).  

Next, experimental values reflecting the feature of the analyte are extracted from the obtained SPR 

sensorgrams. In pattern-recognition-based sensing, the greater the number of candidate experimental 

values, the more preferable as the selection of appropriate experimental values is critical to accuracy. 

Therefore, we focused on kinetic parameters rather than intensity data after a certain time, considering 
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that the latter is commonly selected for pattern-recognition-based sensing.27–30 The SPR sensorgrams 

contain multiple sets of information on both binding amounts and kinetics corresponding to saturated 

values and tangent lines, respectively; therefore, the association curves of the SPR responses (angle 

shifts; ∆R) are converted to 2 coefficients (a and b) according to Langmuir adsorption model: ∆R = a [1 

– exp(–bt)] (Fig. 2b; for details, see Methods).31 We used an automatic analysis program developed to 

determine these parameters from the SPR sensorgrams. 

Strictly, the nonspecific interactions between the cysteine derivatives and the medium components 

would not exactly be compatible with the Langmuir adsorption model because their binding 

stoichiometry is not 1:1. However, in pattern-recognition-based sensing, it is crucial to digitalize the 

trends of the SPR responses with good reproducibility for subsequent statistical analysis.  

As the medium components are different depending on the cell states, each cell culture medium 

produces unique SPR response patterns (Fig. 2c). Subsequent multivariate analyses allow characterizing 

cells based on pattern-recognition. 

 

Identification of cell types. Initially, we attempted to identify cell types from components in cell culture media 

to confirm the feasibility of non-invasive cell evaluation based on our SPR-based system. For that purpose, we 

selected three cell analytes; human-hepatocellular-carcinoma-derived cells (HepG2), human-bone-marrow-

derived mesenchymal stem cells (UE7T-13), and a 1:1 mixture thereof. Analyte solutions were prepared by 

incubating cells in a serum-free medium (for procedural details of the cell analyte preparation, see Methods). 
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To obtain SPR sensorgrams, the cell culture media were introduced into the chip at a flow rate of 5.0 µL/min 

for 5 min after baseline equilibration. The acquisition of sensorgrams of the overall detection area was complete 

after 10 min using only 25 µL of the analyte solutions.  

As expected, the SPR responses were observed only in the regions of the cysteine-derivative/Au/Ti 

thin layer on the substrate (Supplementary Fig. S2), and thus, the average sensorgrams from each region 

were used for the following analysis (Fig. 3a). The association curves in the SPR sensorgrams were 

converted to 2 coefficients as described in Fig. 2b. The thus-obtained SPR response patterns of 15 

samples (3 analytes × 5 replicates) for 10 experimental values (5 probes × 2 coefficients) are 

summarized in Fig. 3b as a heatmap (for the raw data, see Supplementary Table S1). 

In order to explore a combination of experimental values achieving high identification accuracy, a 

dataset for the SPR response patterns were subjected to a leave-one-out cross-validation based on 

Mahalanobis distances. Optimal combinations of experimental values were investigated by an 

exhaustive search based on ten values (∑i=2
10

10Ci = 1013 combinations) using an automatic analytical 

program (for details, see Methods). The exhaustive search (Supplementary Table S2) showed that 11 

out of the 1013 combinations exhibit identification accuracies of 100% (15/15 samples). As shown in 

Supplementary Table S3, these 11 combinations consist of 5–7 experimental values from 1 or 2 

coefficients of at least 3 probes. This result indicates that both the efficient digitalization of sensorgrams 

and the use of multiple cross-reactive probes are important to generate the differential response patterns. 
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Interestingly, coefficient b (primarily related to the binding rate) played a more significant role in 

identification than coefficient a (primarily related to the amount of saturation). 

The response patterns were then subjected to linear discriminant analysis (LDA), one of the most 

common multivariate analyses for providing a graphical data output and insight into data clustering. 

LDA was carried out for a combination that required only 3 probes out of the cases achieving 100% 

accuracy [3 probes (Ac-Cys, Boc-Cys, and Pen) × 2 coefficients (a and b) = 6 experimental values] to 

visualize the complex multidimensional data as simple 2D graphics. The discriminant score plot shows 

the well-separated clusters corresponding to the respective analytes (Fig. 3c), indicating statistically 

significant differences between the SPR response patterns generated from three cell analytes, which is 

consistent with a cross-validation test (Supplementary Table S3). We thus conclude that (i) our SPR-

based system is capable of evaluating cell-secreted components and (ii) an exhaustive search of the thus 

obtained datasets based on automated analysis is effective in maximizing the potential of the sensor 

system. 

 

Identification of drug-treated cell states: Application to cell-based assays 

 After the successful identification of cell analytes without cell damage, the SPR-based system was 

applied to cell-based assays in drug evaluation. In the area of drug discovery, the in-vitro assessment of 

drug candidate compounds has become an essential process, where the mode of action and the effective 

concentration of drugs are examined from the fate and changes of cells caused by drug treatment.32–34 
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Generally, multiple cell-based assays, e.g., based on enzyme activity and staining, are performed to 

accurately determine the cellular responses. However, most such assays are invasive, expensive, time-

consuming, and require a high level of technical skills. We thus considered that our SPR-based system 

can possibly overcome these limitations of conventional cell-based assays. 

For a proof-of-concept study, a typical therapeutic agent for malignant tumors, tamoxifen (TAM),35 

was selected as a model drug. The delivery of drug compounds to cells induces cytotoxicity, the extent 

of which depends on the concentration of the drug and the exposure time.36 Therefore, analyte media 

were collected after HepG2 cells were incubated in the serum-free medium at different TAM 

concentrations and for different exposure times (for preparation procedures of the cells, see Methods).   

The cell phenotypes as a result of treatment is usually classified based on a plurality of objective 

indexes. Therefore, prior to pattern-recognition-based SPR sensing, the cell states after TAM treatment 

were classified into four groups according to the results of independent common biochemical assays 

(Fig. 4a); (A) alive, (B) alive/low active, (C) apoptotic, and (D) dead (for the results of the assays and 

the criteria of classification, see Supplementaty Note 1). In brief, the cellular states were classified 

according to the secretion of human serum albumin, which is an index of hepatocellular activity,37 and 

the incidence of apoptosis, as well as intracellular dehydrogenase-based viability and extracellular 

dehydrogenase-based death of drug-treated cells. We investigated whether these cell states could be 

discriminated on the basis of our pattern-recognition-based SPR sensing.  
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The SPR responses were measured through an inflow of the analyte solutions into the chip 

(Supplementary Fig. S3a), then the SPR sensorgrams of 20 samples [4 analytes (group A, B, C, and D) 

× 5 replicates] were recorded as a training dataset (Supplementary Table S4 and Fig. S3b). Therein, no 

SPR signal was observed in the untreated serum-free medium with TAM (Supplementary Fig. S4). A 

selection of experimental values by exhaustive search revelated that 165 out of 1013 combinations show 

identification accuracies of 100% (20/20 samples) based on a leave-one-out cross validation 

(Supplementary Table S5).  

In a linear discriminant score plot obtained by analyzing a combination of 8 experimental values out 

of the cases achieving 100% accuracy [4 probes (Cys, Ac-Cys, Cys-OEt, and Boc-Cys) × 2 coefficients 

(a and b)], we found that the clusters that correspond to individual groups did not overlap (Fig. 4b; for 

the corresponding 2D plots, see Supplementary Fig. S3c–e). Shifting from group A to D, the cluster 

position moved non-monotonously; the cluster initially moved in the negative direction of score (2) (A 

to B), then in the positive and negative direction of score (1) and score (3), respectively (B to C). Finally, 

it moved in the positive direction along both score (1) and score (3) (C to D). To understand these 

complex trends of the scores against cell states, correlation coefficients between the scores and the 

values of cell-based assays were calculated (Supplementary Fig. S4). Score (1) exhibits a strong 

correlation with the total content of protein (r = 0.99), cell death (r = 0.93), and cell viability (r = –

0.99), suggesting that score (1) dominantly reflects the amount of proteins leaked from cells due to 

drug-induced damage. Score (2) is weakly correlated only with the albumin secretion (r = 0.51), which 
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thus may be associated with functional decline from group A to B. Interestingly, score (3), which was 

characteristic for group C, is highly correlated with apoptosis (r = –0.97). Thus, the SPR response 

patterns generated by just a single measurement serve as a rich source of information that can otherwise 

only be obtained by combining multiple biochemical assays.  

Furthermore, additional 30 analytes corresponding to groups A to D (6 analytes × 5 replicates) were 

prepared as unknown samples for a holdout test. These unknown samples were assigned to each group 

generated by the training dataset shown in Fig. 4b on the basis of their Mahalanobis distances, achieving 

an identification accuracy of 93% (28/30 samples; Supplementary Table S4). Although one sample of 

group C and D were misclassed as group D and C, respectively, in a holdout test, our SPR-based system 

satisfyingly identified the group of the cell states in the same way as common cell-based assays. The 

successful identification suggests that the multichannel chip can comprehensively evaluate the 

mechanism of drug action on cells, including not only cell viability and death but also cellular functions 

such as protein production and programmed death. 

 

Discussion 

Cell culture systems as disease models strongly require long-term and real-time monitoring of 

cells/tissues which are subjected to stimuli such as drug treatment. Of course, conventional cell-based 

assays provide direct and beneficial information about particular molecules or pathways, but many of 

these assays exhibit several undesirable limitations, such as laborious multistep processing (e.g., 
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washing, extraction, fixation, or labelling), time-consuming measurements (~ several hours), and 

damage to cells. Our fast and non-invasive SPR-based system has the potential to address these issues. 

Moreover, instead of cysteine derivatives, the use of purpose-designed recognition sites, such as self-

assembled monolayers38 and surfaces with immobilized thiol-containing peptides39 can be expected to 

improve the performance and expand applications. Compared to colorimetric/fluorometric probes in 

previous pattern-recognition-based sensing,40 this less restrictive probe design, in which cross-reactive 

probes are immobilized on Au films, can also be expected to make more hitherto unexplored chemical 

space accessible.  

In summary, we have provided a proof-of-concept study for the development of a multichannel 

sensing chip for the characterization of cultured cells based on pattern-recognition of SPR responses. 

In this system, an optimum combination of kinetic parameters required for accurate evaluation was 

automatically selected by a statistical program from a plurality of SPR sensorgrams that were obtained 

by simultaneous measurement using a microfluidic device. Several previous studies have reported 

pattern-recognition-based protein sensors using SPR detection units,27–30 but, to the best of our 

knowledge, our system is the first report on the SPR pattern-recognition-based sensing for cell 

assessment.  

Our sensing approach exhibits characteristic features with significant potential benefit: (i) The 

design of a multichannel-type microfluidic device allows easy and rapid measurements using only a 

small amount of analyte solution; (ii) there is no damage to cells due to the non-invasive analysis 
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targeting the cell culture media; (iii) cells are characterized in multiple ways based on comprehensive 

information about entire components in the cell culture medium by a pattern-recognition-based sensing 

strategy, rather than based on analytical methods relying on specific biomarkers. The components in 

cell culture media are considered a rich source of information for a huge variety of biological 

processes.10 Taking into account the aforementioned novel features, including the flexibility of the 

design of the sensing system, the reduced burden on the user on account of the automatic data analysis, 

and the potential connection of microfluidic cell culture devices for the purpose of on-line evaluation, 

our sensing device can be expected to pave the way for novel analytical approaches for cultured cells. 
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Methods 

Fabrication of chips. The fabrication scheme of the PDMS part is summarized in Supplementary Fig. 

S1a. A mold (size: 20 × 20 mm2; thickness: 4 mm) was made using a 3D printer (FlashForge Crop., 

Zhejiang, China). A 10:1 mixture of prepolymer and catalyst SILPOT 184 (Dow Corning Toray Co., 

Ltd., Tokyo, Japan) was poured in the mold and polymerized at 60 °C for 6 h. After peeling off the 

polymerized PDMS from the mold, two holes were drilled on a horizontal line 5 mm apart from the 

center of the PDMS (for the layout of the PDMS with the holes, see Supplementary Fig. S1b) using a 

drilling machine (Sakai Machine Tool Co., Ltd., Osaka, Japan) equipped with a drill (diameter: 0.6 mm; 

Saito Seisakusho Co., Ltd., Tokyo, Japan). Then, the tubes (material: fluorinated ethylene propylene; 

inner diameter: 0.12 mm; ALS Co., Ltd., Tokyo, Japan) were connected to the PDMS via the holes in 

order to deaerate in vacuo until immediately prior to attachment to the substrate part. 

The fabrication scheme for the substraste part is summarized in Supplementary Fig. S1c. In order 

to generate a masking tape, a dicing tape (Denka Co., Ltd., Tokyo, Japan) was folded and the double 

was then cut to a size of 18 × 18 mm2 having five rectangular holes (size: 6 × 0.88 mm at intervals of 

0.54 mm; for the layout of the substrate part, see Supplementary Fig. S1d) using a cutting plotter 

machine CE3000-60 (Graphtec Corp., Kanagawa, Japan). After alkaline cleaning of a glass plate 

(material: S-BSL7; size: 18 × 18 mm2; thickness: 0.5 mm; Iiyama Precision Glass Co., Ltd., Tokyo, 
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Japan), the two-layered masking tape was pasted on the glass. Then, Au/Ti films (43/5 nm) were 

deposited onto the glass surface using a sputtering system (CS-200; ULVAC Inc., Kanagawa, Japan). 

After UV/O3 cleaning of the plate surface for 10 min using a photo surface processor (PL16-110; SEN 

Light Corp., Osaka, Japan), the upper masking tape was removed from the plate. Then, 1 µL of 2 mM 

cysteine derivatives (Cys, Ac-Cys, Cys-OEt, Boc-Cys, and Pen; Sigma-Aldrich, Co., LLC, St. Louis, 

MO, USA) in 10 mM sodium phosphate buffer (pH = 7.4) were spotted on each Au film and incubated 

for 10 min at room temperature under humid conditions. After removal of the remaining masking tape, 

the glass plate was washed with water to remove the excess cysteine derivatives from the Au films. 

The substrate part was glued to the PDMS part via a double-sided silicone/acrylic adhesive tape 

(size: 18 × 18 mm2; 2 × 12 mm2 rectangular hole at the center; thickness: 85 µm; NTT Advanced 

Technology Corp., Kanagawa, Japan) as a spacer (Supplementary Fig. S1e; for the layout of the chip, 

see Supplementary Figs. S1f and S1g).  

 

Preparation of the cells. Tamoxifen citrate (TAM) was purchased from Tokyo Chemical Industry Co., Ltd. 

(Tokyo, Japan). Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified eagle medium 

(DMEM) were purchased from Fujifilm Wako Pure Chemical Corp. (Osaka, Japan). Fetal bovine serum (FBS) 

was purchased from GE Healthcare UK Ltd. (Little Chalfont, Buckinghamshire, UK). Penicillin-streptomycin-

neomycin antibiotic mixture and CD CHO medium were purchased from Thermo Fisher Scientific, Inc. 

(Waltham, MA, USA). L-Glutamine was purchased from Sigma-Aldrich, Co., LLC (St. Louis, MO, USA). 
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HepG2 and UE7T-13 cells were obtained from the Japanese Collection of Research Bioresources (Osaka, Japan). 

As cell culture media, we used a DMEM supplemented with 10% FBS, 0.5 mg/mL penicillin, 0.5 mg/mL 

streptomycin, and 1.0 mg/mL neomycin (DMEM++) or a serum-free CD CHO medium supplemented 8 mM L-

glutamine (CDCHO+). Unless otherwise noted, cells were incubated at 37 °C in humidified air with 5% CO2.  

Cell culture media of HepG2 and/or UET7-13 cells were prepared according to our previous studies.13,14 

HepG2, UE7T-13, and 1:1 mixture of these cells (6.0 × 104 cells/well) in DMEM++ were seeded on a 24-well 

microplate (AGC Techno Glass Co., Ltd., Shizuoka, Japan) and incubated for 24 h. The cells were washed with 

DPBS (2 × 200 µL) and incubated with CDCHO+ (200 µL) for 48 h. The obtained cell culture media were used 

for the SPR experiments. 

Cell culture media of TAM-treated HepG2 cells were prepared as follows. HepG2 cells (5.0 × 104 

cells/well) in DMEM++ were seeded on a 96-well clear-bottom black plate (Greiner Bio-One GmbH, 

Frickenhausen, Germany) and incubated for 24 h. The cells were washed with DPBS (100 µL) and incubated 

with 0–70 µM TAM in CDCHO+ containing 0.1% DMSO (100 µL) for 0.5–12 h. The obtained cells and/or 

medium supernatants were used for the SPR experiments and cell-based assays. 

 

SPR measurements. The fabricated chip was incorporated in a Smart SPR SS-1001 system (NTT Advanced 

Technology Corp., Kanagawa, Japan) via a matching oil (n = 1.5160; Cargille Laboratories, Inc., Cedar Grove, 

NJ, USA). In all SPR experiments, the solution was introduced into the chip at a flow rate of 5.0 µL/min by 

pulling with a syringe pump (CMA Microdialysis AB, Kista, Sweden). After baseline equilibration with 
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CDCHO+ for 5 min, an analyte was passed through the chip for 5 min in order to observe the association 

between analytes and probes. The measurements were repeated five times per analyte to generate a dataset. One 

chip was used for measurement of one sample solution.  

 

Digitalization of SPR responses. According to the Langmuir adsorption model,31 the SPR response (ΔR) 

corresponding to the association behavior between a analyte and a probe is described by equation 1:   

ΔR =	
ΔRmax kaC {1 – exp[– (kaC + kd) t ]}

kaC + kd
						(1) 

where C is the concentration of the analyte solution and ΔRmax refers to the maximum SPR response obtained 

when all binding sites of the probes are occupied with analyte. The association rate constant and the dissociation 

rate constant of the interaction between the probe and analyte are ka and kd, respectively. Equation 1 can be 

simplified to: 

∆R =  a [1 – exp (– bt)]												(2) 

where a = (ΔRmax ka C)/(ka C + kd) and b = ka C + kd. Following equation 2, the patterns of SPR responses were 

described as coefficients a and b for each probe. The curve fitting was carried out using the R software (version 

3.6.1).   

 

Statistical analysis of SPR response patterns. The obtained SPR response values were statistically analyzed 

using the R software (version 3.6.1) in order to identify experimental values that achieve high identification 

accuracy. We thus constructed an analytical program that can carry out a leave-one-out cross-validation in 
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exhaustive combinations of experimental values. For validation, one sample was removed from a dataset, and 

the other samples were used to create the dataset for the validation. The removed sample was assigned to the 

class with the closest Mahalanobis distance to the cluster of the remaining datasets. The identification accuracy 

was determined on the basis of whether the sample was assigned to the correct class. To visualize the patterns, 

a classical linear discriminant analysis (LDA) was performed using the SYSTAT software (version 13; Systat 

Inc., San Jose, CA, USA). 

 

 

Figures  

 

 

Fig. 1 Multichannel SPR chip with immobilized cysteine derivatives for pattern-recognition-based cell 

sensing. (a) Chemical structures of cysteine derivatives used as cross-reactive probes. (b) Photograph 

of the chip. (c) Perspective view showing a stacked structure of the chip. (d) Cross-sectional view of 

the substrate part and perspective view of the chip. 
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Fig. 2 Schematic illustration of pattern-recognition-based sensing of cell culture media using a 

multichannel SPR chip with immobilized cysteine derivatives. (a) Simultaneous acquisition of the SPR 

sensorgrams reflecting the interactions between cysteine derivatives on a chip and components in a cell 

culture medium. (b) Digitalization of the SPR sensorgrams according to Langmuir adsorption model. 

(c) Unique SPR response patterns resulting from cross-reactive interactions between cysteine 

derivatives and cell culture media with different components. 

 

 

Fig. 3 Pattern-recognition-based sensing of three types of cell culture media using a multichannel SPR 

chip with immobilized cysteine derivatives. (a) SPR sensorgrams obtained from an inflow of cell culture 
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media into a chip at a flow rate 5.0 µL/min for 5 min. (b) Heat map of the SPR response patterns (n = 

5). (c) Discriminant score plot obtained from the LDA of the SPR response patterns in 6 experimental 

values [3 probes (Ac-Cys, Boc-Cys, and Pen) × 2 coefficients (a and b)]. Ellipses represent confidence 

intervals ±1 SD for the individual analytes. 

 

 

Fig. 4 Analysis of TAM-treated HepG2 cell culture media using biochemical assays or a multichannel 

SPR chip with immobilized cysteine derivatives. (a) Classification of cell states based on the results of 

independent common biochemical assays. Group A, B, C, and D correspond to the cell culture media 

of HepG2 cells treated without TAM for 0.5 h, with 20 µM TAM for 6 h, with 40 µM TAM for 12 h, 
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and with 70 µM TAM for 12 h, respectively. The vertical axis indicates the values of each biochemical 

assays that are standardized with root mean square (for the results of assays before standardization, see 

Supplementaray Figs. S6a–f). The difference between group A and B is the decrease of albumin 

secretion (p < 0.05) while there is no difference for their cell viability and death. (b) Discriminant score 

plot obtained from the LDA of the SPR responses in 8 experimental values [4 probes (Cys, Ac-Cys, 

Cys-OEt, and Boc-Cys) × 2 coefficients (a and b)]. 


