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Abstract

The structural features that protrude above or below a soft matter interface are

well-known to be related to interfacially mediated chemical reactivity and transport

processes. It is a challenge to develop a robust algorithm for identifying these organized

surface structures, as the morphology can be highly varied and they may exist on

top of an interface containing significant interfacial roughness. A new algorithm that

employs concepts from geometric measure theory, algebraic topology, and optimization,

is developed to identify candidate structures at a soft matter surface, and then using a

probabilistic approach, to rank their likelihood of being a complex structural feature.

The algorithm is tested for a surfactant laden water/oil interface, where it is robust to

identifying protrusions responsible for water transport against a set identified by visual

inspection. To our knowledge, this is the first example of applying geometric measure

theory to analyze the properties of a chemical/materials science system.

Introduction

Surfaces of soft matter phases are host to a variety of scientifically important phenomena

that include chemical reactivity and transport. Often these processes are sensitive to surface

deformation, including surface buckling, capillary roughness, and the formation of locally

organized regions that facilitate the process of interest. A quintessential example lies within

the realm of transport across a soft matter interface, for example surfactant laden water/oil

surfaces that are employed within solvent extraction based separations. Depending upon so-

lution conditions, deformations as large as micelles or as small as a handful of water molecules

have been implicated within solute transport mechanisms. Micelles are proposed to form

via a vesicle budding process, whereby a region of high curvature forms at a planar inter-

face, peeling off the surface as it forms a spherical micelle.1–5 At much smaller length scales,

water protrusions have been identified as a means of transferring water and other solutes

between phases, where surface active amphiphiles create extremes in surface roughness.6–8
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These extremities, once disengaged from the interface, release molecular components from

the surface of one phase into the bulk of the other. Lastly, structures referred to as water

fingers have been identified to accompany bare ion transport between high and low dielectric

phases. The water finger is composed of H2O molecules that trail the remaining solvation

shell of the ion, leading back to the aqueous interface, before the ion is fully transferred to

the low dielectric phase.9–16

The importance of surface structures to soft matter interfacial chemistry has its roots

within the atomistic simulation literature, where molecular-level detail augments knowledge

obtained from experimental observation. This is particularly relevant given the challenges of

experimental characterization of liquid interfaces. Spectroscopic measurements are generally

limited to spatial and temporal averages. This complicates precise structural interrogation

of features across the heterogeneous interface. Even for simulation studies that have access

to instantaneous configurations, systematic classification of interfacial features is not simple.

Importantly, most reported simulation studies of hierarchical interfacial structure, e.g., pro-

trusions, water fingers or budding micelles, analyze their data using visual inspection or by

a measure of surface curvature that is dependent on surface feature homogeneity and size

relative to their molecular constituents.1,2,5–11,17 Not only does this limit quantitative and

statistical studies of the behavior of surface structures but it also can cause interpretations

that fall prey to lack of objectivity or are biased by individual experiences or expectations

of those doing the analysis. A means of automatically identifying surface structures from

simulation trajectories is lacking, and indeed there are significant technical challenges to

differentiate background interfacial surface fluctuations from collectively organized surface

structures.

Toward this end we present a new method that employs concepts from geometric measure

theory (GMT), algebraic topology, and optimization. GMT is an area of pure mathematics

that studies questions of area-minimizing surfaces, soap bubble conjectures, regularity of

solutions to energy minimization problems, and so on.18 In this context, the flat norm

3



(FN) has been used to define a distance between generalized hypersurfaces called currents

lying inside a Euclidean space. In our application to Chemistry, which is the first such

instance as far as we are aware, we consider the minimization of a generalized area of a

complicated surface (in x, y, z) representing a soft matter interface, as we “flatten” the

surface toward the horizontal plane with the same x, y dimensions. Using this framework we

identify relevant volumes lying between the complicated surface and flat surface at various

scales by minimization of the flat norm function. Furthermore, we automatically identify

the volumes that represent structural features of the surface that are potentially relevant to

the interfacial chemistry. The algorithm that employs the flat norm, labeled GMTChem.FN,

is scale-independent, and its utility is demonstrated for a test system that has previously

been shown to have hierarchically organized surface protrusions—the tri-n-butyl phosphate

(TBP)-laden water/hexane interface. The framework is applicable to many different chemical

systems and represents an important new tool to study interfacial structure, dynamics, and

reactivity.

Theoretical Background and Algorithm Workflow

Background

The GMTChem.FN framework utilizes a method called the multiscale simplicial flat norm (MSFN)

that produces smoother versions of a triangular surface lying inside a tetrahedral volume

mesh. This method has its roots in the application of the flat norm to image denoising.19,20

More recently, the flat norm has been used to define an average of shapes in a fairly general

setting.21 The MSFN algorithm takes in three inputs: a triangular surface mesh T , a tetrahe-

dral volume mesh K which contains T as a subcomplex, and a scale parameter λ ≥ 0. The

algorithm solves a minimization problem (Equation 1) to identify a tetrahedral volume S

inside K and returns a “flatter”, i.e., smoother, version of T , given by T −∂Sλ. The smaller

the scale λ, the smoother T − ∂Sλ will be. In this paper, we denote by T the input to the
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flat norm algorithm that we are trying to smooth, which could be a surface, a triangular

mesh, or a curve.

We first introduce the continuous analogue of MSFN called the multiscale flat norm (MFN).

The definition applies to generalized n-dimensional hypersurfaces, but our focus will be on

the case of T being a surface in R3. Let T be an oriented surface in R3. The MFN of T with

scale λ ≥ 0 is computed as

Fλ(T ) = min
S
{Area(T − ∂S) + λ · Vol(S)}, (1)

where we minimize over all oriented 3-dimensional volumes S. A 3-dimensional oriented

volume S∗ that attains the minimum in the above computation is a flat norm minimizer for

T with scale λ. We refer to the flat norm minimizers for T with scale λ simply as minimizers

and denote them as Sλ. The smoothed version of T for a minimizer Sλ is T − ∂Sλ, and is

called the flat surface of T with scale λ, or simply the flat surface. In practice we usually

consider a discrete set of values for λ within a range (0, L), denoted {λi}Ni=1 for some positive

integer N . Hence the compact notation of Si and T − ∂Si is utilized for the minimizers and

the corresponding flat surfaces.

We use the case of T being a curve in R2 to further illustrate the concepts and definitions

(Figure 1). Corresponding to the computation in Equation (1) for surfaces, here we compute

Fλ(T ) = minS{Length(T − ∂S) + λ · Area(S)}, minimizing over all 2-dimensional oriented

domains S of R2. One could intuitively think of the flat norm computation as minimizing

the total cost of erasing the curve T completely in two steps, with each step incurring its

own respective cost. The first step is to erase a portion of T with the boundary ∂S of a

2-dimensional region S, the cost of which is the area of S. The second step is to erase the

curve that is left after the first step, i.e., T − ∂S, having a cost of the length of the curve

erased in this step.

5



With the scale parameter λ = λ1 (e.g., λ1 = 1) the minimizer S1 is the collection of two

brown areas shown in Figure 1. The portion of T that ∂S1 erases in the first step consists of

two parts of the input curve that coincide with (parts of) ∂S1. This step contributes a cost

of λArea(S1). The resulting flat curve (an analogue of the flat surface) is shown in green,

and represents the smoothed version T − ∂S1 of T in Figure 1. Note that while this step

removed the sharper “bumps” in T , it also added the bottom portions of ∂S1 not coinciding

with T . The second step is to erase the entire green curve which incurs as cost the length of

T − ∂S1. Hence the total cost of erasing the input curve T is Length(T − ∂S1) +λArea(S1).

We now consider the cost of erasing T when the scale parameter λ = λ2 � λ1 (e.g.,λ = λ1

and λ2 = 0.001). Note that the first step becomes much cheaper, and hence the minimizer

S2 consists of the two large areas made of the union of the pair of brown and pink areas

in Figure 1. We can afford the much larger cost Area(S2) compared to Area(S1) in the

first step. The resulting flat curve T − ∂S2 is shown in red, and is much “flatter” that the

intermediate green curve T −∂S1. The second step incurs the extra cost of Length(T −∂S2)

for erasing the red curve. As illustrated by this example, we capture “features” of T at

all scales by constructing the flat curves at multiple scale values λi ∈ (0, L], i = 1, . . . , N

(L > 1, typically).

While the definition of MFN is given in the continuous setting, we usually employ a dis-

cretized version of the input and ambient space, i.e., of T as well as choices of S, to perform

the computations in practice. A natural discretization considers T and choices of S as sim-

plicial complexes, i.e., meshes. Ibrahim et al. 22 proposed a simplicial version of MFN called

the MSFN. For the setting of our interest where T is a finite surface in R3, or when T is a

finite curve in R2 (more generally, in codimension 1), the MSFN can be computed efficiently

by solving a linear program.

In this case, the first step is to create the surface of interest T in R3, e.g., a soft matter

interface. For a liquid/liquid interface, the instantaneous surface (the layer of molecules

in direct contact with the opposing immiscible phase) can be represented by the Willard-
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T − ∂S1

T

T − ∂S2

Figure 1: Curve T in blue, representing a 1-dimensional analog of a soft-matter interface,
together with minimizers of the flat norm for two values of λ = λ1 and λ = λ2 � λ1. The
flat curve T − ∂S1 (for λ = λ1) is shown in green, and the flat curve T − ∂S2 (for λ = λ2) is
shown in red. Note that the resulting curve get flatter as λ decreases.

Chandler interface,23,24 as is done in this work (see Section ). We discretize this interface

into a triangular surface mesh T , which is a 2-dimensional simplicial complex. Because

the flat norm computation makes use of volumetric data, the ambient space around T is

discretized into a tetrahedral volume mesh K, which is a 3-dimensional simplicial complex.

When generating K, the discretization is performed so as to preserve the triangles from

T—by ensuring the triangles in T are faces of tetrahedra included in K. More formally,

we ensure T is a subcomplex of K, and do so using the method of constrained Delaunay

tetrahedralization25 implemented in the open source software TetGen26 (see Supplementary

Information for details).

While the minimizer Sλ constructed by the MSFN algorithm is expected to identify mean-

ingful structural features on the complicated surface T , the results can be quite sensitive

to the choice of the scale parameter λ. As λ decreases, the volume of Sλ increases until

eventually, Sλ = K. Initially it may seem possible to have a unique value for λ at which Sλ

contains all of the relevant features of the interface, and nothing more. However, we could
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not identify such values of λ for any of the interfaces studied here. One would expect that

when λ is small enough, Sλ would contain essentially all relevant features. Yet we observed

that many of the features in Sλ were either too small or had broad or ill-defined geometries.

In part, this is due to the large range of morphologies of the structural features at the liq-

uid/liquid interface used to develop the GMTChem.FN algorithm. Hence we consider a broad

range of values for λ, and further require that a candidate feature has large enough volume

across a large number of the λ values considered (vide infra).

The scale parameter λ captures curvature of the surface T in the following intuitive

sense. Imagine moving a ball of radius 1/λ with its center lying on T (rather than the entire

ball “rolling on” the surface). Portions of T and ambient space that lie inside the union of

balls, i.e., copies of the ball as its center moves across T , are smoothed out by the flat norm

algorithm. Going back to Figure 1, consider the space covered by a 2-dimensional disc of

unit radius (λ1 = 1) as its center is moved along T , the blue curve. The two areas shown

in brown, which form the minimizer S1, are completely covered by the union of balls and

hence are erased. When λ is much smaller (e.g., λ2 � 1), the ball has a much larger size

and hence smooths out most of the curve T along with the shaded areas in brown and pink.

Motivated by this analogy, we compare volumes of the connected components of mini-

mizers Sλ to volume of the ball of radius 1/λ. Rather than directly label each component

as a feature or not, we adopt a probabilistic approach. The components are studied over a

range of λ values as well as a range of values for the ratio of volume of component to volume

of the 1/λ-ball. We then classify at which of these values a particular component is “alive”

as a feature, and compute the fraction of pairs of values as the probability of the component

being a bona fide surface structural feature.

GMTChem.FN Algorithm Overview

The GMTChem.FN algorithm workflow consists of five steps (Figure 2). For a frame of simu-

lation data indexed by t (obtained from molecular dynamics, Monte Carlo, etc.) the soft-
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matter surface is first modeled as a triangular mesh. We use the Willard-Chandler interface

T (t) in our studies. For each t, we embed T (t) into a 3-dimensional complex K(t) such

that T (t) is a portion of the boundary of K(t) and the triangles in T (t) are preserved. We

then run the MSFN algorithm N times on each pair (T (t), K(t)) with the scale parameter λ

taking a range of decreasing values {λi}Ni=1. The range of λ values and N will depend on the

application at hand.

Figure 2: Workflow for structure identification by the GMTChem.FN algorithm.

For each λi the MSFN algorithm outputs the minimizer Si(t) which is then partitioned into

its connected components Ci(t) = {Ci
k}

ni
k=1, where ni is the number of connected components

of Si(t). We compute two quantities for each connected component Ci
k: its volume Vol(Ci

k)

and its ratio R(Ci
k) defined as the ratio of Vol(Ci

k) and volume of a ball of radius 1/λi.

If R(Ci
k) is above a particular threshold r, we say that component Ci

k is alive at scale λi
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and threshold r. Although not required, it is insightful to have a reference chemical system

that has an interface without any relevant features that provides a basis for selecting the

range of thresholds {rj}Mj=1 to be considered. For example, in the test system that contains

water/hexane/TBP, one may first employ the algorithm on water/hexane to identify the

range of thresholds {rj}Mj=1.

A component that is alive at a specific λi and threshold rj is considered a candidate

structural feature, and is given a component label that keeps track of the merging and growing

behavior of the component as lambda decreases. Note that smaller components merge into

larger ones as λ becomes smaller. Each frame indexed by t is examined over all λi to obtain

the complete list of connected components C(t) =
⋃
iC

i(t). All the components in C(t) are

then labeled so as to track their growing and merging behavior as λ decreases. The labeling

procedure is illustrated in Figure 3. Each connected component is assigned at most one

component label per lambda value that enables tracking the evolution its volume and ratio

as a function of λ. We denote the set of all component labels at a frame of data t as C(t),

and the set of all component labels ranging over all frames of data as C.

Given the range of lambda values {λi}Ni=1 and ratio thresholds {rj}Mj=1, for each component

label C in C we construct an N ×M matrix AC = [aij] for i = 1, . . . , N and j = 1, . . . ,M .

We set aij = 1 if component C is alive at λi and ratio threshold rj, and set aij = 0

otherwise. Assuming lambda and ratio cutoff values are chosen uniformly at random, the

overall probability that component label C is alive is given by

P (C is alive) =

∑
aij

NM
. (2)

Subsequently, we rank all component labels in C by sorting the corresponding list of proba-

bilities from largest to smallest values.

The following sections describe relevant portions of the code in detail. The technical

aspects of embedding the Willard-Chandler Surface into a 3-dimensional simplicial complex
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are described in Supporting Information (Section S1) for clarity.
De
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Figure 3: Connected components and component labels illustrated in 2D for four λ values
and two ratio cutoffs. Connected components are colored green or red, with ones colored red
being alive.
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Multiscale Simplicial Flat Norm Algorithm (MSFN)

In the next step of the GMTChem.FN software, the input is the Willard-Chandler 2-dimensional

simplicial complex, T (t) that is embedded in its respective K(t), along with a decreasing

sequence of positive values, {λi}Ni=1 for some particular positive integer N . This portion of

the algorithm is applied to each T (t) and K(t) independently, to simplify notation, we denote

T (t) and K(t) as T and K. In Figure 2, the picture corresponding to the Simplicial Complex

Embedding portion of the workflow shows T in blue, embedded in light brown colored region

K. The MSFN algorithm is computed on T with each scale λi and outputs a sequence of

minimizers {Si}Ni=1 together with the corresponding flat surfaces {T − ∂Si}Ni=1. Note that

each Si consists of an ordered set of tetrahedra of K, and each T −∂Si consists of an ordered

set of triangles of K.

As an example, for Figure 3 the MSFN algorithm is run on T for the following five decreas-

ing positive values of lambda λ1 > λ2 > λ3 > λ4 > λ5. For now, focusing on the left-most

column in Figure 3, going from the top frame to the bottom fourth frame, the regions colored

in green/red are the four minimizers S1, ..., S4 corresponding to each λ1, ..., λ4, respectively.

In particular for λ1, the minimizer S1 is equal to the union of the 3 disconnected components.

For λ2, the minimizer S2 is equal to the union of the 4 disconnected components. For λ3,

the minimizer S3 is equal to the union of the 5 disconnected components, and for λ4 the

minimizer S4 is equal to the 3 disconnected components. The frame that corresponds to λ5

is not shown because S5 = K, which would have made all of K in that fifth frame, green. As

we go further along the pipeline, the notation in Figure 3, and the distinctions of the green

and red colors will be made apparent.

Component Tracking

This step of the GMTChem.FN algorithm is carried out independently for each frame t of

simulation data. For simplicity the parameter t is dropped within the notation. The input

to this step is the ordered set of minimizers {Si}Ni=1 generated by N applications of the
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MSFN algorithm, as described in Section . The output of this step is an ordered set of

component labels, {Ck}. Each component label Ck = (C1
k(1), . . . , C

N
k(N)) is an ordered set

of connected components, where each Ci
k(i) is a connected component of the minimizer Si,

for i = 1, . . . , N . What follows is a description of how a component label describes the

merging and growing behavior of its first nonempty connected component as a function of

the decreasing sequence of lambda values {λi}Ni=1. A more detailed description is presented

in the Supporting Information (Section S2).

Connected Components

Running the MSFN algorithm on T for scale λi yields the minimizer Si, which consists of

a subset of tetrahedra from K. The dual graph G of Si is constructed, where vertices

of G correspond to tetrahedra in Si, and an edge is present between vertices in G if the

corresponding tetrahedra share a triangle. By this mapping of nodes with tetrahedra, the

collection of connected components of G corresponds exactly to a collection {Ci
k}

ni
k=1 of the

connected components of Si. Each Ci
k is a ordered set of oriented tetrahedra, and ni denotes

the number of connected components of Si.

Returning to the example in Figure 3, the three connected components of the minimizer

S1 corresponding to λ = λ1 are labeled {C1
1 , C

1
2 , C

1
3} (from left to right). Similarly, the four

connected components of S2 are {C2
1 , C

2
2 , C

2
3 , C

2
4}. Note that labels listed in Figure 3 are in

fact modified versions of these labels that capture the growing and merging behavior of the

components (see below for details). For S3, the minimizer consists of 5 connected components

{C3
1 , . . . , C3

5}. Note that there are 5 connected components here rather than 4, even though

the two rightmost features share a vertex. Recall we defined connected components of Sλ by

identifying the corresponding connected components of its dual graph. Hence two tetrahedra

are connected if and only if they share a triangle. If they share only an edge or a vertex,

they are considered to be not connected. Similarly, for the 2-dimensional simplicial complex

K in our example, two triangles are connected if and only if they share an edge. In the case
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of S3, the two components share only a vertex, and hence are considered not connected.

Growing and Merging Behavior

A connected component of Si−1 either grows or merges into a connected component of Si.

A connected component Ci−1
k of Si−1 grows into component Ci

j of Si if Ci−1
k ⊆ Ci

j and

any additional tetrahedra in Ci
j not in Ci−1

k are also not in Si−1. In contrast, connected

components Ci−1
k1
, . . . , Ci−1

kn
of Si−1 merge into component Ci

j of Si if
⋃n
l=1C

i−1
kl
⊆ Ci

j. When

one goes from from S1 to S2 in the left column of Figure 3, one can see that components

{C1
1 , C

1
2 , C

1
3} merge into C2

2 (labeled C1 in the Figure). Going from S2 to S3, C2
1 and C2

4

(labeled C5 and C6) grow into C3
1 and C3

4 (labeled C5 and C6), respectively. Also notice

that C2
2 and C2

3 (labeled C1 and C4) merge into C3
2 (labeled C1). From S3 to S4 we see

that C3
3 (labeled C8) grows into C4

2 (labeled C8, identical to C3
3), C3

1 and C3
2 (labeled C5 and

C1) merge into C4
1 (labeled C1), and finally, C3

4 and C3
5 (labeled C6 and C7) merge into C4

3

(labeled C6). Note that since S5 = K, going from S4 to S5 the three components C4
1 , C

4
2 , C

4
3

in S4 (labeled C1, C8, C6) merge into C5
1 = S5 = K.

Labeling Connected Components

Starting with the largest value of λ = λ1, each connected component in S1 is given as label a

unique number in the range [1, n1], where n1 is the number of components in S1. Going to λ2,

if a component grows from S1 to S2, it is given the same label as before. If a new component

appears in S2, it is labeled with the next available number that has not been used yet. And

if components C1
k1
, . . . , C1

kn
of S1 merge into component C2

j , we label C2
j with the smallest

of the labels for C1
k1
, . . . , C1

kn
. Continuing this process for all λ values, each component label

is specified as Ck = (C1
k(1), . . . , C

i
k(i), . . . , C

N
k(N)) where the entry Ci

k(i) denotes the connected

component of Si labeled as Ck. In general if a component label Ck appears for the first time

in Si for i > 1 and disappears when it merges with another component in Sj for j > i, then

Ck = (∅, . . . , ∅, Ci
k(i), . . . , C

j−1
k(j−1), ∅, . . . , ∅). In particular, there are no connected components
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of Sh corresponding to Ck for any h < i or h ≥ j. The complete list of component labels for

T is obtained by repeating this process for all components across all λ values, and is denoted

by C.

For the example in Figure 3, the following component labels are generated for the five λ

values by this step of the GMTChem.FN algorithm:

C1 = (C1
1 , C

2
2 , C

3
2 , C

4
1 , K); C2 = (C1

2 , ∅, ∅, ∅, ∅); C3 = (C1
3 , ∅, ∅, ∅, ∅);

C4 = (∅, C2
1 , ∅, ∅, ∅); C5 = (∅, C2

3 , C
3
1 , ∅, ∅); C6 = (∅, C2

4 , C
3
4 , C

4
3 , ∅);

C7 = (∅, ∅, C3
5 , ∅, ∅); C8 = (∅, ∅, C3

3 , C
4
2 , ∅).

Structure Ranking

The input of this step of the GMTChem.FN algorithm is the collection C of all component

labels over all frames of data along with scale parameter values {λi}Ni=1 and the ratio cutoffs

{rj}Mj=1. The output is a ranking of all component labels in C in terms of the number of

times each individual component is alive over all scale parameter values and ratio cutoffs.

Alive components

A component label Ck = (C1
k(1), . . . , C

i
k(i), . . . , C

N
k(N)) is defined to be alive at scale λi and

ratio rj if the volume of Ci
k(i) is greater than the volume of a molecule associated with the

soft-matter surface, and if the ratio of the volume of Ci
k(i) to the volume of a ball of radius

1/λi is strictly greater than the ratio rj. For the example system of water/hexane/TBP the

volume of a water molecule is chosen. Precisely, the component label Ck is alive at scale λi

and ratio rj if both

Vol(Ci
k(i)) ≥ Vol(molecule) and (3)

R(Ci
k(i)) > rj, (4)
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where R is defined to be the ratio

R(Ci
k(i)) =

Vol(Ci
k(i))

Vol(Ball of radius λ−1
i )

. (5)

In the example in Figure 3, two ratio cutoff values r1 > r2 are used. To determine how

often (i.e., number of (λi, rj) pairs) at which the component labels are alive, the volumes of

corresponding connected components

Vol(C1) = (Vol(C1
1),Vol(C2

2),Vol(C3
2),Vol(C4

1),Vol(K));

Vol(C2) = (Vol(C1
2), 0, 0, 0, 0);

...

Vol(C8) = (0, 0,Vol(C3
3),Vol(C4

2), 0),

are divided by volumes of the corresponding λ−1
i -balls, and compared to the rj values to

determine which labels satisfy the inequalities (3) and (4). In Figure 3, the left and right

columns correspond to ratio cutoffs r1 and r2, respectively. Further, the components colored

in red are ones that are alive at the respective λi and rj values.

Each component label C ∈ C has a matrix AC = [aij] where aij = 1 if C is alive at λi

and rj, and 0 otherwise. One can think of AC as a lookup table that records which λi and

rj values the component label is alive at. Referring back to Figure 3, to construct the first

column of the lookup table AC1 for component label C1 corresponding to ratio r1, we simply

look at the first column. Since C1 is colored red only for λ = λ1, a11 = 1 and all other entries

in the first column of AC are 0. To construct the second column of AC1 corresponding to

ratio r2, we look at the second column. In this case, C1 is colored red for λ = λ1, λ2, λ3 and

therefore a12 = a22 = a32 = 1 and entries a42 = a52 = 0. This gives us our completed lookup
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table for component label C1: AC1 =

r1 r2

λ1

λ2

λ3

λ4

λ5



1 1

0 1

0 1

0 0

0 0


.

Therefore, the probability that C1 is alive for a uniformly random λi and rj is given as

P (C1 is alive) = 4/10 = 0.4.

Repeating these steps for the remaining component labels C2, . . . , C8 in Figure 3 yields the

following probabilities:

P (C2 is alive) = 0; P (C3 is alive) = 0.1; P (C4 is alive) = 0.1; P (C5 is alive) = 0;

P (C6 is alive) = 0.1; P (C7 is alive) = 0.2; P (C8 is alive) = 0 .

It is proposed that component labels that are alive more frequently are better candidates

for being identified as structural features on a soft-matter surface. Under this proposition,

all component labels are ranked from the most to least likely candidates to be identified as

structural features. In our example in Figure 3, the ranking for labels in C is

(C1, C7, C3, C4, C6, C2, C5, C8).

It is advisable to obtain an appropriate range of ratio cutoff values, which is obtained in this

work by employing a reference surface that has few collectively organized structures.
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Results

To test the applicability of our algorithm to identify an ensemble of surface structures at a

soft-matter interface we use a complex liquid/liquid system that has been the topic of prior

study: water/hexane/TBP, where the amphiphilic molecule TBP acts as a surfactant. In

this system, protrusions of water and TBP form at the instantaneous liquid/liquid inter-

face, and have been implicated as being the mechanism for water transport into the organic

phase.27 Details of the molecular dynamics simulation protocol, the composition and periodic

box size, and construction of the Willard-Chandler interfaces for each snapshot are provided

in the Supporting Information. To quantify the robustness of the surface structure algo-

rithm, 119 protrusions were identified by visual inspection in 35 snapshots of the molecular

dynamics trajectory. The visual identification is completely subjective, and as this is the

first algorithmic approach to identify surface structures, it is entirely possible that chemical

intuition does not always follow volumetric trends of features as identified by GMTChem.FN.

Analogous MD simulation data of water/hexane were used as the reference chemical

system to determine the range of λ values to be employed within the algorithm. Using 80

frames of simulation data, the upper range of λ was chosen to be 0.5 as this value led to almost

no flattening of the Willard-Chandler surfaces, while a lower value of λ = 0.01 was chosen

because this led to complete flattening of the WC surfaces across all trajectory data (Figure

S1). Fifty uniformly spaced values of lambda between these values were utilized. Within the

reference data, the distribution of ratios for any component with volume of at least Vmin was

also examined. Looking at the maximum ratio of the distribution after removing the top

1, 2, . . . , 10 percent of ratios, the list of ratio cutoffs in Table 1 was obtained. A protrusion

was defined to contain at least one water molecule. Given the density threshold of 95 percent

and a Gaussian kernel radius of 2 Å used to construct the Willard-Chandler interfaces, the

volume inside the 0.95 super-level-set of a Gaussian kernel of radius 2 Å in 3D was computed

in order to estimate the correct volume lower bound, which is denoted by Vmin. Only those

components whose volume is at least Vmin are considered.
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Table 1: The maximum ratios (see Equation (5)) after removing the top 0–10
percent of ratios from the water-hexane chemical system.

Ratio 0.0840 0.0945 0.1050 0.1155 0.1365 0.1575 0.1890 0.2520 0.3360 0.4935 1.0500

% 10 9 8 7 6 5 4 3 2 1 0

Figure 4: The probability vs. ranking of all component labels identified by the GMTChem.FN for
35 snapshots of the water/hexane/TBP interface. All protrusions identified by GMTChem.FN
were cross referenced against 119 protrusions at the interface identified by subjective visual
inspection, and those in agreement are labeled in green as “verified protrusions”. “False pos-
itives” are those surface structures that do not appear to be protrusions by visual inspection,
but may still be interesting surface structures. The optimum ranking threshold minimizes
the total difference of verified protrusions and false positives, thus maximizing the identified
protrusions, and is found to be T ∗ = 90.
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Figure 5: Examples of protrusion diversity identified by GMTChem.FN at the wa-
ter/hexane/TBP interface, alongside their associated probability values (as percentages).

Using the GMTChem.FN algorithm on the 35 frames of water/hexane/TBP data, all of the

protrusions identified by visual inspection exist within the total 195 component labels that

were ranked. In Figure 4, we present the ranking of the component labels vs. respective

probabilities. Notably, as the probability value of a component label decreases the likelihood

of having a “false positive” for a protrusion (a feature that by visual inspection does not

appear to be a protrusion) increases. At the same time, the concept of a “false positive” is

somewhat misleading, as further study is needed across many chemical systems to under-

stand the reactivity and chemical behavior of surface structures as a function of their size,

morphology, and chemical composition. If we assume that the visually identified protrusions

are the only surface structures of interest, then the optimum ranking threshold (T ∗) that

minimizes the total number of errors and maximizes the identified protrusions is found to be

T ∗ = 90. Considering all component labels below a T ∗ ranking of 90, there are 13 overcounts

(red bars to the left of the Optimum ranking line in Figure 4). Upon further analysis,

these are observed to be features that occur on the periodic boundary of the simulation cell.
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Indeed, the algorithm employed to create the Willard-Chandler surface did not obey the pe-

riodic boundary conditions of the simulation box, and as such the GMTChem.FN overcounted

protrusions on these boundaries. Amending this issue is a topic of current algorithmic opti-

mization. If the T ∗ ranking of 90 is chosen there are 43 undercounted surface structures that

are visually identified as protrusions (green bars to the right of the Optimum ranking line

in Figure 4). These protrusions have morphologies that consist primarily of broad features

and we hypothesize their lower probability values are due to the fact that broad features are

not removed as quickly as long and thin features that emerge at higher probabilities (Figure

5). Note that the entries in the probability matrices are uniformly weighted, and further

improvement on the algorithm may be obtained by using varying weights. For example, if

one would like to rank large components with high priority, small λ values may be weighted

more than larger λ values. Finally, it is important to point out that the GMTChem.FN algo-

rithm also identifies surface structures that were not initially identified by visual inspection.

These surface features were missed by visual inspection and were difficult to identify because

they resided in low basins, and were surrounded by high interfacial roughness (e.g., see the

last feature in Figure 5 with P = 10.96).

Conclusion

Robust algorithms that automatically identify complex structural features at soft-matter

surfaces have the potential to dramatically expand our ability to study interfacial reactivity

and transport mechanisms. This includes understanding how surfactants can control the

morphology of protrusions that move solutes across a phase boundary, or how interfacial

composition modulates micelle formation. It is a significant challenge to create such an ap-

proach, as surface feature morphology can be highly varied and because the method must be

able to identify structures that can exist on top of a surface that has significant natural rough-

ness. To address this challenge, a new algorithm is developed which employs concepts from
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geometric measure theory and algebraic topology. We utilize the flat norm, which minimizes

a generalized area of a complicated surface (in x, y, z) representing a soft matter interface,

and “flattens” the surface toward the horizontal plane with the same x, y dimensions. Using

this framework, we identify relevant volumes lying between the complicated surface and the

flat surface at various scales by minimization of the flat norm function. Subsequently, using

a probabilistic approach those identified surface features are ranked by their likelihood of

being a complex structural feature. The algorithm is tested for a surfactant-laden water/oil

interface, where its ability to identifying protrusions is validated against a set of surface fea-

tures identified by visual inspection. To our knowledge, this is the first example of applying

geometric measure theory to analyze the properties of a chemical/materials science system.

This approach is scale-independent and has potential application in many different chemical

systems, and presents an important new tool to study interfacial structure, dynamics, and

reactivity.
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