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Abstract

One of the main challenges in drug discovery is predicting protein-ligand binding

affinity. Recently, machine learning approaches have made substantial progress on this

task. However, current methods of model evaluation are overly optimistic in measuring

generalization to new targets, and there does not exist a standard dataset of sufficient

size to compare performance between models. We present a new dataset for structure-

based machine learning, the CrossDocked2020 set, with 22.5 million poses of ligands

docked into multiple similar binding pockets across the Protein Data Bank and perform

a comprehensive evaluation of grid-based convolutional neural network (CNN) models

on this dataset. We also demonstrate how the partitioning of the training data and

test data can impact the results of models trained with the PDBbind dataset, how

performance improves by adding more, lower-quality training data, and how training

with docked poses imparts pose sensitivity to the predicted affinity of a complex. Our

best performing model, an ensemble of 5 densely connected convolutional networks,

achieves a root mean squared error of 1.42 and Pearson R of 0.612 on the affinity

prediction task, an AUC of 0.956 at binding pose classification, and a 68.4% accuracy
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at pose selection on the CrossDocked2020 set. By providing data splits for clustered

cross-validation and the raw data for the CrossDocked2020 set, we establish the first

standardized dataset for training machine learning models to recognize ligands in non-

cognate target structures while also greatly expanding the number of poses available for

training. In order to facilitate community adoption of this dataset for benchmarking

protein-ligand binding affinity prediction, we provide our models, weights, and the

CrossDocked2020 set at https://github.com/gnina/models.

Introduction

Virtual screening is an important part of the drug discovery pipeline, as it can efficiently

evaluate any part of drug-like chemical space. A common approach is to utilize structure-

based methods to score potential molecules with respect to the binding site of a given target

protein structure to produce a ranked list of hits.1–5 The scoring function is responsible for

evaluating the correctness of the pose of the molecule in the binding site and predicting its

binding affinity. Scoring functions fall into one of three categories: force-field based,6–9 em-

pirical,10,11 or knowledge-based.12,13 Force-field based methods utilize parameters estimated

from experimental and simulated data that aim to model the intermolecular potential en-

ergies through bonded and nonbonded terms.14 Empirical scoring functions are constructed

from manually selected interaction terms, such as hydrophobicity and hydrogen bonding,

that are parameterized to available data. Knowledge-based methods are constructed from

entirely non-physical statistical potentials derived from known protein-ligand complexes.

Machine learning (ML) models are a sophisticated sub-class of knowledge-based scoring that

exhibit competitive performance.15–18

Typically, each of these approaches to scoring rely on predefined features to characterize

protein-ligand binding. This overt featurization requirement possibly limits the performance

of conventional scoring functions. This limitation can be avoided by using a direct repre-

sentation of the protein-ligand structure as the input to a machine learning model. One
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such representation is a 3D grid (i.e., a 3D ‘picture’ of the complex) where the only features

are the choice of atom types and how atom occupancy is represented in the grid. Several

recent efforts have demonstrated success combining grid representations with convolutional

neural networks (CNNs)19–23 which allow the model to learn its own representation of the

protein-ligand interaction in order to determine what makes a strong binder.

Our previous work with CNNs19 showed good performance in identifying correct ligand

poses, but did not directly predict binding affinity. Successive methods20–22 directly pre-

dict the binding affinity. DeepDTA20 showed reasonable performance with representations

of the input complex consisting of the protein’s sequence and the ligand’s SMILE string.

KDeep21 uses a 3D grid of chemical descriptor channels, rather than simply atom identi-

ties. Pafnuncy22 extends an atom type representation with additional atomic properties

such as partial charge, SMARTS patterns, and hybridization among others. Imrie et al. 23

improved on our original work by utilizing densely connected CNNs,24 transfer learning,

target-specific models, and model ensembles to great effect on the DUD-E set.25 In addition

to these approaches, there have been considerable advancements in utilizing graph-based

representations and other ML models to predict protein-ligand binding affinity.26,27

Partially inspired by these successes, here we extend our original network19 to jointly train

for pose selection, i.e. classifying poses as having a low root mean squared deviation (RMSD)

to the true crystal pose or not, and affinity prediction, a regression problem. We expect that

these two outputs should be related as both are ultimately a function of molecular interac-

tions. Machine learning models for pose selection and affinity prediction have largely relied

on the PDBbind dataset28 which curates the Protein Data Bank for high quality protein-

ligand structures with published binding affinities. However, the goal of docking is not to

recapitulate the known pose of a ligand with respect to its cognate structure (redocking)

but to predict the poses of novel ligands. Here we present a new CrossDocked2020 training

set that both augments and expands available data and better mimics the drug discovery

process by including ligand poses cross-docked against non-cognate receptor structures as
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well as poses purposely generated to be counterexamples.

Additionally, it is important to note that the available data for protein-ligand binding

is inherently biased and does not span all of available chemical space. Cleves and Jain 29

looked into the inductive bias present for ligand-based modeling methods and found notable

differences between 2D and 3D methods. They also note that the available data is the result

of specific human design choices, e.g. drug campaigns for a specific receptor.29 Xia et al. 30

provides a review of common biases encountered in virtual screening datasets: ‘analogue bias’

(highly similar active compounds), ‘artificial enrichment’ (poor property matching between

actives and decoys leading to easier classification), and ‘false negatives’ (assumed decoys

that were later experimentally verified to be active). With the recent successes of machine-

learning based methods, there has been renewed interest in controlling for the biases in

available datasets.31–34 Sieg et al. 31 report that ML-based methods tend to fit to the initial

biases of their training data and report on the importance of domain biases. Chen et al. 34

show that there are numerous biases still present in the DUD-E dataset,35 and that ligand-

only models achieve comparable performance to 3D CNNs on DUD-E, despite the lack of

receptor to inform the model’s predictions. Lastly, Lopez-del Rio et al. 32 advocate for

utilizing clustered cross-validation (CCV) based splits for training, as random splitting is

over-optimistic and does not measure the ability of a model to generalize to a new target

class, which is highly desirable in a structure-based model.

To partially address and measure bias, we evaluate ligand-only models, which are trained

without a receptor structure. The performance of these models indicates to what extent

models are making predictions from purely cheminformatic information, including analogue

bias and artificial enrichment, versus protein-ligand interactions. We also adopt clustered

cross-validation on the PDBBind datasets, as well as our CrossDocked2020 set, to more

rigorously evaluate generalization error.

In order to assess a grid-based 3D CNN’s ability to predict protein-ligand binding affinity

and perform pose selection, we designed a series of experiments. First, in order to help com-

4



pare our method with other approaches, we tested on the PDBBind Core set using a variety

of training sets. Next, we evaluated generalization to new targets using a clustered-cross vali-

dation analysis of the PDBbind. Additionally, we evaluated the impact of increasing training

data by including lower quality structures through analysis of clustered cross-validation splits

of the PDBBind Refined set, General set, our CrossDocked2020 set, and a redocked-only sub-

set of the CrossDocked2020 set. We also examined the impact on our models of including

crossdocked poses, as well as counterexamples, in the CrossDocked2020 training set. We

then assess pose sensitivity of our models by examining models trained with a ligand-only

version of our training data and different pose selection approaches for affinity prediction.

Lastly, we examined how an ensemble of models gives a boost to performance, as well as

how a different Dense architecture performs at pose selection and protein-ligand binding

affinity prediction. All data splits, trained models, and evaluation scripts are available at

https://github.com/gnina.

Methods

Here we describe our grid-based 3D CNN model architectures, the construction of our

datasets, our training procedure, and our evaluation metrics.

Model Architectures

Table 1: Number of parameters and time for forward pass on a NVIDIA TITAN Xp for each
model. 1000 iterations with batch size 50 were made for each model. We report the average
time and standard deviation per complex of 10 runs here.

Model Parameters Forward Pass (ms) Standard Deviation (ms)
Def2017 383,616 1.110 0.0259
Def2018 388,736 1.147 0.0334

HiRes Affinity 1,106,560 10.375 0.181
HiRes Pose 964,224 5.452 0.0597

Dense 684,640 8.116 1.550
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Figure 1: CNN model architectures. Code is available at http://github.com/gnina.

We evaluate five distinct CNN model architecture variations shown in Figure 1. All

models take a 3D grid of Gaussian-like atom type densities as input that is generated using

our libmolgrid CUDA-accelerated library for molecular grid generation.36 There are 14

ligand atom types and 14 receptor atom types, including distinct types for oxygen/nitrogen

hydrogen donor/acceptors and aliphatic/aromatic carbons. A cubic grid with dimension

23.5Å and 0.5Å resolution is used. Default 2017 (Def2017) is our originally proposed CNN

architecture.19 Default 2018 (Def2018), HiRes Pose, and HiRes Affinity were discovered via

an extensive hyper-parameter search where the goal was to maximize performance on clus-

tered cross-validated splits of the PDBBind Refined set. The HiRes models were optimized

strictly for a specific task and without particular regard to runtime performance, resulting

in substantially more parameters (see Table 1). The Def2018 model was chosen based on

its combined performance on affinity prediction, pose selection, and evaluation time. Addi-

tional details of the semi-automatic hyperparameter search used to discover these models is

provided in the Supporting Information. Dense is a densely connected CNN24 derived from

6
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a model previously used for the virtual screening task.23

All models consist of a series of 3D convolutional and/or pooling layers followed by

two separate fully connected layers whose outputs are the pose score and affinity prediction.

Pose selection (classification) is trained with a logistic loss to distinguish between low RMSD

(< 2Å) and high RMSD (> 4Å) poses. Affinity prediction is trained using an L2-like pseudo-

Huber loss that is hinged when evaluating high RMSD poses. That is, the model is penalized

for predicting both a too low or too high affinity of a low RMSD pose, but only penalized

for predicting a too high affinity for a high RMSD pose.

Table 2: Composition of the datasets used in this paper. ReDocked2020 and Cross-
Docked2020 both have model-generated counterexample. CrossDocked Iteration 0 is the
CrossDocked2020 set without any counterexamples added. ReDocked2020 and CrossDocked
Only form a non-overlapping partition of CrossDocked2020 into redocked and cross-docked
poses. Affinity Data refers to the percentage of poses with associated binding affinities from
the PDBbind.

Dataset Pockets Complexes Poses Ligands Affinity Data %
PDBBind Core – 280 4,618 280 100

PDBBind Refined – 3,805 66,953 3,805 100
PDBBind General – 11,324 201,839 11,324 100

ReDocked2020 2,916 18,369 786,960 13,780 32.7
CrossDocked Iteration 0 2,922 18,450 10,691,929 13,839 39.9
CrossDocked Iteration 1 2,922 18,450 19,182,423 13,839 41.3

CrossDocked Only 2,767 18,293 21,797,142 13,786 42.2
CrossDocked2020 2,922 18,450 22,584,102 13,839 41.9

PDBBind Datasets

Traditionally, machine learning models have been evaluated using the predefined ‘Core’ set as

a test set and the remainder of the PDBbind as the training data. As the PDBbind consists

of both a curated (Refined) and expansive (General) set, we created several partitions of

PDBBind v2016 for training and evaluation purposes: Refined\Core, General\Core, CCV

Refined, and CCV General. Complexes were discarded if the ligand molecular weight was

greater than 1000Da or if the ligand name was ambiguous. Each receptor and ligand was

downloaded directly from the PDB as an SDF through the downloadLigandFiles service
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to avoid ambiguities in bond orders and protonation states present in the full PDB file. The

receptor had its water and all atoms identified by the HETATM tag stripped via the ProDy

Python package.37

Docked poses were generated by docking ligands into their cognate receptor with smina.38

Up to 20 poses were generated per receptor-ligand pair and poses were docked in a box

defined using the autobox option with the crystal ligand. Otherwise, default settings were

used. In order to increase the likelihood of each complex having a low RMSD pose in the

training set while still ensuring that all training poses have the same geometric properties

of a docked pose, an energy minimized crystal ligand was included in the training set. The

crystal ligand was refined using the UFF force-field39 in RDKit,40 which is the same force-

field used when generating conformers for docking, and then minimized with respect to the

receptor structure using the Vina scoring function, just as with the docked poses. Thus,

there are two sets of poses when utilizing the PDBBind data: crystal poses and generated

poses. The direct crystal pose is utilized in models trained with the “Crystal” dataset, and

the generated poses (e.g. docked, and energy-minimized crystal pose) are utilized in models

trained with the “Docked” data.

This filtering process resulted in the Refined set, with 3,805 complexes and 66,953 gen-

erated poses, the General set, with 11,324 complexes and 201,839 generated poses, and the

Core set, with 280 complexes and 4,618 generated poses. We trained for affinity prediction

using the pK reported in the PDBBind. Dataset information is shown in Table 2.

To create splits for clustered cross-validation, clusters were created by grouping together

receptors with over 50% sequence similarity or with over 40% sequence similarity and 90%

ligand similarity, as computed with RDKit’s40 FingerprintMols. Clusters were then randomly

assigned to folds for 3-fold cross-validation.
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CrossDocked2020 Dataset

The CrossDocked2020 set was generated by downloading the PDB structures specified by

Pocketome v17.12.41 Pocketome groups structures from the PDB based on the similarity

of their ligand binding sites, with all identified receptors and ligands forming a “pocket”.

Ligands with over 1000Da molecular weight were removed, and structures were stripped

of water and aligned to the Pocketome binding sites using ProDy.37 Ions, as identified by

ProDy, were retained and assigned as receptor atoms, unlike with the PDBBind data. The

ligands associated with a given pocket were then docked into each receptor assigned to that

pocket by Pocketome using smina,38 as previously described, resulting in a combinatorial

expansion of docked poses. Binding data (pK) for the CrossDocked2020 set was taken from

PDBBind v2017, where we assumed that a given ligand’s binding affinity would be the same

for all receptors of a given pocket. We also assume the aligned co-crystal can be used to

evaluate the pose quality of cross-docked ligand structures. As these assumptions are not

necessarily valid, the resulting labels are inherently noisier.

Clustered cross-validated sets were generated by grouping pockets into clusters using the

ProBiS42 algorithm with the z-score parameter set to 3.5. Clusters were randomly assigned to

folds for cross-validation. In total, the CrossDocked2020 set contains 13,780 unique ligands,

41.9% of which have binding affinity data, 2,922 pockets, and 18,450 complexes. Note that

we grouped this data into complexes labeled by ‘pocket-ligand’ pairs, meaning the same

ligand can be found among multiple complexes. The CrossDocked2020 set contains a total

of 22,584,102 poses, 11,892,173 of which are counterexamples added through our iterative

training set approach (outlined in the next section). A ReDocked subset was created by

only including poses where the ligand was docked to its cognate receptor. The ReDocked

set contains the same pockets and ligands as the CrossDocked2020 set, but only has 18,369

complexes and 786,960 poses of which 391,137 are counterexamples (see Table 2).
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Iterative Training Set Preparation

We have shown that an iterative approach to the generation of training data improves the

robustness of the trained model.43 In this approach, we train a model utilizing all of the

available training data and use it to optimize the docked poses from the training data with

respect to the newly trained model. This results in poses that the model generally considers

to be good. Since we have the true crystal structure, we can identify those poses the model

is most challenged by. We update the dataset with poses that scored high (above 0.9) while

being more than 2Å RMSD away from the crystal pose, or scored low (below 0.5) while being

less than 2Å RMSD away from the crystal pose. This provides a set of counterexamples that

are specifically designed to confuse the model.44 Only unique counterexample poses are added

to the training set (a new pose must be more than 0.25Å RMSD distance from any pose

already in the training set). This process was performed twice on the CrossDocked2020 set.

Each iteration added fewer poses (Table 2) and the impact of the second iteration did not

justify the computational expense of an additional iteration (see Supporting Information for

more details).

Training Procedure

Models were trained using our custom fork of the Caffe deep learning framework45 with

libmolgrid integration.36 Training examples were randomly shuffled and each training it-

eration used a batch size of 50. Batches were balanced with respect to class labels (low

RMSD vs high RMSD poses) and examples were stratified with respect their receptor so

that targets are sampled uniformly during training regardless of the number of docked poses

per a target. Since grids are inherently coordinate frame dependent, input structures were

randomly rotated and translated (up to 6Å as long as the ligand did not translate outside the

box). This data augmentation by pose modification is essential to achieve good performance

with grid-based CNNs.19 The stochastic gradient descent (SGD) optimizer with an initial

learning rate of 0.01 was used.
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Models were trained utilizing an early stopping criteria that seeks to dynamically reduce

the learning rate and terminate training when the model appears to be converging. Early

stopping hyperparameters for each training set are provided in the Table S1. Early stopping

evaluates the loss of the trained network every 1000 iterations on a sample of the training

set. The size of this sample is determined by the percent reduced parameter. The training

set is used instead of a test set since we use the same procedure when training on the entire

dataset with no held-out information. If there is no reduction in the training loss during the

last step when evaluations, then the learning rate is lowered by a factor of 10. We select this

parameter so that the network will see the entire training set or 200,000 examples, whichever

is smaller, before updating the learning rate. The learning rate is lowered step end cnt times.

For each dataset, we trained 5 models using 5 different random seeds to assess the vari-

ability of model performance. Additionally, for the clustered cross-validated PDBbind data,

each seed utilized a different 3-fold split of the data. This was not the case for the Cross-

Docked2020 and ReDocked2020 datasets where the 5 different seeds were tested on the same

3-fold split of the data, due to the computational cost and time required to create a split of

this much larger dataset. Cross-validated model performance is reported as the average of

the three validation sets. We emphasize that validation sets used for reporting performance

never overlap with the training set of the model being evaluated.

Evaluation Metrics

To evaluate pose selection performance we consider both the area under the curve (AUC)

of the receiver operating characteristic (ROC) curve and the ‘Top1’ percentage. The AUC

indicates how well the model separates low RMSD poses from high RMSD poses overall and

provides a measure of inter-target ranking power, while Top1 is the percentage of low-RMSD

(< 2Å) poses among the top-ranked poses, and is a measure of intra-target ranking power

(i.e., how often docking is successful). Although AUC is theoretically unaffected by class im-

balance (different numbers of positive and negative examples), the meaning of Top1 depends
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significantly on the underlying ratio. If not all complexes have a low RMSD pose, which

can happen when evaluating docked poses, the best possible Top1 will be less than 100%.

Additionally, the expected Top1 of a random classifier will vary depending on the percentage

of low RMSD poses sampled. To provide context for our Top1 results, we provide the best

possible Top1 and the expected performance of random selection. When evaluating cross-

docked poses, we consider all docked poses of a ligand across multiple receptor structures as

a single set, emulating ensemble docking.46

To evaluate affinity prediction, we must first select which docked pose of a ligand to

evaluate. Unless stated otherwise, we select a pose for a given complex (receptor:ligand for

PDBBind, or pocket:ligand for Pocketome) by taking the pose with the highest pose score

(the same pose used to generate the ‘Top1’ statistic) or best Vina score (if evaluating the

Vina scoring function). The predicted affinity of this pose is then used to calculate the

Pearson’s R and root mean squared error (RMSE) with the experimental affinity in pK

units. We also analyzed the effect of selecting the pose with the highest predicted affinity,

the best pose (lowest RMSD to the crystal), the worst scoring pose, or a random pose on

affinity prediction.

As a baseline, we evaluate poses using the Autodock Vina47 scoring function. For affinity

prediction comparisons we convert the Vina score, which is in units of kcal/mol, to pK units

using the formula

pK = − log10(e
vina
T ·R )

. Where T = 295K and R = 1.98720 · 10−3kcal mol−1K−1 is the ideal gas constant.

Results

In order to compare our models with previously published work, we first evaluate our models

trained on the PDBBind (with the Core set removed) and tested on the Core set (see Table 3).

We then show the benefits of training and evaluating on larger and more sophisticated

12



Table 3: Affinity prediction performance on PDBbind Core (N=280) for a variety of models.

Model RMSE R
Def2018 Refined Crystal 1.50 0.73
Def2018 Refined 1.50 0.72
Def2018 General 1.38 0.79
Def2018 General Ensemble 1.37 0.80
Pafnucy22* 1.42 0.78
KDeep21† 1.27 0.82
RF Score16‡ 1.39 0.80
1D2D CNN27† 1.64 0.848
Vina 2.22 0.41

* Train: PDBbind General and Refined v2016
crystal structures (N=11,906). Removed Nu-
cleic Acid+Protein, Protein+Protein, and Nucelic
Acid+Ligand from all sets. Test: remaining Core set
(N=290).
† Train: PDBbind Refined v2016 crystal structures
(N=3767). Test: PDBbind Core set crystal structures
(N=290)
‡ Train: PDBbind Refined v2007 crystal structures
(N=1300). Test: PDBbind Core set crystal structures
(N=195)

datasets, while evaluating how well models generalize across different datasets. We also

evaluate ligand-only models, model ensembles, and our computationally expensive Dense

model.

Training on docked poses has little effect on affinity prediction

We consider the effect of using docked poses versus crystal poses for affinity prediction using

the PDBbind Refined\Core set and testing on Core. We trained on two versions of this

data: one with only the crystal poses, Crystal, and another with only docked poses, Docked.

When training with Crystal the pose score layer of the model is omitted and the only loss

computed is the L2-like loss of affinity prediction. The Docked set includes both low (< 2Å)

and high (> 2Å) RMSD poses where the high RMSD poses are trained using a hinge loss as

described in the Methods.

Affinity prediction performance on these two sets, as measured by Pearson’s R, is shown
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Figure 2: Affinity prediction correlation on PDBbind Core set for models trained using crystal or
docked poses from the Refined Set. Trained models are tested on both crystal and docked poses.
For crystal-trained models, the affinity of the lowest-RMSD docked pose is predicted while docked-
trained models select the pose with the best pose score. The Autodock Vina scoring function is
shown as a baseline.

in Figure 2. RMSE performance is provided in Figure S7. All four models achieve comparable

performance on both the Crystal and Docked datasets, with average R values in the range of

0.72 to 0.75. This shows that the inclusion of docked poses does not reduce affinity prediction

performance, despite the presence of high RMSD poses. We also demonstrate that models

trained on the Crystal dataset and evaluated on the Docked dataset, and vice versa, display

only minimal differences in performance. This indicates these models are insensitive to small

perturbations of ligand positions. In other words, a low RMSD pose is scored similarly to

a crystal pose. This stands in contrast to the performance of the empirical AutoDock Vina

scoring function, which performed particularly poorly on the Crystal data. This is due to

several crystal structures with short intermolecular distances, resulting in a large repulsion

term. Vina does significantly better predicting the affinity of the low RMSD docked poses,

which are all at local minima with respect to the Vina scoring function and so do not have

these artifacts.

Extensive hyperparameter tuning yielded limited benefit

In Figure 2 the hyperparameter optimized models behave similarly to the Def2017 model.

In successive analyses we find that the hyperparameter optimized models generally exhibit

a modest performance improvement relative to the original Default 2017 model. The HiRes

models are the best at the task and dataset (Refined) they were optimized for, but this pat-
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tern is not conserved across different training and test sets. This suggests these models may

have been selected based on their ability to overfit a specific training regime. The consider-

ation of model complexity and run-time performance in the selection of Def2018 may have

had the effect of regularizing the hyperparameter search as this model is consistently close

to the best model in all the evaluations. As all four model demonstrate similar trends and

the Def2018 model generally performs best, for the remaining evaluations we present results

only for the Def2018 model, with evaluations for all four models available in Figures S8, S9,

S10, S12, and S13. The limited improvement achieved via hyperparameter search with these

models motivated the evaluation of a substantially different network architecture, the Dense

model, which we evaluate in Figure 11.
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Figure 3: Affinity prediction performance for Def2018 model with different pose selection methods
when trained on Crystal or Docked poses of PDB Refined and tested on Core. Best is the lowest
RMSD pose to the crystal pose, CNNscore is the highest predicted scoring pose (not applicable for
Crystal trained models), CNNaffinity is the highest predicted affinity, Worst is the highest RMSD
pose to the crystal pose, and Random is taking a pose at random.

Training on docked poses increases pose sensitivity

As training on docked poses has little effect on affinity prediction (Figure 2), we sought to

evaluate how sensitive affinity prediction is to the choice of pose selected for evaluation. We

evaluated 5 different pose selection methods: Best (selecting the pose with the lowest RMSD

to the crystal pose), CNNscore (selecting the pose with the highest predicted CNNscore,

the default), CNNaffinity (selecting the pose with the highest predicted affinity), Random
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Figure 4: Intra-target pose ranking performance of various pose selection methods with the Def2018
model when trained on Crystal or Docked poses of PDB Refined and tested on Core.

(selecting a random pose), and Worst (selecting the pose with the highest RMSD to the

crystal pose). Figure 3 shows the results of this analysis for the Def2018 model trained with

either the Refined\Core Crystal set or the Refined\Core Docked set and tested on the Core

set made up of docked poses. Note that Crystal trained models do not generate a pose score

(CNNscore) since they are not trained for this task.

As the quality of the selected pose decreases, both the correlation and RMSE performance

of affinity prediction worsens. This effect is more pronounced for the Docked trained models,

and the impact on RMSE is particularly notable. With the Docked trained models, high

RMSD poses are assigned significantly lower affinity predictions on average, so that while

some correlation is retained (Figure S11), the RMSE increases significantly. Interestingly,

while using the highest RMSD pose reduces affinity prediction performance, the Crystal

trained Def2018 model still achieves an R of 0.60 compared to 0.70 with the best possible

pose. This suggests the model is making minimal use of protein-ligand interactions in making

its affinity prediction. In contrast, models trained on Docked poses are more pose sensitive.

Not only does affinity prediction quality better correlate with pose quality (Figure 3), the

affinity prediction by itself is significantly better at selecting low RMSD poses. This is

shown in Figure 4 where the CNNaffinity selection is only 43% successful at selecting a low

RMSD pose when trained on Crystal poses compared to the 68% success rate of this selection

method using the Docked trained model.
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Figure 5: Performance on Core when the training set is expanded from PDB Refined to General.

Expanding training data with PDBbind General improves perfor-

mance

The PDBbind Refined set is filtered from the PDBbind General set to exclude complexes

where there are concerns about the quality of the structure or the binding data.48 In order

to investigate the effect of adding more, but lower quality, training data on predicting the

Core set, we compare models trained using PDBbind Refined\Core to those trained using

PDBbind General\Core in Figure 5. For all models and metrics, training on PDBbind

General improves Core set predictions, suggesting the quality controls used to create the

Refined set may be overly strict for the purposes of training machine learning models.

Clustered cross-validation reveals Core set evaluations are overly

optimistic

We compare the performance of models trained on the PDBbind General set and tested on

the Core set with models trained and evaluated using 3 fold clustered cross-validation of

the entire PDBbind General set in Figure 6. For each of our three metrics, the clustered

cross-validated models perform substantially worse. Pearson R drops from 0.78 to 0.56, AUC
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Figure 6: Performance when utilizing different train/test splits. Models were either trained on
PDBbind General and tested on PDBbind Core (Core) or trained with clustered cross-validation
splits of the PDBBind General. Note the same data is in both sets, but is divided differently among
train and test.

from 0.94 to 0.89, and Top1 from 0.77 to 0.62. This drop is not due to the reduced size of the

training set in each of the cross-validation folds, as these sets are still substantially larger than

the PDBbind Refined set (Table 2), and yet the clustered cross-validation metrics are also

substantially worse than Refined set performance (Figure 5). As clustered cross-validation

measures the performance of models on new target classes, the most likely explanation for

this performance difference is that testing on the Core set is a poor measure of a model’s

ability to generalize. The Core set is embedded in the same chemical and target space as the

Refined/General set by design, and, by virtue of its intentionally reduced size, only samples

a portion of the full protein-ligand landscape. Furthermore, the Core set is constructed so

there are low/medium/high affinity examples for each target class. This results in a distinctly

different distribution of affinity values that produces artificially high correlations of affinity

prediction performance (as shown in Figure 6).
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Figure 7: Clustered cross-validation performance of the Def2018 model trained with our various
datasets. Training and testing set size increases along the horizontal axis.
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Expanding training data beyond PDBbind improves performance

Motivated by the improved performance of the larger, but lower quality, PDBbind General

set, and with the goal of training models that are appropriate to use in prospective docking

studies, we created the even larger CrossDocked2020 set (Table 2). The CrossDocked2020

set is greatly expanded by including cross-docked poses, by including complexes that lack

affinity data, and by including counterexamples. For a more apt comparison to the PDBbind

datasets, we also consider models trained only on the ReDocked2020 subset when evaluating

clustered cross-validation performance. As shown in Figure 7, as more redocked poses are

added, performance increases for all metrics. Notably, affinity prediction performance in-

creases despite the inclusion of complexes without affinity data, which are omitted from the

loss calculation. However, we caution that as the underlying datasets are different, and it

isn’t possible to definitively conclude that the improvement is due to the volume of data. In

fact, Vina also sees a significant improvement on the ReDocked2020 dataset. Nonetheless,

it is reassuring that expanding the dataset with additional redocked poses does not reduce

performance, despite the minimal filtering applied.

As expected, pose selection performance on the full CrossDocked2020 set is substantially

reduced. Cross-docked poses are inherently noisier and there are many more poses to select

from. This results in a more challenging task. However, it is also a more realistic assessment

of a model’s performance in a prospective docking experiment, and the drop in docking

accuracy for the CNN model is less than that exhibited by Vina. Interestingly, affinity

prediction performance is not affected by the inclusion of cross-docked poses in the training

set.

Training on cross-docked poses has mixed results

In order to assess the impact of training with cross-docked poses, we trained models us-

ing both the full CrossDocked2020 dataset and the ReDocked2020 subset and evaluated

both of them using the CrossDocked2020, ReDocked2020, and CrossDocked Only (CDOnly)
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Figure 8: Performance of training and testing with and without crossdocked poses. Def2018 models
were trained on either the ReDocked2020 set or the CrossDocked2020 set. They were then evaluated
on either the ReDocked2020 set, the CrossDocked2020 set, or only the crossdocked poses in the
CrossDocked2020 set (CDonly).

datasets. The same clustered cross-validation train/test splits were used in all cases, but

with different subsets of the full CrossDocked2020 set. As shown in Figure 8, models trained

using cross-docked poses have comparable performance to models trained on redocked poses

in all our metrics. Both models exhibit the same trend of slightly worse performance as the

test set gets more challenging through the inclusion of a larger percentage of cross-docked

(i.e., imperfect) poses. Surprisingly, there is no clear advantage to training on cross-docked

poses, even when evaluating only cross-docked poses. The difference in Pearson R between

models is not statistically significant (p > 0.05, Student’s t-test), and the CrossDocked2020

trained model has a slightly better AUC and slightly worse Top1 than the ReDocked2020

model. This may be due to a large degree of structural similarity, so that many cross-docked

poses are indistinguishable from redocked poses. It may also be the case that the lower

quality cross-docked poses are negatively impacting model performance.
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Figure 9: Effect of counterexamples on Def2018 clustered cross-validated performance. The models
were trained on the CrossDocked2020 set either without counterexamples (Iteration 0) or with
counterexamples (Iteration 2). They were then evaluated on the test set without or with the
counterexamples.
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Figure 10: Ligand-only model performance. Def2018 models were trained with or without receptors
(w/ Rec or w/out Rec) and evaluated on test sets with or without receptors (With Receptor or No
Receptor).

Counterexamples improve model performance and robustness

The CrossDocked2020 set included two iterations of counterexample generation. To eval-

uate the influence of these counterexample poses, we consider models trained using our

initial “Iteration 0” CrossDocked2020 set, without any counterexamples, and our full Cross-

Docked2020 set, “Iteration 2” in Figure 9. Models trained without counterexamples perform

worse than random pose selection when evaluated on the full set, which is expected since a

more than half of the poses (Table 2) are specifically selected to confuse the initial model.

Encouragingly, models trained on the full set exhibit slight performance improvements in

affinity prediction and Top1 when evaluated on the initial set, further indicating that the

inclusion of additional data is beneficial.
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Ligand-only information is a significant factor in affinity prediction

The expectation in training a structure-based model is that its output is primarily a function

of protein-ligand interactions, as is the case with classical scoring functions. However, recent

work31,34 demonstrated that ligand-only, cheminformatic information can explain much of

the performance of structure-based machine learning methods. We investigate this effect in

Figure 10 (General set) and Figure S14 (CrossDock). Consistent with previously reported

results, models trained without any receptor information still achieve a significant correla-

tion in affinity prediction, although there is a significant decrease in the average Pearson’s

correlation coefficient, with the PDBbind General set decreasing from from 0.56 to 0.52 and

the CrossDocked2020 set from 0.58 to 0.49. As expected, since pose selection is inherently a

function of the pose of the ligand relative to the receptor, models trained without a receptor

have a Top1 metric equal to random performance.

Models trained with a receptor exhibited close to random AUCs and substantially reduced

correlations when evaluated on the ligand-only test set. However, surprisingly, the AUC of

ligand-only models is significantly higher than the expected 0.5 of a random classifier, with

the PDBbind General trained model exhibiting an AUC of 0.59. As there is no receptor,

this non-random performance must be due to differences in ligand conformation or a general

cheminformatic descriptor. Scoring poses using their internal energy, as calculated by the

UFF force field, classified poses from the General set with an AUC of 0.55 (Figure S15).

This suggests that ligand strain may provide some signal into the quality of a docked pose,

but does not fully explain our ligand-only models’ performance. We also evaluated using a

2D-only Morgan fingerprint of the molecule with a linear regression model, which resulted in

an AUC of 0.60 on the General set, matching the performance of our ligand-only model. As

fingerprints are independent of ligand conformation, this result is achieved despite different

poses of the same ligand producing identical scores. The reason this does not result in an

AUC of 0.5 is that not all ligands have the same percentage of low RMSD poses. For example,

rigid molecules that bind to fully enclosed protein pockets have fewer high RMSD poses, as
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Figure 11: Dense model compared to Def2018 on the CrossDocked2020 set. The performance of
the ensemble of both sets of five models is also shown.

the steric constraints of the system prevent them from being sampled during docking. It

appears the model can identify these ‘highly dockable’ chemotypes resulting in the non-

random AUC. Since Top1 strictly evaluates ordering of the poses of the same ligand, unlike

AUC which evaluates pose ordering across the entire dataset, it is not affected by this source

of artificial enrichment. See the Supporting Information for additional analysis of this effect.

Dense models improve pose selection but not affinity prediction

Finally, we evaluate our computationally demanding Dense model on the CrossDocked2020

dataset in Figure 11. The Dense model has nearly twice as many parameters as Def2018

and takes ten times as long to evaluate (Table 1). This extra computation enables a sig-

nificant improvement in pose selection performance, with an average Top1 percentage on

the CrossDocked2020 set of 61.5% compared to 53.7% for the Def2018 model. Interestingly,

individual models perform worse at affinity prediction, with an average R of 0.55 compared
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to 0.58 with Def2018.

Table 4: Effect of using an ensemble of models compared to average of individual model
performance. BP: Best possible fraction of low RMSD poses; Rand: expected fraction of
randomly sampled low RMSD poses.

Train Test Model Evaluation RMSE R AUC Top1 BP Rand

CrossDock CCV Dense
Average 1.55 0.547 0.944 0.615 0.970 0.0321

Ensemble 1.42 0.612 0.956 0.684 0.970 0.0321

CrossDock CCV Def2018
Average 1.47 0.577 0.906 0.537 0.970 0.0321

Ensemble 1.45 0.587 0.914 0.537 0.970 0.0321

General Core Def2018
Average 1.383 0.787 0.943 0.802 0.946 0.135

Ensemble 1.368 0.796 0.946 0.814 0.946 0.135

Refined Core Def2018
Average 1.503 0.720 0.932 0.766 0.946 0.135

Ensemble 1.438 0.749 0.941 0.800 0.946 0.135

An ensemble of models improves performance.

Typically training an ensemble of deep learning models results in a small performance gain.

This is indeed the case for our models, as shown in Table 4 and Figure 11. The ensemble

model predicts the average of the five individual models, each of which was trained using a

different random seed on the same training set. In all cases the ensemble is equal or superior

to the average performance of the individual models. Smaller training sets tend to benefit

more from the use of an ensemble than the larger datasets, with the notable exception of the

Dense model, which had the best gains via an ensemble approach. Our best performance

overall is achieved with an ensemble of Dense models, which has a Top1 of 0.684 and R of

0.612 on the CrossDocked2020 set, compared to 0.413 and 0.419 respectively for Vina.

Discussion

We have presented several grid-based CNN model architectures for affinity prediction and

pose selection and trained and evaluated them using a variety of datasets. The 3D grid

representation has the advantage that it does not require overt featurization (although the

inclusion of additional chemical information may improve performance21) and, since a CNN
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is differentiable, poses can be optimized with respect to the model using standard optimiza-

tion techniques. Our models exhibit competitive performance relative to similar methods

(Table 3), although an exact comparison is complicated by differences in test set selection,

even when the same PDBbind Core set is used. We substantially outperform a popular em-

pirical scoring function, AutoDock Vina. When evaluated on cross-docked poses, our best

model successfully selects a low RMSD pose as its best pose 65% more often than Vina

(0.684 Top1 vs. 0.413).

Consistent with conventional wisdom that machine learning models struggle to extrap-

olate beyond the domain they are trained for, we have shown the difficulty these models

have generalizing. Models trained to predict binding affinity using only crystal structures

will struggle to correctly select low RMSD docked poses (Figure 4), despite performing well

on crystal poses (Figure 2). Using Docked poses and jointly training with pose selection

does not improve affinity prediction performance (Figure 2), but it does make the affinity

prediction model more pose sensitive (Figure 3). Models trained with docked poses can per-

form well at the pose selection task as long as poses are generated using the same method as

during training. However, if the model is integrated into the sampling strategy of a typical

docking routine and is driving the generation of new poses, it will likely fail unless it is iter-

atively trained with counterexamples generated by this sampling strategy (Figure 9). This

strongly cautions that the performance of models trained using crystal poses and affinity

prediction in truly prospective structure-based drug discovery efforts may fall far short of

what is expected from validation set performance.

A significant trend across all our evaluations is that expanding the training set, both with

more data and with more diverse representations of the underlying data, expands the domain

of applicability of the model and makes it more robust to variations in the construction of

the input (e.g., docked vs. crystal or redocked vs. cross-docked poses). We believe our

CrossDocked2020 dataset provides a close approximation of the desired domain of a general-

purpose model for structure-based drug design. Importantly, although the set is large, with
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more than 22 million protein-ligand poses, every ligand is associated with an experimental

structure so labels can be accurately assigned (modulo inconsistencies introduced by cross-

docking). However, we suspect even CrossDocked2020 trained models would struggle if

presented with ligand poses whose geometries were optimized using a different force field

or were docked with a different algorithm. Care should be taken to ensure the prospective

application of a model matches as closely as possible to the training domain.

We have similar concerns about the generalizability of affinity prediction. The substan-

tial performance drop when evaluating affinity prediction using clustered cross-validation

compared to the Core set (Figure 6), the minimal importance of the receptor structure (Fig-

ure 10), and the relative success of affinity prediction even using high RMSD poses (Figure 3)

strongly suggest these models will not generalize well to new chemotypes. Since it is not pos-

sible to augment affinity training sets to the same degree as when training for pose selection,

where additional poses can be generated and labeled, expanding the domain of applicability

of structure-based affinity prediction models remains an open challenge. One possibility is

to use binding affinity data from ligands without a known structure. However, previously we

have shown that training models on such data by simply using the top-ranked docked poses

results in entirely pose-insensitive (i.e. cheminformatic) models.19 A more careful process for

generating putative ligand poses, such as template-based docking,49 may yield better results.

Alternatively, a different input representation, model architecture, or training regime might

force a model to only predict using protein-ligand interaction information,50 although it is

not clear this necessarily results in a more generalizable model as ligand-only information is

embedded in protein-ligand interaction information.

We find there are several subtleties involved in training and evaluating these models.

We were surprised to see a better than random AUC on pose selection using ligand-only

models. Unlike affinity prediction, where cheminformatic models are routinely successful,

pose selection seems like it should be entirely dependent on the receptor structure, and there

should be no relevant information available from the ligand alone. This is in part due to
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the construction of the training set. Some ligands had a higher percentage of low RMSD

poses than others so a model can learn a ‘dockablity’ index for each ligand. This may be a

useful prior to learn since ligands that are inherently more easy to dock, e.g. rigid ligands,

will be scored more confidently, but, if desired, the effect should be able to be eliminated by

resampling the training set so that every ligand has the same ratio of low to high RMSD

poses. This effect is also due to the use of AUC as a metric, which measures how well a

classifier separates positive from negative poses across the entire set of ligands. Typically,

when docking, the goal is to correctly rank poses for the same ligand, and comparing the

scores of different ligands is irrelevant. This intra-target ligand ranking is precisely what the

Top1 metric measures and is a better representation of docking performance. Unfortunately,

the significance of both the AUC and Top1 metrics is highly dependent on the construction

of the test set. For example, although a random classifier has an expected AUC of 0.5,

its Top1 will depend on the average fraction of low RMSD poses available for each ligand.

Conversely, expanding the set with trivial-to-predict high RMSD poses (e.g., ligand poses

that don’t interact with the protein or overlap it completely) will artificially increase the

AUC while leaving the Top1 metric unchanged. Thus, for pose selection, precise comparisons

between methods can only be made if the identical test set is used. As an example of the

difficulty in comparing pose selection performance, consider the PDBbind-based evaluation

of the graph-based model of Lim et al. 26 . This model achieves an AUC of 0.968, which is

higher than any of our PDBbind evaluations, but also exhibits a Top1 of less than 50%,

which is substantial lower than our worse Top1 PDBbind statistic (77%, Figure 5).

In an effort to help standardize pose selection evaluations of structure-based machine

learning models, we provide all of our training and test sets (Table 2) both as standard

SDF/PDB files and in a custom ‘molcache’ format that can be efficiently used via libmolgrid36

(https://github.com/gnina/libmolgrid). Our recommendation is that practitioners train

and evaluate using the full CrossDocked2020 set, as this best emulates real-world usage. How-

ever, if this is too computationally demanding, the ReDocked and PDBbind based sets are
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also available. Future work will explore strategic downsampling of the CrossDocked2020 set.

Note that the purpose of our CrossDocked2020 set is orthogonal to cross-docking benchmark

datasets51 as the goal is not to evaluate docking algorithms, but to provide a standard set

of already generated poses for training, evaluating, and comparing machine learning models.

In all cases, the clustered cross-validation train/test splits should be used, as we have shown

(Figure 6) that using PDBbind Core as a test set results in an over-optimistic evaluation of

performance on new targets. We do not expect our datasets and splits to be appropriate for

every task. For example, our clustered cross-validation splits primarily use target identity

for creating clusters, since our primary concern is the ability of models to generalize to new

targets, but this may result in an undesirable amount of ligand similarity between train and

test sets for some applications. We also purposely retain unequal ratios of low to high RMSD

poses among ligands, resulting in a ligand-specific ‘dockability’ prior. Nonetheless, our hope

is that a standard dataset for structure-based machine learning will aid the development of

more effective models while also illuminating additional improvements that are needed in

such a dataset.

We have shown that 3D CNN models can substantially outperform a conventional empir-

ical scoring function (Vina) at affinity prediction and pose selection, but do not necessarily

generalize beyond the domain they are trained on. To partially address this issue and to pro-

vide a resource for structure-based machine learning models, we created the CrossDocked2020

set of more than 22 million poses. This dataset better approximates the domain of prospec-

tive structure-based drug design where a ligand is docked against a non-cognate structure.

We have deployed models trained on the entire CrossDocked2020 set within the latest ver-

sion of our open source gnina (https://github.com/gnina) deep learning framework for

molecular docking so they can be easily used for pose scoring and minimization.
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