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Abstract

Docking algorithms are an essential part of the Structure Based Drug Design (SBDD) process as they aim to
effectively identify the binding poses of chemical structures at the target site. These algorithms are reliant on
scoring functions that evaluate the binding ability of a ligand conformation. Typically, scoring functions are
designed to predict the binding affinity of various poses at the target site. In this work, we design a novel
approach where the scoring function attempts to predict the Root Mean Square Deviation (RMSD) of a pose
to the true binding pose. We show that a convolutional neural network (CNN) can be trained to learn these
RMSD values with high correlation between predicted and experimental values. Furthermore we show that this
scoring function can improve pose selection performance when used in combination with orthogonal scoring
functions like Autodock Vina.
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Introduction
Computational drug design plays a critical role in re-
ducing time and cost requirements for drug design and
development. One common approach, structure based
drug design [1], utilizes 3-D structures and in silico
methods for predicting if and how compounds bind
at an identified receptor target site. A key element of
these in silico methods are docking algorithms. Such
algorithms traverse the conformational search space of
a ligand to pinpoint the ideal binding orientation of
the chemical structure. Scoring functions are used by
docking algorithms to evaluate the binding ability of
arbitrary poses at the respective protein target. These
functions are used to single out potential active candi-
dates from large chemical libraries (virtual screening).
They are also used to rank different orientations of
the compound based on their binding scores (pose se-
lection). Therefore, the efficacy of docking algorithms
are heavily reliant on the performance on these scoring
function.

Previous methods for protein-ligand scoring vary
from physics based calculations to statistical ap-
proaches. Physically inspired scoring functions [2–4]
are modelled through theoretical knowledge, first prin-
ciples and analysis of experimental data to compute
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binding free energies. Knowledge based scoring func-
tions [5–9] aim to derive statistically important inter-
actions by analysing the frequency of favorable atom-
pair interaction types from large datasets. Empirical
scoring functions [10–15] use terms that are known to
be important to binding and are weighted via statis-
tical learning on experimental data. These methods
are limited by our knowledge of relevant forces and
features involved in molecular bonding.

Machine learning based models, on the other hand,
are not necessarily bound by such constraints and
have the potential to learn non linear relationships
and capture binding features that are hard to model
explicitly[16]. This has become an increasingly popu-
lar approach to model protein-ligand scoring functions.
Random forests, support vector machines, and neural
networks are some of the algorithms that have been
previously used in this context[10, 17–25]. They may
take as input the same descriptors that are used in
empirical models, such as electrostatic interactions or
molecular interaction fingerprints, which can limit the
expressiveness of the model.

Deep learning [26] algorithms are an extension of
neural networks that contain multiple hidden layers.
These algorithms have been at the frontiers of research
in natural language processing [27] and image process-
ing [28]. Advances in deep learning have seen the evolu-
tion of architectures that can efficiently analyze images
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and graphs. These methods require minimal feature
engineering on the inputs to learn their parameters
from the data[29]. With the ever expanding availability
of 3D structural data[30], adaptation of these architec-
tures for protein-ligand scoring is a natural extension
to maximize expressiveness and performance.

Convolutional neural networks (CNNs) [26] are deep
learning architectures composed of multiple layers of
convolutional filters. These algorithms are used for im-
age recognition, classification, segmentation and vari-
ous other computer vision tasks. These spatial filters
identify essential features in images that provide infor-
mation specific to the task. The complexity of features
identified increase as we go further up the hierarchy of
convolutional layers. The availability of 3D structural
information enables the usage of CNN architectures for
this purpose via voxelized representations. 3D repre-
sentations allow for implicit spatial relationships to be
extracted by the CNN model[31]. Previous works have
used this method to predict the binding affinity[32];
classify actives and in-actives[33] as well as to detect
protein target sites[34].

Graph convolutional networks (GCNs) [35] are deep
learning architectures that are primarily designed to
operate on graphs. These use spatial convolutional fil-
ters as well to analyze all parts of the graph. A graph
is treated as set of node vectors and edges that can
easily be represented by vector and adjacency ma-
trices. Convolutional operations are applied to local
neighborhoods of each node at every level of the net-
work to learn suitable weights for the task. These al-
gorithms have been previously applied on molecular
graphs for learning molecular representations[36, 37],
structure based virtual screening[38] and for classifi-
cation of protein structures[39, 40]. While GCNs treat
pairwise interactions explicitly, they are typically not
able to model all spatial relationships that can exist in
the structure.

Most protein-ligand scoring functions until now aim
to evaluate ligand orientations by either predicting the
binding affinity or discriminating between active and
inactive poses. In this paper we explore a novel ap-
proach of learning the Root Mean Square Distance
(RMSD) of arbitrary poses to the true binding pose.
We call this scoring function RMSDScore. We use a
CNN for this purpose as it enables the calculation of
spatial relationships that would be required for such a
scoring function. Our initial hypothesis was that such a
non-physical scoring function should have a smoother
energy landscape that will enable more effective con-
vergence and sampling during docking. In investigat-
ing this hypothesis, we provide the following contribu-
tions:

• We train a convolutional neural network to pre-
dict the RMSD of random poses to the true bind-
ing pose using fully differentiable atomic grids[41]
and a process of iterative training. We attain a
significant correlation between predicted and ex-
perimental values indicating that the RMSD is a
learnable value.

• We show that this scoring function can be used
to drive pose sampling and docking to get good
poses. Furthermore, we show that this function
can also be used for optimization of ligand con-
formations. However, we do not observe that the
scoring function results in a smoother, less frus-
trated energy landscape.

• Nonetheless, we show that this scoring function
can be used to effectively perform pose selection
when applied in combination with an orthogonal
scoring function like Autodock Vina[15].

Methods
Data and Representation
The PDBbind database[42] contains a comprehensive
collection of binding affinities for protein-ligand co-
crystal structures present in the Protein Data Bank. It
thus provides an high quality list of complexes that are
present in PDB for analysis. The PDBbind database
contains a subset of structures of better quality known
as the refined set. This subset only contains structures
that have an overall resolution better than or equal
to 2.5Å and contain only non-covalently bonded com-
plexes. We use the refined subset of PDBbind 2016 for
our experiments.

For generating the dataset we redocked ligands of the
PDBBind refined set using the Vina scoring function
and the smina [10] tool. In addition, locally optimized
crystal poses were added to the dataset to ensure at
least one good pose (poses with an RMSD less than 2Å
from the crystal pose) per complex was present in the
dataset. Poses were labelled using the RMSD from the
crystal pose using the obrms module in Openbabel[43].
To avoid over-optimistic results we performed clus-
tered cross-validation [44] by clustering the complexes
into 3 folds based on protein similarity. This was done
so that the test sets did not contain targets similar to
those in the training set.

The molecules were set onto a cubic grid for input.
We used a 0.5Å resolution and 24Å edge length re-
sulting in a cube of size 48x48x48. Atom types from
smina were used to represent the different types of
heavy atoms present in the complex (e.g., oxygens
and nitrogens are further classified based on hydrogen
bonding propensity and carbons are classified based
on aromaticity). These were taken as the fourth di-
mension, analogous to color channels in an image, of
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Figure 1 CNN Model Architecture Model architecture trained, it uses a voxelized grid of gaussian densities as input and is trained
to minimize Euclidean Loss.

the atomic grid. We used the MolgridDataLayer de-
scribed in [33, 41] for the atomic gridding. This layer
also has the ability to do data transformations like ro-
tations and translations on the fly during training. The
atomic density is represented on the grid g(d, r) using
the following equation:

g(d, r) =


e−

2d2

r2 0 ≤ d < r
4

e2r2 d
2 − 12

e2rd + 9
e2 r ≤ d < 1.5r

0 d ≥ 1.5r
(1)

Here d represents the distance of the grid point from
the center of the atom and r is the radius of the atom.
This provides a continuous density distribution of the
atom from the atom center to 1.5 times its radius.

Model Training
The CNN model used is shown in Figure 1. Our cus-
tom fork of Caffe [45] was used to train the model.
Nesterov Accelerated Gradient Descent [46] was used
as the optimizer with learning rate = 0.01, momen-
tum = 0.9 and weight decay of 0.001. Batches of 50
samples were used at a time and the euclidean loss
between predicted and true RMSD values were mini-
mized. MolgridDataLayer was used for on-the-fly-data
augmentation through application of random rotations
and translations.

Minimization
With the usage of atomic grid, the gradients accumu-
lated from backpropogation can be propogated fur-
ther to the contribution of each individual atomic lo-
cation. These gradients can thus be used to optimize
the molecule accordingly to reach a local optima of
the scoring function. The Broyden Fletcher Goldfarb
Shanno algorithm (BFGS) algorithm, a multivariate
optimization technique, as implemented in gnina, was
used for optimization of the poses. The partial deriva-
tion of the scoring function f with respect to each in-
dividual atom can be easily calculated using the chain

rule in the following manner:

∂f

∂a
=

∑
g∈Ga

∂f

∂g

∂g

∂d

∂d

∂a
(2)

Here g refers to the atomic grid of a single atom type
and Ga refers to the set of grids for all atom types. The
first part of the chain rule is calculated via backpro-
pogation and the remaining can easily be found using
the density formula. (1).

Iterative Training
Since all the poses in the dataset were generated by
docking using smina, it contained only viable poses
that had no steric hindrance or instability. This bias in
the dataset leads to bad performance in optimization
and generation of poses by the CNN model. Therefore,
we employed a strategy of iterative training[47] to sen-
sitize the model to poses that are not typical of the
results of docking, such as those with high steric hin-
drance. This is done by adding counterexample poses
optimized by the model whose correct labels differ sig-
nificantly from their predicted labels to the training
set and retraining the model. We repeated this itera-
tive procedure twice to get the final model. In the last
iteration stratified sampling was done over a range of
RMSD values to feed a uniform distribution of poses at
different distances from the crystal pose to the model.

Results and Discussions
We evaluated the performance of the final RMSDScore
model after iterative training in pose generation, pose
selection and ligand optimization. The performance
was compared to the Autodock Vina baseline and a
CNN pose classification model (CNNScore)[31] that
was trained to classify between low RMSD (<2Å) and
high RMSD (>Å) poses using a cross entropy loss.
As with the RMSD model, the CNNScore model was
trained with the iterations of counterexample genera-
tion. Evaluations are performed by merging the three
test folds form clustered cross validation.
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Figure 2 Initial Results test set results(left) and minimization(right)
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Figure 3 1st iteration results test set results(left) and minimization(right)
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Figure 4 2nd iteration results test set results(left) and minimization(right)
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Training Results
Three iterations of model training and subsequent
minimization of docked poses were performed to get
the final model for docking and pose selection. Figures
2,3,4 show the results of training and minimization of
poses at each step of iterative training. Each iteration
expands the training set with ligand poses generated
using the previously trained model, resulting in dif-
ferent distributions of RMSD values. The histograms
display the change in RMSD with respect to the true
binding pose after optimizing a pose in the training set
using the current iteration’s model. A change greater
than zero indicates that the optimized pose is farther
from the correct binding pose (i.e., ‘optimizing’ the
pose actually made it worse). These optimized, yet far
from optimal, counterexamples are added to the train-
ing set for the next iteration. As more counterexamples
are added, the distribution of the RMSD change shifts
left, as is desired, although the average change does not
go below zero (Table 1). Each iteration also results in
an improvement in correlation between predicted and
true values at the expense of worsening absolute er-
ror. The inclusion of stratified sampling when training
the final model results in a Spearman correlation of
0.768 which indicates that RMSD is a learn-able value
that could potentially be used for protein-ligand scor-
ing and pose optimization.

Figure 5 Score Distributions Distributions of RMSD and Vina
scores shown as isolines for good (blue) and bad (red) poses

The isoline plot in Figure 5 displays the distributions
of RMSD and Vina scores of poses in the test set of all
folds. We can see from the marginal histograms that
the RMSDScore provides a better separation between

good poses and bad poses as compared to the Vina
scores. This is an indication that the RMSDScore has
a potential to improve the pose scoring performance
over the Vina baseline.

Pose Optimization
Here we evaluate the ability of the final RMSD trained
model to locally optimize poses compared to the pre-
viously described CNNScore model. Docked poses for
the complexes in the test set were optimized using the
BFGS algorithm on the accumulated atomic grid gra-
dients. The change in RMSD after optimization for
poses that were initially within 4 Angstrom of the
crystal structure pose has been plotted in the Fig-
ure6. The performance of both CNNScore and RMS-
DScore in minimization can be compared in the fig-
ure. Counter to our initial hypothesis that an RMSD
trained model would provide an energy landscape more
amenable to pose optimization, the RMSD model does
not do better than the CNNscore model. Additionally,
both models exhibit a strong preference for generat-
ing only a small change in model quality, suggesting
the optimization process quickly converges to a local
optima. The mean and standard deviation of change
in RMSD from the true pose is reported in Table 1.
For both models, the variance in the change in pose
quality increases as the RMSD of the initial pose in-
creases, indicating that less ideal poses are subject to
more movement. However, neither method results in
an average improvement in pose.

Figure 6 Minimization Results Change of RMSD to the true
pose after optimizing poses that are within 4Å of the true
pose using both the RMSDScore and CNNScore models.

Pose Generation
Here we evaluate the ability of the final RMSD trained
model to globally optimize poses compared to the pre-
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Figure 7 Pose Generation Results Number of Best Poses(left) and Top Ranked Poses(right) below 2 Angstrom from crystal binding
pose

Table 1 Optimization Results. Mean and standard deviation of
change in RMSD after optimization

CNNScore RMSDScore
All Poses 0.09±0.94 0.22±1.07

Initial Pose <2Å 0.27±0.60 0.45±0.86
Initial Pose between 2Å and 4Å 0.02±1.03 0.14±1.13

viously described CNNScore model. Global optimiza-
tion is performed using the iterated local search ap-
proach, as implemented in gnina, which is based off of
Autodock Vina [15]. This algorithm combines Monte
Carlo sampling steps with local optimization to reach
the global minimum. At each step, random perturba-
tions are performed along the degrees of freedom of the
molecule pose. This is followed by local optimization
using BFGS. The newly generated pose is accepted if
it satisfies the Metropolis criteria. The new orientation
always satisfies the criteria if it has a better score as
compared to the previous pose. If it has a worse score,
it is accepted with a probability that is dependant on
the difference of scores between the two poses, with
smaller differences having higher probabilities.

We evaluated the effectiveness of RMSDScore at
pose generation on a single test fold. We redocked com-
pounds to their cognate protein structure using a vary-
ing number of Monte Carlo steps. Figure7 shows the
result of pose generation for 1205 complexes present in
the test set. We plot both the trend for sampling low
RMSD (< 2Å) poses and for correctly ranking these
poses as the amount of Monte Carlo sampling is in-
creased. In all schemes we see that the number of low
RMSD poses sampled increases with the amount of
sampling, This shows that the RMSD scoring function
can be used to drive pose sampling, but using RMSD-
Score exclusively demonstrates the worst overall per-
formance. If RMSDScore is used to guide the Monte

Carlo sampling with Vina used for the final pose refine-
ment then a small improvement over Vina is initially
observed. However, after a certain number of steps the
Vina performance still remains the best. Furthermore,
there is a high time requirement to dock poses with
CNN models due to multiple forward and backwards
passes during optimization. This makes it infeasible to
carry out large numbers of sampling steps using the
model. Thus, values only up to 100 Monte Carlo steps
are reported for the RMSD scoring function.

Figure 8 Pose Ranking The percentage of complexes with
good poses that have a binding pose ranked as Top-1, Top-3
and Top-5 by different scoring methods

Pose Selection

Finally, since RMSDScore does not outperform Vina at
pose optimization or sampling, we evaluate its ability
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to correctly select low RMSD poses from Vina gener-
ated docked poses. Vina docked poses from the test
set of all the models were ranked and the pose se-
lection performance was compared. In addition, poses
were also ranked using the average of Vina and RMSD-
Score. Figure 8 reports the results of pose ranking and
selection results. The CNNScore function is the best
at ranking top-3 and top-5 with approximately a 4-5%
improvement over the Vina baseline. The RMSDScore
function is worse than Vina at ranking the top pose
but catches up to Vina for top-3 and outperforms it
in ranking top-5. The average of the two scores, how-
ever, is much better at top pose selection with a 4-5%
improvement over the Vina baseline. This shows the
potential that RMSDScore has to improve orthogonal
scoring functions like Autodock Vina.

Conclusions
In this work, we describe a novel approach for protein-
ligand scoring using the RMSD of arbitrary poses from
the true binding pose. We trained models to predict
this RMSD with a correlation coefficient of 0.768 on
the test set, demonstrating that RMSD is a learnable
property of a pose. These models provide a greater
separation between the distribution of low RMSD and
high RMSD poses relative to Autodock Vina. We show
that this scoring function can be used for pose opti-
mization and pose generation, but is subject to time
constraints and does not perform better than Vina at
these tasks. However, when the RMSDScore function
is used in combination with Autodock Vina it improves
top pose selection performance.

Thus we can conclude that models can be trained
to predict RMSD and have the potential to improve
protein-ligand scoring as indicated by Figure 5. How-
ever, they are not yet useful enough to guide pose rank-
ing except when used in tandem with another indepen-
dent scoring function.
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