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We propose a method to calculate the Hubbard U parameter in GGA+U or the α pa-

rameter in the atomic self-interaction correction (ASIC) scheme for transition-metal

d orbitals by mapping the self-interaction correction (SIC) onto GGA+U, which is

suitable for atom-centered basis sets. SIC can offer a substitute for the Hubbard

U parameter in GGA+U, although its usage should be limited considering the dif-

ferences between GGA+U and SIC. Approximations to reduce computational cost

for self-interaction (SI) corrected localized orbitals are deduced from the properties

of the unitary transformation in SIC and the atomic likeness of molecular orbitals

dominated by transition-metal d orbitals, and the parameters are obtained from the

approximate forms of the localized orbitals. First-row transition-metal complexes

were tested, and the results are comparable to experimental measurements and pre-

vious calculations. Our method does not guarantee better results than those of

the linear response method or hybrid functionals, but mapping from SIC suppresses

overestimation of the U parameter to obtain proper geometries and energies for Fe-

porphyrin-imidazole, Fe-porphyrin-CO and FeO2 modeling.
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I. INTRODUCTION

Transition-metal complexes have a wide range of applications, but the development of

analysis tools can enhance their usage. These complexes have been widely used as catalysts,

photosensitizers, and phosphors, and they can be used in the medical field1–5 and environ-

mental energy science.6,7 However, transition-metal complexes with a huge number of atoms

(e.g., myoglobin or hemoglobin) are difficult to analyze theoretically. The advancement of

computational science is crucial to overcome such an obstacle. The development of low-cost

algorithms is the best option if high-end computer facilities are not expected to be available.

Transition-metal compounds have influenced the development of quantum calculation

methods. Density functional theory (DFT), first proposed by Hohenberg, Kohn, and Sham,

has been quite successful in local density approximation (LDA) or generalized gradient ap-

proximation (GGA) applications. GGA provides good estimations of the geometries and

energetics of molecules on atom-centered basis sets such as Gaussian orbital basis sets and

linear-combinations-of-pseudo-atomic-orbital (LCPAO) basis sets.8–10 Although less accu-

rate compared to coupled cluster methods or complete active space self-consistent field

methods, DFT has the advantage of being less costly while providing reasonable accuracy

levels.10,11 However, traditional DFT often produces inaccurate results for molecules with

transition-metal or rare-earth atoms11–19 because the self-interaction (SI) errors are consid-

erable due to the d or f electron localization. Gradient correction of GGA cannot effectively

reduce the SI errors because the traditional DFT is based on the delocalized electron pic-

ture. On the other hand, SI errors in transition-metal or rare-earth complexes can be

eliminated by a method based on the localized electron picture. Various methods such as

hybrid GGA20,21 and GGA+U22 have been proposed to merge the localized electron picture

and the delocalized electron picture23 and to correct SI errors.

GGA+U is one of the most commonly used methods for transition-metal complexes. It is

a variation of LDA+U, which is LDA plus a correction composed of a Hubbard (mean-field

or Hartree-Fock) term and a double-counting (DC) term,24

ELDA+U [ρσ(r), {nσ}] = ELSDA[ρσ(r)] + EHubbard[{nσ}] + EDC [{nσ}]

where ELSDA is the LSDA (local spin density approximation. LDA with spin discrimina-

tion. In GGA+U, this is replaced by GGA.) functional and ρσ(r) represents the electron

2



density for spin σ. The density matrix nσ can be defined based on the Green function

matrix on a localized orbital basis set24 or from the local projections on Kohn-Sham (KS)

orbitals.25 The Hubbard term and the DC term in LDA+U have been determined by various

formulations.24,26 A popular approach is the simplified LDA+U of Dudarev et al..27

ELDA+U [ρσ(r), {nσ}] = ELSDA[ρσ(r)] +
1

2

∑

I

UI

∑

σ

[
∑

m

nσ
Imm′ −

∑

mm′

nσ
Imm′nσ

Imm′

]

V LDA+U = V LDA +
∑

I

UI

∑

mm′

[
1

2
δmm′ − nσ

Imm′

]
P̂ σ

Imm′ . (1)

In this equation, I ≡ {inl} (i: atom index, n: principal quantum number, and l: azimuthal

moment number), and P̂ σ
Imm′ is the projector on {Imm′} orbital (m,m′: magnetic moment

indices). In addition, UI , termed the on-site Coulomb interaction parameter or the Hub-

bard U parameter, was often determined empirically before linear response approaches were

developed. It is a spherically averaged parameter in this version of LDA+U, which provides

precise calculations if coordination environments are close to spherical symmetry. Because

the correction terms in LDA+U incur only a low additional computational cost, LDA+U

(or GGA+U) has been considered as one of the most efficient approaches in descriptions of

large-scale correlated systems.25

Applying to atom-centered basis sets can increase the efficiency of LDA+U calculations.

Large-scale O(N) LDA+U calculations can be realized on atom-centered basis sets,25 mean-

ing that very large transition-metal complexes can be analyzed by O(N) GGA+U. However,

there has been some controversy with regard to how the orbital occupations are defined

on atom-centered basis sets.28 Han et al. resolved this problem by introducing a ‘dual’

representation scheme.25

P̂ σ
Imm′ =

1

2
(| ˜Im′σ〉〈Imσ| + |Im′σ〉〈Ĩmσ|) (2)

where | ˜Im′σ〉 =
∑

Jm′ S
−1
Im,Jm′ |Jm′σ〉 and SIm,Jm′ is the overlap matrix. The dual represen-

tation obeys the sum rule for the total number of electrons.25

In terms of accuracy, the improvement of the linear response method has enabled a

precise estimation of the Hubbard U values. Pickett et al. was the first to introduce a linear

response approach with constrained DFT.28 It starts with an energy minimization equation,

3



E[{qI}] = minρ(r),αI

{
E[ρ(r)] +

∑

I

αI(pI − qI) − µ

(∫
ρ(r)d3r − N

)}

where E[ρ(r)] is the LDA+U functional, with the other variables being constraint terms. N

is the total number of electrons, and pI is the population on a group of orbitals with index

I(≡ {inl}),
pI =

∑

σm

nσ
Imm

and the Lagrange multipliers αI can be interpreted as potential shifts for constraints of the

population on I, pI = qI .
28 Slight change of qI can give the formula of UI in the differential

definition,

UI =
∂2E[{qI}]

∂q2
I

= −∂αI

∂qI

. (3)

However, the constrained total energy involves a kinetic energy part28 that causes inaccuracy

during the U value calculations because the Hubbard U parameter is originally defined as

having only the potential energy contribution. Cococcioni and de Gironcoli29 subtracted the

influence of the kinetic energy by adding so-called noninteracting KS term to Eq. (3),

UI =
∂2E[{qI}]

∂q2
I

− ∂2EKS[{qI}]
∂q2

I

where

EKS[{qI}] = minρ(r),αI

{
EKS[ρ(r)] +

∑

I

αKS
I (pI − qI) − µ

(∫
ρ(r)d3r − N

)}

or a response function form after Legendre transformation

UI = (χ−1
0 − χ−1)II

where χIJ = ∂pI

∂αJ

, χ0
IJ = ∂pI

∂αKS

J

They successfully applied this method to the transition-metal oxide solids and obtained

greater accuracy levels when estimating the electronic and structural properties compared

to those in earlier works.29 The linear response approach has also been successful in cal-

culations of pressure dependencies in the geometry30 and spin states31 of transition-metal-

containing perovskites and in estimations of the spin-state energetics in transition-metal

complexes.16,22,32
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Nevertheless, the linear response method also has its limits. For instance, it can severely

underestimate U values in closed-shell systems26,33 and can overestimate them for low-spin

states.16 Zhao et al. indicated that these limits might be related to the local nature of the

correction term in LDA+U34 although using ultrasoft pseudopotentials could affect the U

values.35 On the other hand, the number of basis wavefunctions for the density response must

be substantial in order to resolve density changes. For atom-centered basis functions, it is

difficult to increase the number of basis orbital functions sufficiently because the Hubbard U

parameters for multiple-ζ orbitals or polarization orbitals are not clearly defined25 and many

basis orbital functions lead to numerical instability due to the non-orthogonality arising in

such cases.10 To the best of our knowledge, no one has published successful application of

the linear response method to an atom-centered basis set as precise as that to a planewave

basis set. Another method is necessary to estimate the U parameter in an atom-centered

basis set.

Merging the localized electron picture and the delocalized electron picture is not the only

solution available when dealing with SI errors. Self-interaction correction (SIC), introduced

by Perdew and Zunger, refers to the direct subtraction of SI terms (from the LSDA or the

GGA functional), representing a straightforward form of SIC to atoms in the early stage

of DFT.36 Two problems can arise when using the first version of the SIC method: non-

orthogonality of the KS eigenfunctions and inconsistent results with regard to the symmetry

of the system.36 Non-orthogonality can easily be solved,37 but the problem of inconsistency

in the system requires much work, which long remained unexplored until research by Lin et

al., who found several breakthroughs.38–40 They defined what is known as ‘localized orbitals’

φσ
j , distinguished from (canonical) KS orbitals ψσ

k , and linked the localized orbitals with

KS orbitals by unitary transformation ψσ
k =

∑
j Mσ

kjφ
σ
j , leading to the construction of the
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symmetry-consistent Hamiltonian.37

Hσ
k ψσ

k =
∑

j

ǫσ
kjψ

σ
j

Hσ
k = H0 +

∑

j

Mσ
kjv

φ,σ
SIC,j

φσ
j

ψσ
k

where vφ,σ
SIC,j = vCoulomb(ρj; r) + vσ

XC(ρ↑
j , 0; r)

vCoulomb(ρ; r) =

∫
dr′

ρ(r′)

|r − r′| ,

vσ
XC(ρ↑, ρ↓; r) =

δEXC [ρ↑, ρ↓]

δρσ(r)
,

and ρσ
j is defined as |φσ

j |2. Here, vCoulomb is the electrostatic potential (also known as the

Hartree potential), and vσ
XC is the exchange-correlation potential. Their formulation pushed

the boundary of SIC usage out of atomic calculations and has since been applied to several

solid-state systems.37

Aside from accuracy issues, it is important to reduce the large computational cost of SIC.

Zunger41 and Rieger and Vogl42 proposed combining pseudo-potentials with SIC, where

the complicated SIC energy minimization procedure is compacted into pseudo-potential

generation,42 but the SIC contribution comes only from the core part, and neglecting the

valence part does not reduce the computational cost much.37 Vogel and colleagues43,44 include

the valence SIC contribution by approximating the valence wavefunctions as atomic-like

functions, which is the origin of the name of this method, ‘atomic SIC’ (ASIC). ASIC

replaces the localized orbitals φσ
j with atomic orbitals Φσ

Im.

∑

j

vφ,σ
SIC,jP̂

φ,σ
j →

∑

Im

vΦ,σ
SIC,Im P̂Φ,σ

Im

vΦ,σ
SIC,Im = vCoulomb(ρ

Φ
Im; r) + vσ

XC(ρΦ,↑
Im , 0; r)

ρΦ,σ
Im = pσ

Im|Φσ
Im|2

where pσ
Im is the occupation of the atomic orbital Φσ

Im,

pσ
Im =

∑

k

fσ
k pσ

Im,k. (4)

Here, fσ
k is the occupation number of the KS orbitals ψσ

k and pσ
Im,k = 〈ψσ

k |P̂Φσ

Im|ψσ
k 〉. Fil-

ippetti and Spaldin45 improved this, introducing a more efficient and more accurate ASIC

potential by replacing the non-local operator P̂Φ,σ
Im with pσ

Im and applying a relaxation effect
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of the eigenvalues through multiplication by 1/2. In addition, Pemmaraju et al.37 extended

the use of ASIC by replacing the factor 1/2 with the parameter α.

∑

Im

vΦ,σ
SIC,ImP̂Φ,σ

Im → α
∑

Im

vΦ,σ
SIC,Impσ

Im

In this case, α must be less than or equal to 1 (the one-electron limit), and it has been

determined empirically as 1 or 1/2 (to the best of our knowledge), although polar covalent

bonding can cause α to deviate from 1 or 1/2. Naturally, ASIC can be applied to transition-

metal systems, as molecular orbitals (MOs) from d electrons are often atomic-like orbitals

and because most successful applications of ASIC deal with semi-core d orbitals.37

Although ASIC and LDA+U have been developed independently, the formulations of

both methods are equivalent to each other. Given that both methods adopt atomic orbitals,

it is not difficult to prove the equivalence between ASIC and LDA+U using analogous

expressions for atomic orbital energies.37 After the density matrix nσ
Imm′ is diagonalized, the

density functional of the simplified version of LDA+U [Eq. (1)] becomes

ELDA+U = ELSDA +
1

2

∑

I

UI

∑

σm

[
nσ

Im − (nσ
Im)2

]

where nσ
Im are the eigenvalues of the density matrix. Note that nσ

Im = pσ
Im if the dual

projector [Eq. (2)] is used with the Mulliken population scheme. From this functional, the

following form of the atomic orbital energy is gained:

ǫLDA+U
Imσ =

∂ELDA+U

∂nσ
Im

= ǫLSDA
Imσ + UI

(
1

2
− pσ

Im

)
. (5)

The counter part for this in ASIC37 is

ǫASIC
Imσ = ǫLSDA

Imσ − αpσ
Im〈Φσ

Im| vΦ,σ
SIC,Im |Φσ

Im〉. (6)

Comparing Eqs. (5) & (6) leads to

pσ
ImUI = αpσ

Im〈Φσ
Im| vΦ,σ

SIC,Im |Φσ
Im〉

if the shift ŪI/2 in Eq. (5) is ignored.46 This equation should be rearranged because UI must

be a parameter averaged over index m. Furthermore, pσ
Im should be the weight in averaging,

consistent with the spirit of SIC which counts only occupied states. Thus, it is necessary to
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replace UI in the equation above with UIm to obtain

UI =

∑
σ,m pσ

ImUIm∑
σ,m pσ

Im

= α

∑
σ,m pσ

Im〈Φσ
Im| vΦ,σ

SIC,Im |Φσ
Im〉∑

σ,m pσ
Im

. (7)

The parameter α can be obtained from the relationship between the φ orbitals and the Φ

orbitals. Thus, it is possible to estimate α corresponding to the transition-metal d orbitals

if one finds an approximate form of the localized orbitals φ for the d orbitals. In such case,

an approximate U value can be obtained from the above formula. This U value does not

coincide with the original meaning of the Hubbard U parameter, but the one-electron limit

(α = 1) reduces the probability of overestimation. The methodology section explains how

the localized orbitals φ can connect with the atomic orbitals Φ and how suitable the U values

from SIC are to molecules calculated within GGA on an atomic orbital basis set.

In this paper, we propose a method to estimate the Hubbard U parameter or the α

parameter for a transition-metal d orbital by exploiting the relationship between GGA+U

and ASIC. This method will be useful for DFT calculations on atom-centered basis sets which

have advantages of efficiency and an intelligible atomic analysis. Some approximations in

this method are justified due to the characteristics of SIC for transition-metal complexes.

It is shown that its application to simple molecules after describing the implementation

procedure and computational details. From test results on simple molecules, the proposed

method is assessed by comparing its results with those of the linear response method, and

the limitations of the proposed method are discussed. Finally, suggestions for improvement

are offered before summarizing the paper.

II. METHODOLOGY

A. Availability of the Hubbard Parameter Using SIC

The previous section described how the parameter U in GGA+U is closely related to the

parameter α in ASIC, leaving the question of how similar U values estimated by SIC are

to the original meaning of U . The atomic orbital SI energy can be decomposed into the

Hartree electrostatic energy (the Coulomb term) and the exchange-correlation energy (the

XC term). Likewise, the screened on-site Coulomb interaction or the Hubbard U parameter
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can be decomposed into the bare Coulomb energy of pure atomic orbitals (identical to the

Coulomb term in the SI expression) and the renormalizing terms of the exchange effect,

the screening effect, and the orbital relaxation effect. One example of this is the expression

of Solovyev and Dedrichs47 although they ignored the exchange effect. The renormalizing

terms in the expression for the Hubbard U are partially equivalent to the XC term in the

SI expression, especially for molecular calculation within GGA. GGA provides the exchange

effects and the screening effect under the charge-neutrality condition, making it suitable for

molecules. The orbital relaxation effect is an analogy to the slight delocalization caused by a

change of the atomic orbital if one replaces the atomic orbital Φ with the SIC localized orbital

φ during the calculation of the atomic SI energy. The renormalizing terms in GGA+U have

analogical counterparts in SIC with GGA. Hence, SIC can be used to estimate a substitute

of the Hubbard U parameter on account of the similarity and equivalence between GGA+U

and ASIC.

Of course, the use of substitute U parameters should be limited. Because the original

meaning of the Hubbard U parameter includes the possibility of charge excitation in Mott

insulators,48 GGA+U is established to manage unoccupied states as well. On the other hand,

SIC (or ASIC) considers only occupied states, meaning that SIC cannot consider occupation

changes caused by excitation or the influence of unoccupied states. Thus, the substitute U

value obtained from SIC should be used when a molecular system has a sufficiently large

HOMO-LUMO gap or when the system is in a stable or a metastable state. Calculation

of the ground state of the molecular system requires only the large HOMO-LUMO gap

condition, but the excited states to be calculated require metastability as well. Therefore,

the U parameter by SIC is available if the objective state of the complex system is stable

and has a HOMO-LUMO gap of the order of 1 eV (usually larger than thermal fluctuations).

B. Assumptions of the Proposed Method

This study considers calculations for transition-metal complex molecules within GGA+U

on an atom-centered basis set. Calculations based on an atom-centered basis set are known

to have a limit of accuracy due to nonorthogonality10 in comparison to planewave based

calculations, which means that the parameters U and α calculated on an atom-centered

basis set frequently do not need to be as precise as when they are calculated on a planewave
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basis set. This tolerance with regard to accuracy allows approximations for estimations of the

parameters α and U instead of a rigorous calculation. MOs dominated by transition-metal

d orbitals remain atomic-like unless they are considerably hybridized or widely conjugated,

which can be satisfied when each transition-metal atom is isolated from the other transition-

metal atoms. Here, ‘atomic-like’ means that the MOs almost hold the symmetries of the

transition-metal d orbitals (the MOs do not need to be confined in an atom). The atomic

likeness can be a key to the formation of suitable approximations.

Because the full calculation of SIC incurs a large computational cost and is not feasible,

an approximation is necessary to obtain the localized orbitals φ for estimations of the pa-

rameters U and α. The φ orbitals related to transition-metal d orbitals are not far from

the atomic orbitals Φ if the MOs corresponding transition-metal d orbitals are atomic-like.

According to the ligand field theory, these MOs depend on the ligand coordination. Ac-

cordingly, it is assumed here that if the atomic orbitals Φσ
I of a transition-metal atom I are

determined by ligand coordination (for example, dx2 − dy2 , dxy, dz2 , and two dπ’s for square

pyramidal coordination,16,49) an atomic orbital Φσ
Im has a corresponding localized orbital

φσ
j in SIC, in one-to-one correspondence. One must reconstruct the atomic Φσ

I orbitals in

accordance with the ligand coordination because the original atomic orbitals, i.e., the Φ0
I

orbitals provided by DFT packages), are constructed in an independent atom.

A clue to another approximation can be found from the unitary transformation in SIC

(transformation from localized orbitals φ to canonical KS orbitals ψ, or vice-versa), which

satisfies the sum rule
∑

j

|Mσ
kj|2 =

∑

k

|Mσ
jk|2 = 1 (8)

as a property of unitary transformations. The populations of KS orbitals projected onto

localized orbitals also satisfy a sum rule in a form similar to that of Mσ
jk,

∑

j

p̃σ
j,k =

∑

k

p̃σ
j,k = 1 where p̃σ

j,k = 〈ψσ
k |P̂ φ,σ

j |ψσ
k 〉

where the φ orbitals are obtained from SIC. In fact, one can easily prove that

p̃σ
j,k = |Mσ

kj|2,

which suggests that the unitary transformation is related to the orbital occupations. At this

point, the unitary transformation can be written as

Mσ
jk = (p̃σ

j,k)
1/2 exp(iθσ

jk). (9)
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where exp(iθσ
jk) is a phase factor. Given that the arguments here are restricted to molecular

calculations, Mσ
jk can be constrained to real numbers because the eigenstates in the non-

periodic boundary condition can be real wavefunctions. Thus, we can set exp(iθσ
jk) = 1 or

-1.

C. Main Approximations

The starting point is to approximate p̃σ
j,k in Eq. (9) because the exact estimation of

p̃σ
j,k means full calculation of SIC. We assume that if a localized orbital φσ

j has one-to-one

correspondence with an atomic orbital Φσ
Im, p̃σ

j,k ∝ fσ
k pσ

Im,k, where fσ
k comes from the fact

that a localized orbital φσ
j (SI corrected orbital) stems from occupied orbitals. Recall that

pσ
Im,k is obtained from Φσ

Im. Because the sum rule (8) must be satisfied,

p̃σ
j,k ≈ fσ

k pσ
Im,k/p

σ
Im

due to the definition of pσ
Im [Eq. (4)]. Thus, the unitary transformation (9) is approximated

as

Mσ
jk ≈ 1√

N

(
fσ

k pσ
Im,k

pσ
Im

)1/2

exp(iθσ
jk), (10)

where N is a normalization constant. Remember that this equation holds only if MOs are

atomic-like and the Mulliken population scheme with the dual projector [Eq. (2)] should

be used for the calculation of pσ
Im,k to satisfy the sum rule (8) if Φσ

Im orbitals are not

generally orthogonal. Applying Eq. (10), one can obtain φ orbitals from the above unitary

transformation,

φσ
j =

∑

k

(Mσ)∗jkψ
σ
k ≈ (1/

√
N)

∑

k

(
fσ

k pσ
Im,k

pσ
Im

)1/2

exp(−iθσ
jk)ψ

σ
k . (11)

Once the localized orbitals φ are obtained, to estimate the parameter α, it is necessary to

introduce the concept by which α varies for different orbitals while ASIC uses an averaged

α. The SIC energy of a localized orbital φσ
j can be decomposed into the SIC energy levels

of Φ atomic orbitals.

∑

Jm′

αJm′,jp
σ
Jm′〈Φσ

Jm′ | vΦ,σ
SIC,Jm′ |Φσ

Jm′〉 = 〈φσ
j | vφ,σ

SIC,j |φσ
j 〉.

Here, αJm′,j can be interpreted as a coefficient of each SIC energy level for Φσ
Jm′ , and αJm′,j

corresponds to UJ . In addition, a portion of the right-hand side corresponding to the term
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with αJm′,j on the left-hand side can be approximately qj,σ
J,m′ = 〈φσ

j |P̂Φ,σ
Jm′ |φσ

j 〉 for consistency

with the sum rule
∑

Jm′ q
j,σ
J,m′ = 1. At this stage, it becomes possible to set αIm,j = αIm and

j = j(I,m) by applying the assumption of one-to-one correspondence between the Φσ
Im and

the φσ
j for the transition-metal d. Thus,

αImpσ
Im〈Φσ

Im| vΦ,σ
SIC,Im |Φσ

Im〉 ≈ q
j(I,m),σ
I,m 〈φσ

j(I,m)| vφ,σ
SIC,j(I,m) |φσ

j(I,m)〉, (12)

which also results in the inequality

pσ
Im〈Φσ

Im| vΦ,σ
SIC,Im |Φσ

Im〉 ≥ q
j(I,m),σ
I,m 〈φσ

j(I,m)| vφ,σ
SIC,j(I,m) |φσ

j(I,m)〉 (13)

because αIm ≤ 1. Note that the approximation (12) emerges due to the approximate nature

of GGA+U (or LDA+U). It is necessary to apply Eq. (11) to GGA+U because we cannot

obtain all localized orbitals φσ
j within the condition of atomic likeness and GGA+U requires

only a few U values for atomic-like MOs. We would need another kind of approximation

instead of (12) if we replace GGA+U with another method.

The effective Hubbard U value for transition-metal d can be obtained from Eqs. (7) &

(12)

UI ≈
∑

σ,m q
j(I,m),σ
I,m 〈φσ

j(I,m)| vφ,σ
SIC,j(I,m) |φσ

j(I,m)〉∑
σ,m pσ

Im

. (14)

This equation and Eq. (12) result in αI , the average of αIm,

αI =

∑
σ,m q

j(I,m),σ
I,m 〈φσ

j(I,m)| vφ,σ
SIC,j(I,m) |φσ

j(I,m)〉∑
σ,m pσ

Im〈Φσ
Im| vΦ,σ

SIC,Im |Φσ
Im〉

. (15)

Note that a direct comparison of the Hamiltonians, which provides the exact expression for

αI , is not used for this expression. One can find clues about the precise expression in the

literature,46 but an accurate calculation of αI will incur an excessively high computational

cost without approximations.

D. Implementation

To implement the proposed idea, one must construct atomic orbitals Φσ
I as linear combi-

nations of the original atomic orbitals Φ0
I . The regenerated atomic orbitals Φσ

I should be well

matched with the symmetry stemming from the degree of ligand coordination. If an atomic
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orbital Φσ
Im has one-to-one correspondence with a localized orbital φσ

j , the canonical KS or-

bitals which compose the φσ
j via the unitary transformation (10) can form a group because

the KS orbitals should be related to Φσ
Im. Thus, each atomic orbital Φσ

Im of transition-metal

d has a group of KS orbitals. It is therefore assumed that a KS orbital in a group does not

participate in the localized orbitals corresponding to the other groups during the unitary

transformation due to the atomic likeness. Accordingly, one should classify KS orbitals into

groups related to the (transition-metal d) atomic orbitals Φσ
I . There are two ways to classify

KS orbitals. The first is to check the expansion coefficients of KS orbitals expanded on the

original atomic orbitals Φ0
Im,50 and the second is to analyze the relative coordinates and

ligand species. In either case, at least one symmetry axis should coincide with one of the

coordinate axes in order to reduce the numerical complexity. Our classification algorithm is

comparing the expansion coefficients of the KS orbitals.

The next step is an adjustment of the phase factors, which completes the localized orbitals

of characteristics of transition-metal d. Each KS orbital is assigned to a group corresponding

to an atomic orbital Φσ
Im during the previous step. The phase factors of Mσ

jk should be

consistent in each group. Fortunately, in a non-periodic boundary condition, the phase

factors can be restricted to 1 or -1. In the algorithm here, for the determination of the phase

factors, elements of Mσ
jk in the row of index j should be sorted by the absolute value |Mσ

jk|.
Next, the signs of Mσ

jk from the smallest |Mσ
jk| to the largest should be varied in order to

maximize the SI energy of the localized orbital φj under the condition of inequality (13).51

The final step is to calculate the effective Hubbard U value. This can be done by dividing

it into the Coulomb term and the XC term for each localized orbital; these terms can be

calculated by expanding each localized orbital on real grids.52 After calculation of the SI

energy for each localized orbital, it is necessary to follow Eq. (14). First, one should

summate the SI energies of all orbtials multiplied by the projected populations q
j(I,m),σ
I,m ,

with the summed value then divided by the total population
∑

σ,m pσ
Im.

E. Computational Details for Tests

DFT calculations were performed on the geometric and magnetic structures of simple

transition-metal complexes. These calculations were within the GGA+U framework with

the PBE exchange-correlation functional53 and were done with the OpenMX package54 based
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on the method of LCPAO.50 The chosen pseudo-atomic orbitals were (in OpenMX notation)

Ti9.0-s2p2d1, Fe8.0S-s3p2d1, Ni8.0H-s4p3d1, C7.0-s2p2d1, O6.0-s2p2d1, N6.0-s2p2d1, and

H6.0-s2p1, generated on Troullier-Martins norm-conserving pseudopotentials55 in Blochl sep-

arable form56 with partial core correction.57 We cannot consider more than single-ζ basis

orbitals for the d orbitals because the Hubbard U values for multiple-ζ orbitals or polar-

ization orbitals are not yet clearly defined. The real grid technique52 with an energy cutoff

value of 300 Ry was applied to calculation of the Coulomb and exchange-correlation parts.

The criterion of self-consistent field energies was chosen as 1× 10−7 hartree, while the force

criterion was 4× 10−4 hartree/bohr to optimize all of the structures. Binding energies were

calculated with counterpoise correction.58

III. TEST RESULTS

A calculated U value is a result obtained by a GGA+U calculation with an input U

value. In the linear response method, the output U values should be calculated for consistent

states, as emphasized by Kulik et al..22 This is also in good agreement with the philosophy

of SIC, which implies that in the proposed method, SI errors must be properly removed

when the output U value is identical to the input U value, i.e., the U parameter is obtained

in a self-consistent manner. Hence, here the resulting U values have less discrepancy from

the input U value than 0.1 eV. With this criterion, several simple molecules were tested,

Fe-porphyrin-imidazole, Fe-porphyrin-CO, FeO2, and transition-metal monoxide molecules.

The Hubbard U values of these molecules are compared with the linear response calculations

on planewave basis sets.16,32,59 We also compare geometric and energetic results with those of

hybrid functionals and wavefunction theories as well as those of the linear response method.

A. Iron Porphyrin Imidazole

This molecule is also known as five-coordinated deoxyheme (Fig. 1), an important sim-

plified model to explain the physiological mechanisms of myoglobin and hemoglobin, but the

DFT calculation of five-coordinated iron is so demanding that GGA and restricted B3LYP

predict incorrect ground states.16 GGA+U was proposed as a feasible remedy and offered

correct ground states for five-coordinate Fe-porphyrin complexes.16 The spin state of Fe-
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TABLE I. The calculated U values of the Fe 3d orbitals (eV) for two states of iron porphyrin

imidazole within the proposed method (USIC. Corresponding α in parentheses) and the previous

linear response calculation (LR16)

state USIC LR

5B2g 4.2 (0.88) 3.9

3Eg 3.7 (0.78) -

Average 4.0 (0.83) -

porphyrin-imidazole is experimentally known to be a ferrous high spin state where six d

electrons are distributed to five d characteristic MOs on four energy levels (i.e., two MOs

are degenerate) according to the ligand field theory.49 GGA+U determines the ground state

as the ferrous high spin state of 5B2g [(dxy)
2(dπ)2(dx2−y2)1(dz2)1] while GGA provides the

ferrous intermediate spin state of 3Eg [(dxy)
2(dπ)3(dz2)1] as the ground state. The Fe d con-

figuration of our GGA+U ground state is consistent with that of the unrestricted B3LYP

ground state.60

Our calculations for this molecule agree with the previous linear response calculation

on a planewave basis set. As shown in Table I, 4.2 eV was obtained as the U value for

5B2g, close to the U value 3.9 eV by the previous linear response calculation,16 and the U

value for 3Eg was found to be 3.7 eV. With the average U value over the two states, 4.0

eV, the ground state was identified to be the 5B2g state and the energy difference from the

ground state to the excited state 3Eg was indentified to be 0.21 eV, close to the previous

calculations such as the linear repose result of 0.21 eV16, the unrestricted B3LYP result

of 0.3 eV60, and the CCSD(T) result of 0.13 eV.61 The estimated α values for 5B2g and

3Eg were 0.88 and 0.78, respectively, showing little deviation from the empirical α value for

molecules, 1.37 The 5B2g geometry is in agreement with those of the linear response and the

experimental measurement, where the out-of-plane displacement of the iron atom (dFe−por)

strongly depends on the spin state, as shown in Table II. A Mulliken analysis revealed that

the iron atom determines the spin state of the molecule and that its d electron configuration

is in general agreement with the previous calculation.16
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TABLE II. Geometric parameters (Å) for Fe-porphyrin-imidazole in this study (GGA and

GGA+U), compared with the previous calculations (LR and UB3LYP) and the experiments (Exp.)

dFe−Por Fe-Npor Fe-NIm

GGA 3B2 0.12 2.00 2.25

GGA+U 3B2 0.12 2.03 2.38

GGA+U 5B2 0.38 2.11 2.21

LRa 0.43 2.11 2.19

UB3LYPb 0.43 2.11 2.19

Exp.c 0.363 2.07 2.14

Exp.d 0.31 2.075 2.134

Exp.e 0.42 2.06 2.1

a GGA + U (U = 3.9 eV), Ref. 16
b Ref. 59
b Ref. 62
c Ref. 63
d Ref. 64

B. Iron porphyrin carbon monoxide

This molecule, also known as five-coordinated carboxyheme (Fig. 2), can serve as a

model for investigating the mechanisms of CO gas sensors.65 Because the CO molecule

is a strong ligand, the iron atom becomes the ferrous low spin state.49 Conventional DFT

methods provide the ferrous low spin state of this system66–68 in agreement with experimental

results, but they overestimate the CO binding energy.69 Thus it is expected that GGA+U can

improve the calculation of the CO binding energy, but the linear response method provided

the incorrect spin state for this molecule due to the overestimated U value.16

Our calculations for Fe-porphyrin-CO are consistent with experimental observations. Ta-

ble III shows the estimated Hubbard U values for the two states, the ferrous low spin

1A1g [(dxy)
2(dπ)4] and the ferrous intermediate spin 3Eg [(dxy)

2(dπ)3(dz2)1]. Their corre-

sponding α values (0.59 and 0.64, respectively) are closer to 1/2 than 1 and are good ex-

amples of significant deviation from the empirical α value for molecules. With the average

U value, 2.9 eV, we identified the ground state to be 1A1g and the energy difference with
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TABLE III. The calculated U values of the Fe 3d orbitals (eV) for two states of iron porphyrin

carbon monoxide within the proposed method (USIC. Corresponding α in parentheses) and the

previous linear response calculation (LR16).

state USIC LR

1A1g 2.7 (0.59) 7.2

3Eg 3.0 (0.64) -

Average 2.9 (0.62) -

TABLE IV. Bond lengths (Å) and bond angles (◦) for Fe-porphyrin carbon monoxide in this study

(GGA and GGA+U), compared with the previous calculations (Pre. 116 and Pre. 271) and the

experiments (Exp.73)

Fe-C(CO) Fe-Npor C-O Fe-C-O

GGA 1A1g 1.68 2.00 1.20 180

GGA+U 1A1g 1.72 2.02 1.19 180

GGA+U 3Eg 2.31 2.02 1.17 146

Pre. 1a 1.77 2.01 1.12 -

Pre. 2b 1.694 - 1.165 180

Exp. 1.77 2.02 1.12 179

a GGA + U (U = 5.0 eV)
b OLYP

the excited state 3Eg to be 0.27 eV, close to a CCSD(T) result of 0.28 eV.70 A Mulliken

analysis found that the iron atom dominates the magnetic moment of the molecule, as Fe-

porphyrin-imidazole does. The CO binding energy in the ground state for the U value of

2.9 eV was computed as 0.49 eV, closer to the experimental value of 0.69 eV69 than sev-

eral hybrid functional results (0.281.8 eV)71 and a CCSD(T) result of 1.9 eV70 although a

CASPT2 binding energy, 0.69 eV,72 looks more accurate. Our GGA+U geometry for the

low-spin state improved when compared to the GGA geometry and is close to an OLYP

geometry (Table IV).
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C. Iron Dioxide

In contrast to the previous two molecules, there are only two surrounding ligand atoms in

this molecule, ensuring that the iron atom’s neighbor environment is not close to spherical

symmetry, whereas the degree of deviation of the Fe d electrons from the atomic center

might not be considerable. The bonding characteristic between a transition-metal atom

and an oxygen atom is polar covalent, which can be represented as O−2+δ-Fe+4−2δ-O−2+δ.

In addition, the dx2 − dy2 and the dxy orbitals, which show nonbonding characteristics in

the linear stick structure, contribute to the bending of FeO2 by hybridizing with oxygen p

orbitals.59 Many meta-stable states hinder a search of the ground state, and a calculation

of transition-metal dioxide molecules requires consideration of the change of the spin state

and the geometric structure.

Two low-lying states were found, i.e., the ferrous high spin state 5B2 and the ferrous

intermediate spin state 3B1, in the bent structures. As shown in Table V, the estimated U

values for the two states were identified to be 3.3 eV for 5B2 and 3.0 eV for 3B1, much lower

than the previous linear response U values which were supposedly overestimated.59 However,

the energy difference between 5B2 and 3B1 for the average U value 3.2 eV was determined to

be approximately 0.13 eV, close to the previous linear response result.59 The α values were

found to be 0.69 for 5B2 and 0.64 for 3B1, closer to 1/2 than to 1, which is another example

of considerable deviation from the empirical α value for molecules. A Mulliken analysis

revealed that the Fe atomic spin moments in the both states with the proposed method are

very similar in terms of magnitude and direction while the O atomic spin moments have

opposite directions, indicating that the spin direction of the oxygen atoms can substantially

controls the spin state of the molecule.

Our geometry appears reasonable and comparable to those of the linear response method59

and quantum Monte Carlo (QMC).74 Despite the difference in the estimaated U values, bond

lengths by the proposed method and the linear response method (GGA+U and LR in Table

VI) are similar to each other, although they are slightly larger than the QMC bond length.

The O-Fe-O bond angles show considerable dependence on the U value and the spin state,

but our ground state (3B1) bond angle is close to the experimental value and the QMC result.

In the paper which undertook a calculation by the linear response method,59 the researchers

insisted that correction by an intersite interaction V plays an important role, and they
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TABLE V. The calculated U values of the Fe 3d orbitals (eV) for two states of FeO2 within

the proposed method (USIC. Corresponding α in parentheses) and the previous linear response

calculation (LR59).

state USIC LR

5B2 3.3 (0.69) 6.6

3B1 3.0 (0.64) 5.1

Average 3.2 (0.67) 5.7

TABLE VI. Bond lengths (Å) and bond angles (O-Fe-O, in parentheses) of the FeO2 low-lying two

states in this study (GGA and GGA+U), in the linear response calculation (LR59), in GGA+U+V

(GGA+U+V59), in QMC calculation (QMC74), and in experimental measurements (Exp.75,76)

GGA GGA+U LR GGA+U+V QMC Exp.

5B2 - (-) 1.64 (115.3 ◦) 1.64 (131 ◦) 1.60 (120 ◦) - (-) - (-)

3B1 1.60 (146.7 ◦) 1.63 (155.8 ◦) 1.67 (180 ◦) 1.58 (156 ◦) 1.59 (156 ◦, 161 ◦) - (150 ± 10 ◦)

presented the bond length and bond angle after correction by including V (GGA+U+V

in Table VI). Since we have not estimated the intersite contribution on the atom-centered

orbital basis, it is difficult to judge whether the intersite term is indispensable or not to

obtain a better result on the atom-centered orbital basis. However, including the intersite

interaction correction might lead to a bond length closer to the QMC result.

D. First-row transition-metal monoxides

We tested three 3d transition-metal monoxide molecules, TiO, FeO, and NiO. Diatomic

molecules are challenging with the proposed method because their transition-metal d elec-

trons can be considerably displaced in one direction, which can cause substantial errors with

the proposed method, as it is based on the atomic likeness of MOs for d electrons and the

spherically averaging of U .27 Among the five 3d orbitals in the transition-metal atom, under

the assumption that the z axis is set as the bonding axis, the two orbitals dx2 − dy2 and dxy

are nonbonding orbitals, indicating nearly intact atomic orbitals with high SI energies, while

the π bonding MOs of the dxz or the dyz (with ligand px or ligand py) and the σ bonding MO
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of the dz2 (with ligand pz) are expected to lower calculated U values due to delocalization

by hybridization with ligand p orbitals, which can cause deviation from the assumption of

the atomic likeness of the MOs for 3d electrons.

Table VII shows the calculated U values and related α values for the ground states of

the diatomic molecules. The α values were identified to be close to 1, the empirical α value

for molecules.37 The U value for NiO 3Σ− is close to that of the linear response, but for the

other two cases, TiO 3∆ and FeO 5∆, large discrepancies are found between the U values

of both methods. This is natural because the two methods adopted different basis sets,

and even the same U value can give different geometries and energies. Comparisons of the

geometries and energies show the actual effect of these discrepancies in the U values.

In Tables VIII & IX, our bond lengths and dissociation energies for the ground states

of the molecules are comparable to those of previous calculations such as the phaseless

auxiliary-field quantum Monte Carlo (ph-AFQMC),77 CASPT2,79 and the linear response

method.32 The GGA+U bond lengths look worse than those of the GGA, not to men-

tion those of ph-AFQMC. In our calculations, GGA+U elongates the bond between the

transition-metal atom the ligand atom, matching tendency of the linear response results for

the ground states of these molecules.32 Given that the GGA bond lengths are already close

to the experimental values, elongation scarcely improves the bond length calculation. On the

other hand, the GGA+U dissociation energies of TiO and FeO appear to be improved. It ap-

pears to be a tendency in our calculations and in the previous linear response calculations32

that GGA+U decreases the dissociation energies of these species, with our GGA dissociation

energies being quite large. However, the amounts of reduction of the dissociation energies

for FeO and NiO by GGA+U are too large to be similar to the linear response or the ex-

perimental values. The poor GGA+U results are likely consequences of the one-direction

displacement of transition-metal d electrons and the insufficiency of the basis orbitals. The

dissociation energy of TiO (Table IX) is close to the experimental value, most likely because

the displaced charge of Ti d electrons is small due to the weak hybridization between the

Ti d and O p orbitals. The displaced charges of the Fe d electrons in FeO and the Ni d

electrons in NiO must be large, but multiple-ζ basis orbitals or polarization basis orbitals

for transition-metal d orbitals may enhance their dissociation energies considerably if the U

parameters for these basis orbitals are clearly defined, or one may have to consider another

interaction parameter like an intersite interaction parameter V or an on-site interaction U
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TABLE VII. The calculated U values of the 3d orbitals (eV) for TiO, FeO, and NiO molecules

within the proposed method (USIC. Corresponding α in parentheses) and the previous linear

response calculation (LR32).

state USIC LR

TiO 3∆ 3.1 (0.99) 6.03

FeO 5∆ 4.2 (0.89) 3.01

NiO 3Σ− 4.6 (0.90) 4.34

TABLE VIII. Bond lengths (Å) of TiO, FeO, and NiO molecules in this study (GGA and GGA+U),

in the linear response (LR32) calculation, in ph-AFQMC calculation (ph-AFQMC77), and in ex-

perimental measurement (Exp.78)

GGA GGA+U LR ph-AFQMC Exp.

TiO 1.643 1.650 1.647 1.617 1.620

FeO 1.612 1.678 1.623 1.612 1.616

NiO 1.664 1.688 1.653 1.626 1.627

of another orbital.

IV. DISCUSSION

Our calculations show the deviations to the empirical α value for molecules, i.e., 1. α

values close to 1/2 were found in the cases of Fe-porphyrin-CO and FeO2, while slight

TABLE IX. Calculated dissociation energies (eV) of TiO, FeO, and NiO in this study (GGA and

GGA+U), in the linear response calculation (LR32), in ph-AFQMC with CCSD(T) calculation

(ph-AFQMC77), in CASPT2 calculation (CASPT279), and in experimental measurement (Exp.78)

GGA GGA+U LR ph-AFQMC CASPT2 Exp.

TiO 7.89 6.81 6.93 6.98 6.91 6.98

FeO 4.93 3.26 4.35 4.26 4.80 4.22

NiO 4.37 2.92 4.08 4.12 3.85 3.92
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deviations from 1 were found for Fe-porphyrin-imidazole and transition-metal monoxides.

The results of smaller α values are not less accurate than those of larger α values, although

the larger α values are close to the empirical value for molecules. This provides evidence of

the necessity of methods to obtain α.

The proposed method can provide calculations comparable to those of hybrid functionals

and coupled cluster as well as the linear response method although our method is no match

for QMC or CASPT2 in accuracy. Our Fe-porphyrin-imidazole calculation is in good agree-

ment with those of the unrestricted B3LYP and the linear response method. For the cases

of Fe-porphyrin-CO and FeO2, rather good results are given by the proposed method, while

our results were not satisfactory for the transition-metal monoxides. The accuracy of our

results depends on the molecular geometry and degree of hybridization because suppressing

the electron displacement of the target orbital is important during our approximation. If

transition-metal d electrons are not considerably displaced, the calculated energies and ge-

ometries by the proposed method were close to those calculated by the linear response values

or those measured experimentally. On the other hand, incorrect energies could be found in

cases with the strong one-direction displacement of transition-metal d electrons. The small

displacement of electrons of the target orbital might not be a sufficient condition of our

approximation, but it is a necessary condition for atomic likeness of the MO dominated by

the target orbital.

One reason those successes is that mapping from SIC reduces the degree of overestimation

of the U parameter because the one-orbital SI energy reaches its maximum at the one-

electron limit (α = 1). Thus, the upper bounds of the effective U values are determined by

the SI energies of pure atomic orbitals. Moderate U values can give the reasonable ground

state of Fe-porphyrin-CO and the stabilization of the bent structure of FeO2. Because

overestimation of the U values is a type of bias for some cases in the linear response method,16

suppression of the degree of overestimation makes the proposed method to complement the

linear response method. For Fe-porphyrin-CO and FeO2, the proposed method provides

different analyses from those of the linear response method.

A limit of the current version of the proposed method is its use of the single-ζ d orbital in

the basis set and its adoption of the Mulliken analysis (and the dual projector). Increasing

the basis orbital number can enhance the accuracy of our method, which is influenced

by hybridization and polarization. Double-ζ d basis orbitals or polarization orbitals are
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necessary for higher accuracy, but this requires a reform of the approximations [Eqs. (14)

& (15)], which is left as future work. The Mulliken population scheme has also room for

improvement, and there are several suggestions to improve the Mulliken analysis80,81 which

may serve to modify our method in the future.

We have not applied our method to large-scale molecules of more than a thousand atoms,

but application to linear-scaling GGA+U82 is necessary because low computational cost is an

advantage of the proposed method which has no merits in calculations of small molecules due

to insufficient accuracy compared to QMC or CASPT2. Biomolecules are good examples83 to

use to test the proposed method. O(N) GGA+U with a U parameter estimated by using our

method can be applied to geometry optimization. In our current version of implementation,

however, O(N) calculation of the parameter is not available. Linear-scaling version of our

method will further reduce computational time. This should be another future task.

V. CONCLUSIONS

We propose a calculation method of the Hubbard U parameter in GGA+U and the α pa-

rameter in ASIC for transition-metal d orbitals by mapping SIC onto GGA+U. This method

is suitable for atom-centered basis sets, where linear-scaling DFT methods are formulated.

The atomic likeness of MOs corresponding to transition-metal d is the key condition of the

approximations to reduce the computational cost of finding SI-corrected localized orbitals.

SIC can offer a substitute for the Hubbard U parameter in GGA+U, although its usage

should be restricted in consideration of difference of GGA+U and SIC. Two assumptions

exist here: one-to-one correspondence between a SI-corrected localized orbital and an atomic

orbitaland the concept of α according to the atomic orbitals. These assumptions lead to

the approximate form of the SI-corrected localized orbitals, from which the mapping of SIC

onto GGA+U gives the Hubbard U parameter.

The proposed method can provide calculations comparable to the linear response calcula-

tions on planewave basis sets, coupled cluster, and hybrid functionals. For the test molecules,

the geometries and energies obtained by the method improved over GGA calculations, with

some of them even better than the linear response results. Our method does not guarantee

better results than the linear response method and hybrid functionals, but mapping from

SIC suppresses overestimation of the U parameter. This can provide an alternative analysis
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FIG. 1. (Color online). Geometric structure of iron porphyrin imidazole.

FIG. 2. (Color online). Geometric structure of iron porphyrin carbon monoxide.

of transition-metal complexes.
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