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ABSTRACT Contemporary efforts for modeling protein-ligand interactions entail a painful tradeoff – as 

reliable information on both noncovalent binding factors and the dynamic behavior of a protein-ligand complex 

is often beyond practical limits. In the following paper, we demonstrate that information drawn exclusively from 

static molecular structures can be used for the semi-quantitative prediction of experimentally-measured binding 

affinities for protein-ligand complexes. In the particular case considered here, inhibition constants (Ki) were 

calculated for eight different ligands of torpedo californica acetylcholinesterase using a simple, multiple-linear-

regression-based model. The latter, incorporating five informative and independent variables – drawn from QM 

cluster, DLPNO-CCSD(T) calculations and LED analyses on the eight complexes – is shown to recover no-less-

than 96% of the sum of squares for measured Ki values, and used to predict the inhibition potential for yet 

another ligand (E20, for which no Ki values are available in the literature). This thus challenges the widespread 

assumption that “static pictures” are inadequate for predicting reactivity properties of flexible and dynamic 

protein-ligand systems. 
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Introduction 
 

Protein-ligand (PL) interactions have drawn great amounts of scientific attention throughout 

the last century (see Refs.1–4 for a few recent textbooks and reviews). Besides being 

examined for playing crucial roles in a variety of essential biochemical processes, such 

interactions are often focused on in many drug design studies – revolving around finding 

inhibitors for proteins such as enzymes and neuroreceptors for the purpose of invoking a 

desirable biological response.5–8 Due to such considerations, many researchers from a broad 

spectrum of scientific disciplines (consisting of computational biologists and biochemists as 

well as theorists from chemistry and physics) have attempted to provide some general 

theoretical/computational modeling schemes for predicting biochemically-relevant PL 

binding events.9–13 

It has been well-established that PL systems are greatly influenced by noncovalent 

interactions (NCIs).14–19 The latter, resulting from subtle electronic effects, are very small in 

magnitude and cannot virtually be measured by experimental means. Thus, ab initio 

electronic structure methods constitute a precious (and almost exclusive) source of 

information on biochemically-relevant NCIs – which, in turn, often used for the 

parametrization and calibration of more approximate computational modeling techniques 

(such as DFT functionals and molecular mechanics force fields).20–23 Ideally, one could use 

such nonempirical electronic structure methods for running molecular dynamics (MD) 

simulations on realistic PL systems; in such scenario, the information drawn from such 

simulations would include an adequate description of biochemically-significant NCIs, and it 

can thus be expected to offer desirable predictive power (which is, after all, the main goal of 

any theoretical model). However, electronic structure calculations are notorious for their 

steep computational cost scaling with the system’s size – which generally precludes using 

them for MD simulations on realistically-sized biochemical systems (excluding a few recent 

approximate approaches, each entailing different methodological challenges; see, for 

instance, Refs.24,25). 

For this reason, and since some description of NCIs relevant for PL binding is clearly crucial 

for predictive purposes,26,27 electronic structure calculations are mostly combined with 

additional computational techniques used for describing the dynamic, continuous relationship 

between PL pairs that leads to biochemically-significant (active-site) binding. In this manner, 

electronic structure calculations are performed on static structures, which are assumed to 

represent crucial events in the PL binding process (see Ref.28 for a recent, comprehensive 
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review). It is generally assumed, for instance, that the actual biochemically-significant 

binding event – taking place in the protein’s active site – must incorporate some description 

of noncovalent binding factors. Thus, one common piece of information on PL interactions 

provided by electronic structure methods corresponds to the PL binding energy – calculated 

as the energetic difference between the bound PL structure and its underlying protein and 

ligand structures found at infinite separation (Eq. 1): 
 

Δ"#$%& = 	")* − (") + "*)						[1] 
 

Were P and L stand for protein and ligand, respectively (in their complex-structure 

geometry). It should be pointed out that the relationship between such calculated energetics 

and realistic PL systems is quite unclear (as said, PL binding is a continuous, dynamic 

process; representing it using such “binary” means – i.e., bound complex vs. free structures – 

clearly ignores this fact); still, quite a few authors have employed such quantities as bits and 

pieces of information in more-general predictive theoretical/computational schemes – where 

additional such pieces, obtained using different techniques (e.g., classical MD trajectories), 

are also used.29–34 Needless to say, such multi-method efforts require an appropriate multi-

method-expertise from the researcher, and entail lots of (perhaps undetectable) sources of 

error and technical difficulties – as demonstrated in Figure 1. 

 

When interested in predictive modeling of PL systems, we are therefore faced with a painful 

dilemma (Figure 2). An appropriate description on biochemically-relevant NCIs is, on the 

one hand, required; the dynamic relationship between PL pairs cannot, on the other hand, be 

ignored; holding on to one source of information and letting go of the other would make our 

inquiry simple and elegant, but wrong and unreliable; trying to hold on to both complicates 

things further, as reasonable interfaces between different kinds of information must be 

established – giving rise to many corresponding sources of error that cannot necessarily be 

assessed.  
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Figure 1. A hypothetical, “conventional” molecular-modeling-based ligand identification process, employing 

quantum chemistry methods. Compare with Figure 5, which illustrates our approach as proposed in the present 

paper (Acronyms: QC = quantum chemistry, MD = molecular dynamics, QM/MM = hybrid quantum chemistry 

– classical molecular mechanics methods. Some crucial problems threatening the process’ success are outlined 

in red). 

 

 

Motivation: finding potential 
inhibitors for, e.g., some enzyme 
of interest EZ

Identify a candidate inhibitor α – assumed to 
“behave” similarly to known ligands. Sources 
of information: chemical intuition/docking 
techniques/QSAR methods...

Starting Point
Stage 1. Establishing a Pool of Candidates

Confirm/refute the existence of a stable α–EZ complex:

Scan the potential energy hypersurface for such complex using QC 
methods à locate local/global minima, representing bound structures

Use classical MD simulations for sampling potentially-bound
structures (e.g., where α is within binding distance to active amino 
acid residues) à investigate further using QC or QM/MM methods.

2.1 Ideal (often unrealistic) way: 

2.2 Approximate (practical) way: 

Stage 2. Candidate Verification

Compare α’s binding affinity (Ki) with that of known ligands (Ln). But how can Ki be assessed?

Let X and Y be the binding energies for the L1–EZ and α–EZ
complexes, respectively. If X<Y à Ki of α is larger, and vice versa.

Binding affinities often reflect much more information than calculated binding 
energies! (Lock-key model: many dynamic factors should also be taken into account)

Run classical MD simulations for both ligands à come up with ad-
hoc measures for Ki based on resulting trajectories

No explicit treatment of quantum mechanical 
electronic behavior, so no way of knowing whether 

binding forces are appropriately described!

Trajectories may be clinically dependent 
on initial conditions à drawing causal-

deterministic conclusions will be difficult

Stage 3. Evaluating the Candidate’s Inhibition Potential

3.1 Δ"#$%& (equation 1 in main 
text) as a heuristic measure: 

3.2 Classical-heuristic approach: 

In case a stable α–EZ complex has been found 

3.3 Integrative-heuristic approach: Combine 3.1 (or alternative QC data) with 3.2 à Predict Ki based
on hybrid classical-MD + QC information

Exhaustive multi-method study – requires lots of technical expertise, not 
easy to manage!

Conventional QC-based Approach:
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The main aim of this paper is demonstrating that this dilemma may often be avoided – by 

using electronic structure calculations on static molecular structures that also provide some 

important information on the dynamic nature of PL binding processes. In such manner, it 

should be possible to avoid using MD simulations altogether and still arrive at valuable 

predictive models – which may guide future experiments and drug discovery studies. Being 

mainly interested in utilizing the information offered by electronic-structure methods, and not 

in specific state-of the-art data analysis and modeling techniques, we will limit our discussion 

to a very simple predictive model type – based solely on multiple linear regression (MLR). 

The latter, incorporating independent variables from the aforementioned electronic structure 

calculations, will be used for a semi-quantitative prediction of experimentally-measured 

inhibition constants, or Ki values (which are ubiquitously used as a practical measure for 

binding affinities, and compared across different ligands as a relative, realistic biochemical 

reactivity potential with respect to a specific target protein).35–40 
 

Our assumptions, in this context, may be summarized as follows: 

(a) Active-site binding corresponds to a critical event in the inhibition process; that is, 

inhibition cannot occur in the absence of such event. 

(b) A combination of independent energetic components derived from a sufficiently-

accurate description (which includes noncovalent binding factors) of this binding event 

is characteristic to a given ligand’s isomeric structure and chemical composition. That 

is, a significant change in the latter would result in qualitatively-different such 

components. 

(c) Individual local-energy-decomposition (LED; see computational methods section) 

contributions exhibit well-defined intermolecular distance dependence;41 they therefore 

incorporate some dynamic information on NCIs taking place in the active site. (indeed, 

the latter NCIs result, inter alia, from the ligand’s electronic properties; thus, they may 

also reflect additional, potential PL NCIs – taking place before active site binding.) 

(d) For quality-control purposes, calculated quantities should not implicitly include 

information from molecular structures or events that are (even slightly) orthogonal to 

active-site binding. (interaction energies, which employ optimized structures for each of 

the interacting monomers in vacuum, do include such implicit information – as opposed 

to the inter-fragment binding energies used below.) 
 

It should be stressed that the very fundamental principles on which our model lie may simply 

be traced back to chemical intuition – as so many predictive tools, incorporating static 
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molecular structures as a source of information, are still extensively-used by the general 

chemistry community for the purpose of studying realistic, dynamic molecular systems. It 

may seem, in fact, that explaining dynamic processes by means of static molecular structures 

is a general feature that defines chemistry as a scientific discipline. The interested reader may 

browse through an account of representative such chemical explanations offered in Appendix 

A: Static Solutions to Dynamic Problems. 

 

 
Figure 2. An illustration of the main challenge hindering predictive modeling of PL systems (see text). 

 

Computational Methods 
 

All geometries used in this work were obtained in the following manner: 

1. Nine crystal structures of torpedo californica acetylcholinesterase (Tc AChE), each 

containing a different bound ligand (a.k.a inhibitor) in its active site, were drawn from 

the PDB website (see corresponding research papers in Refs.35–40,42;). 

2. “Potentially-active” amino acid residues, defined to be found within 3 Å from any 

atom in the ligand structure (thus being capable of significantly-interacting with the 

latter; see, for instance, section 2.2 in Ref.43) were selected via ‘CONTACT’ 

calculations included in the CCP4 suite.44 

3. Residues found in the preceding stage for each crystal structure were then simply 

taken alongside the corresponding bound ligand to create the final active-site + ligand 

geometries used throughout this paper. 

Appropriate description of noncovalent 
interactions

ΔE

r
Dynamic Behavior

OR

The PL modeling dilemma:

Which one should be chosen…?
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Electronic structure calculations were then performed exclusively on the resulting structures, 

and thus correspond to “QM cluster” calculations – according to the taxonomy used in Ref.28 

All calculated data considered in this paper were obtained using DLPNO-CCSD(T) 

calculations and subsequent LED analyses included in the ORCA 4.2 program package; 41,45 

“NormalPNO” settings,46 as well as the def2-SVP basis set,47 were used for all of the latter. 

Thus, all data were drawn from LED outputs in the following manner: 

 

• DLPNO-CCSD(T)/SVP inter-fragment binding energies were drawn from the “Sum 

of INTER-fragment total energies” entry, found in the “INTER- vs INTRA-

FRAGMENT TOTAL ENERGIES (Eh)” section in the LED outputs. As a sanity 

check, we verified that binding energies derived from subtracting the sum of “Intra-

fragment total energies” from the “total energy” for a given PL complex (both found 

in the same section in LED output) produce identical energetic values – as shown in 

the ESI. Note that different definitions for “binding energies” can be found in the 

literature (some actually correspond to the “interaction energies” mentioned in the 

introduction); in our case, the term simply corresponds to the difference in total 

energies between the super-system and its underlying protein and ligand fragments 

[which satisfies assumption (d) in the introduction]. 

• Energetic contributions corresponding to LED components arising from electrostatics, 

exchange and dispersion were extracted from the “FINAL SUMMARY DLPNO-

CCSD ENERGY DECOMPOSITION (Eh)” section in the LED outputs. Charge 

transfer contributions were drawn from the preceding “DECOMPOSITION OF 

CCSD STRONG PAIRS INTO DOUBLE EXCITATION TYPES (Eh)”. Note that for 

our purposes [see assumption (c) in the introduction], we were interested in grouping 

different energetic contributions according to their intermolecular distance 

dependence; thus, we chose to consider the sum of “Charge Transfer 1 to 2” and 

“Charge Transfer 2 to 1” as the total charge transfer contribution to the binding 

energy (denoted by Ect). Similarly, our account for dispersion corresponds to the sum 

of the “Dispersion (strong pairs)” and “Dispersion (weak pairs)” contributions found 

in the LED output. 

 

Note that whereas the nonempirical DLPNO-CCSD(T) method and LED approach are used 

for generating the data considered in this paper – other methods (such as those based on a 
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perturbation theory formalism) may generally be used for similar purposes.48–51 It should also 

be mentioned that the above basis set and PNO domains may rightfully be considered 

inadequate for quantitatively-accurate electronic structure calculations (resulting in energetics 

found within 1 kcal/mol from a reliable reference level) of noncovalent interactions in 

vacuum.46 That being said, it should be stressed that accurate calculation of NCI energetics 

should not be recognized as one of the main goals of the current paper. Instead, we will focus 

on using the very basic information derived from LED calculations for predictive purposes. 

The semi-quantitative manifestation of this purpose, as we shall show below, is independent 

of such extreme quantitative accuracy.  

Multiple linear regression was carried out using the “Analysis Toolpak” add-in for Microsoft 

Excel 2018 (Macintosh version); 95% confidence intervals were consistently employed for 

all resulting models. For reproduction purposes, all relevant geometries and ORCA input files 

used for this paper are provided in the ESI, alongside a dedicated spreadsheet containing our 

raw and calculated data. 

We would like to suggest that our methodological choices and considerations may be of 

particular interest on their own (and not just as means for achieving the main, stated goal of 

this paper); the interested reader may browse through associated methodological discussions, 

questions and answers – all provided in Appendix B: Methodological Meditations. 

 

Results and Discussion 
 

Experimentally-measured inhibition constants [expressed as log(Ki)], and the calculated data 

for all ligands under consideration (i.e., inter-fragment binding energies and corresponding 

LED contributions, all given in kcal/mol), are provided in Table 1. 
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Table.1 Experimentally-measured log(Ki) values, and calculated data for eight Tc AChE ligands – obtained at 

the levels of theory specified in the methods section. Similar data calculated for yet another ligand (E20), for 

which no experimental Ki value was measured, are given in the last row. All energetic components are in 

kcal/mol. 

PDB ID Ligand Log(Ki) (Refs.35–40) Binding Energy Eelstat Eexch Ect Edisp 

3ZV7 NHG 3.079 81.767 50.900 13.564 8.025 14.784 

1W6R GNT 2.279 98.819 52.101 20.069 9.356 23.725 

5NAU DZ0 1.475 49.015 28.012 8.192 4.639 11.611 

1U65 CP0 1.415 201.247 112.476 36.497 17.648 46.225 

5NAP DZ7 1.046 19.606 12.764 2.953 2.989 3.577 

1H23 E12 0.653 220.404 138.560 34.812 19.335 41.187 

1H22 E10 -0.097 243.558 154.083 38.869 23.252 44.367 

1E66 HUX -0.886 1439.501 1250.114 117.549 60.216 42.091 

1EVE E20 - 85.203 50.170 14.598 8.658 18.184 

 

Clearly, drawing predictive conclusions from this data using nothing but the naked eye is no 

easy task – as there is no clear one-to-one correspondence between any of the calculated 

variables and the experimentally-measured quantities. Let us therefore resort to an MLR-

based picture – from which, as will be shown below, some interesting conclusions may be 

drawn.  

 

For illustration purposes, a plot of experimental Ki values is given in Figure 3.A; the 

predictive value provided by a simple, MLR-based model (to be denoted M1 from this point 

onwards) – employing calculated binding energies as a single predictive variable – is 

accordingly demonstrated in Figure 3.B. Both residual errors and regression statistics (Table 

2) testify that binding energies simply do not possess enough information for reproducing the 

general trend created by experimentally-measured Ki values – as M1 recovers only 50% of 

the sum of squares (SSQ) for the latter. In other words, the variation in Ki values is not 

trivially explained by means of the corresponding binding energies. In addition, residual 

errors as large as ~0.5 log(Ki) – having clear implications on the model’s predictive value – 

can be observed for five of the predicted inhibition constants. These findings clearly fit our 

expectations regarding the possibility of reducing binding affinities to calculated binding 

energies – as pointed out in the introduction (see also Figure 1).
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Figure 3. (A) Experimentally-measured Ki values (nM) for eight different ligands, taken from Refs.35–40. (B) Multiple-linear-regression model [M1] based on inter-fragment 

binding energies calculated for the above ligands and the corresponding active amino-acid residues in the Tc AChE active site (C) A similar model [M2] based on specific 

noncovalent interactions calculated for the same systems using the LED approach (D) Our best such model, employing both calculated binding energies and specific 

noncovalent interactions used in (A-B). Clearly, M3 is the most robust model considered – as indicated by statistical parameters (see Table 2) as well as by the similarity 

between the resulting predicted curve and that of (A). 
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A similar MLR-based model (M2), based solely on calculated LED components, clearly 

represents a substantial improvement: it recovers 81% of the SSQ for the experimentally-

measured Ki values (Table 2; Figure 3.C). Additionally, residual errors of qualitative 

significance are fewer in number compared to M1 – and correspond to only three predictions. 

The distribution of errors is generally narrower than that of M1 (as also indicated by 

SSQresidue for each of the models). Such improvements suggest that information representing 

particular NCIs taking place in ligand binding may be used to better predict experimental 

results – that is, compared to information exclusively drawn from binding energies. That 

being said, such outcome may partly be attributed to the fact that more informative variables 

are fitted to approximate the experimental Ki curve (the fitting process, however, cannot 

exclusively be held responsible for our models’ predictive capabilities, as demonstrated in 

Appendix B). 
 

Table 2. Sum of squares of the data and the residual errors for models M1-3 (left). Particular residual errors (or 

eM[n], n=1-3) for the corresponding predicted log(Ki) values are also provided (right). The heatmap should be 

read as follows: red marks positive errors, blue corresponds to negative ones. The latter’s relative magnitude is 

indicated by color intensity. 

 M1 M2 M3 PDB ID Ligand eM1 eM2 eM3 
Nparameters 1 4 5 3ZV7 NHG 1.555 1.172 0.169 
Ndata 8 1W6R GNT 0.787 -0.450 0.118 
SSQdata 1.11E+01 5NAU DZ0 -0.111 0.013 0.332 

SSQResidue 5.54E+00 2.13E+00 4.94E-01 1U65 CP0 0.118 0.022 -0.289 
%Residue 49.8% 19.1% 4.4% 5NAP DZ7 -0.596 -0.647 -0.476 
%SSQdata recovered 50% 81% 96% 1H23 E12 -0.608 0.202 0.175 

 

1H22 E10 -1.314 -0.302 -0.025 

1E66 HUX 0.168 -0.010 -0.005 
 

Let us now consider a third model (M3) – incorporating both binding energies and LED data 

employed in M1 and M2, respectively. As shown in Table 2 and Figure 3.D, this model 

clearly has striking predictive power – as it recovers no-less-than 96% of the SSQ for the 

experimentally-measured Ki values. Residual errors are also much smaller, and their 

distribution narrower, compared to M1-2: the single-largest error amounts to 0.476 log(Ki), 

which almost matches the very smallest, qualitatively-significant errors found for the 

previous models. What this all means is that the totality of information corresponding to both 

overall binding strength and specific NCIs for each of the ligands may be used for 

reproducing the experimentally-measured Ki curve in a semi-quantitative manner.  
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Indeed, some of the particular binding affinities predicted by M3 are, to some extent, 

overestimated/underestimated (note DZ0/CP0/DZ7). Nevertheless, despite not having ideal 

predictive value – this simple model may clearly provide useful comparative estimates, 

corresponding to realistic inhibition potentials for different ligands. 

 

As a basic demonstration, let us use the data calculated for yet another ligand, E20 (taken 

from the 1EVE structure, see Ref.42) – which is also given in Table 1. Measured Ki values for 

this ligand are, to the best of our knowledge, unavailable in current literature. We can 

therefore trivially use M3 for providing an estimate for its inhibition potential, as shown in 

Figure 4. It turns out that E20 has a predicted log(Ki) value of ~1.3 – which is similar in 

magnitude to those measured for, e.g., CP0. We may accordingly predict that E20 may 

constitute an effective competitive inhibitor for ligands such as DZ7 and E12 [having log(Ki) 

values of 1.046 and 0.653, respectively], and an ineffective one for NHG (3.079). Thus, 

despite its simplistic architecture, M3 may be seen as valuable predictive tool – as it may 

guide experimentalists in practical attempts for using different ligands for various 

biochemical purposes. 

 

 
Figure 4. Predicted binding affinity (Ki, nM) for the E20 ligand, according to M3 (see Table 2). All calculated 

energetic contributions are given in kcal/mol. Based on the latter model, E20 can be expected to have the 5th-

highest affinity among all nine ligands considered in our work. 
 

Obviously, one should not expect such simple application of our approach to be appropriate 

for all possible PL systems (some particular cases might prove to be problematic, as 

demonstrated in Appendix B, Q3); still, more elaborate applications – incorporating additional 

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

Lo
g(

Ki
)

Exp. M1 M2 M3 E20 (Predicted)

NHG               GNT                DZ0                 CP0                  DZ7                E12                 E10     HUX

PDB ID Ligand Ebind E(elstat) E(exch) E(CT) E(disp) Calc. log(Ki) Rank
1EVE E20 85.203 50.170 14.598 8.658 18.184 1.267 5.25



 13 

sources of information – may also be considered if need be, and we hope to explore such 

options in future projects. Still, and as mentioned in the introduction, it is rather striking that 

a simple MLR-based model, incorporating information from static molecular structures, may 

be used to explain complex biochemical phenomena – often said to have infinite degrees of 

freedom. In this context, a few words should be said about the scientific knowledge gained by 

the above results should be added. For the sake of the current discussion, let us follow the 

classic text by Sanders52 – which presented knowledge as resulting from the purposeful use 

of information in an appropriate, well-defined context. Considering the above discussion, a 

take-home message can be summarized as follows: static quantum molecular information 

may, in principle, be used to provide predictive explanations for dynamic protein-ligand 

processes. This statement clearly has substantial implications on contemporary chemistry 

knowledge – and we hope it will be of service in future scientific efforts concerning such 

interactions. As mentioned in the introduction, the general idea which underlies our current 

approach (illustrated in Figure 5) is, by no means, new. Quite a few great chemists have 

attempted to conduct similar arguments (see Appendix A), but they seem to have lacked the 

appropriate technical means needed for establishing solid, data-based conclusions. Luckily, 

state-of-the-art quantum chemistry methods have provided us with the required missing 

pieces of information – and thus bringing the corresponding puzzle of scientific knowledge to 

its completion has finally become possible. 

 

It is, perhaps, an appropriate time to remind the reader that we do not, on a general principle, 

recommend using simplistic MLR-based models such as above for practical investigations of 

PL systems. What we did mean to demonstrate is that some particular static molecular 

structures, described using nonempirical electronic structure methods, clearly possess enough 

information for modeling biochemically-significant PL interactions. We can only hope that 

this basic insight will, eventually, be combined with more elaborate and robust modeling 

techniques. As a side note, we would like to mention that our above results, methodological 

considerations and assumptions may be of interest for several additional reasons (which had 

not been discussed in preceding sections): [a] physical meaning of LED contributions is 

different than that of “realistic” NCIs – which do not necessarily exhibit a well-defined 

dependence on the intermolecular distance; in addition, the relationship between such 

calculated components and the total binding energy is nontrivial; [b] using and validating 

MLR models for confirming the very informativeness of predictive variables is a 

fundamentally different task than establishing statistically-robust models for practical 
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applications – although the two may easily be confused. Thus, we hereby encourage the 

reader to browse through Appendix B, where such matters are discussed in appropriate length. 
 

 
Figure 5. An “alternate ending” to the process presented in Figure 1, making use of our own energy-

decomposition-analysis-based approach as outlined above (Acronyms: PL = protein-ligand, NCI = noncovalent 

interactions). 

 

Summary and Conclusions 
 

Based on our above investigation of the Tc AChE enzyme and associated ligands/inhibitors, 

the following conclusions may concisely be summarized: 

 

• We have seen that informative, static molecular structures – corresponding to bound 

protein-ligand complexes – can be used for a semi-quantitative prediction of the 

corresponding, experimentally-measured Ki values. Such successful prediction is by 

no means trivial, due to the fact that binding affinities are assumed to result from a 

large variety of dynamic factors affecting the continuous PL binding process. 

• Multiple-linear-regression-based models incorporating either inter-fragment binding 

energies or LED components calculated for the bound PL structures do not possess 

desirable predictive power – as they cover only 50% and 81% of the sum of squares 

Compare α’s binding affinity (Ki) with that of known ligands (Ln). But how can Ki be assessed?

Consider bound PL complexes (e.g., active amino acid residues +
ligand from crystal structures); calculate and decompose !"#$%&
into independent, physically-meaningful contributions
(representing binding NCIs).

Employ each of the former contributions as an independent variable; 
fit the model to experimentally-measured binding affinities for Ln.

Stage 3. Evaluating the Candidate’s Inhibition Potential

3.1 Run appropriate electronic 
structure calculations on α and Ln:

3.2 Establish an appropriate 
mathematical-statistical model M: 

3.3 Use M to Predict Ki (α): Predicted binding affinity would reflect the electronic, NCI-based
correspondence between the protein and different ligand candidates.

Our Energy-Decomposition-Analysis-Based Approach:
.
.
.

Follow original starting point and Stages 1-2 (Figure 1)
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for the experimental Ki values, respectively. In addition, large residual errors (having 

clear qualitative significance) are observed for both models. 

• In contrast, a model employing both binding energies and LED components does 

offer surprisingly-useful predictive capabilities, covering no less than 96% of the sum 

of squares for the experimentally-measured values. Additionally, the residual error 

distribution is significantly narrower than those of the above alternatives; the largest 

such error, in this case, amounts to the smallest significant ones found for former 

models. 

• The above model may easily be used for predicting Ki values which have not yet been 

experimentally-measured. In such manner, the realistic inhibition potential for the 

E20 ligand was assessed to be greater than those of DZ7 and E12, but smaller than 

that of NHG.  

• The statistical significance of calculated binding energies and LED components 

cannot be exclusively attributed to the number of independent parameters and 

corresponding fitting coefficients used in each model (Appendix B, Q2). Thus, our 

calculated data clearly has inherent predictive value. 

• Despite the fact that LED components do not represent physically-realistic 

noncovalent interactions (arising from subtle, dynamic electronic effects), they do 

incorporate highly-valuable information on the latter (Appendix B, Q1). Such 

information may be combined with additional data (in our case, calculated binding 

energies) for the purpose of predicting realistic chemical quantities. 

 

Our above conclusions may also be intuitively-understood using the classic “lock-key” 

analogy53 for PL binding: overall active-site binding energetics may be considered to provide 

some information on a given keyhole’s “size”, while PL complex-specific NCIs (represented 

by specific LED contributions) incorporate information on its corresponding “shape”. 

Whereas an entire lock’s mechanism cannot simply be inferred from its keyhole’s properties 

– focusing on the latter may often suffice for practical predictive purposes.  

(Interestingly enough, the “lock-key” analogy had later been “replaced” by an alternative, 

“glove-hand” version54 – which seemed to demonstrate some important aspects of PL binding 

processes which were “ignored” by its predecessor. That, however, clearly entailed 

simplifying/neglecting other such aspects. In any case, analogies of this sort are merely used 

for facilitating intuitive understanding and should not be taken too literally.) 
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As a final remark, we would like to express our hopes and great anticipation for additional 

efforts concentrated on supplying predictive scientific explanations based on chemical 

intuition. The latter, which may be seen as one of the most prominent achievements of 

modern science, has apparently not been fully utilized by means of currently-available 

scientific methods and techniques. We can only hope to contribute to such efforts and witness 

the science of chemistry as it reaches new and exciting heights. 
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Appendix A: Static Solutions to Dynamic Problems 

 

The current paper presents an attempt for drawing information on dynamic PL binding 

processes from informative, “static pictures”. The latter are assumed to represent critical 

events, which must occur as part of biochemically-significant PL binding (see introduction). 

It might be important to try and understand why one should, in fact, even expect such “static 

pictures” to be adequate for describing any dynamic process in the first place.  

A realistic chemical sample contains an immense ensemble of molecules, found in various 

conformations and energetic states. Thus, drawing predictive conclusions from discrete, static 

molecular structures seems physically-unintuitive. That being said, gathering information 

describing all molecules within the ensemble would be unrealistic. However, what if we 

could find a way of reducing the behavior of this complicated, realistic ensemble to a few 

“building blocks”, or crucial factors (or pieces of information), represented by a few specific 

static molecular structures? Based on some intuitive assumptions, it should be possible to do 

so and – in that sense – make large-scale, complicated dynamic phenomena predictively-

understandable by relatively simple means.55,56  

Classical Eyring transition state theory (TST) has, in fact, provided chemists with this very 

possibility (i.e., reducing dynamic problems to static ones).57 It allowed, for the first time, the 

prediction of reaction rates – which reflect dynamic information on “collisions” between 

molecular species – by means of reduction to static, well-defined molecular structures, 

corresponding to critical events along the reaction path (i.e., the forming of a reactive 

transition state). Indeed, the theory has been shown to offer great predictive power, despite 

lacking strict physical rigor in its original form (a fact which did not seem to particularly 

concern Eyring himself; later, more physically-rigorous versions of the theory are reviewed 

in Ref.55). 

The truth is, however, that chemists have been used to solving problems this way long before 

Eyring has published his theory: it may be argued that predicting chemical properties based 

on, e.g., relevant Lewis/Kekulé structures is founded on similar logic. Obviously, Kekulé 

structures of organic molecules cannot be expected to represent how the latter “look” in a 

dynamic environment: the electron density for a given molecule clearly undergoes many 

changes with respect to time, to the point where it is not even trivial to speak of a well-

defined molecular structure that is maintained throughout dynamic processes (see, for 

instance, discussions in Refs.58,59). However, some static structures do interest us because 

they somehow provide simple and elegant, practical answers for questions of great 
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importance. Such static structures are therefore of more interest than others, and their identity 

depends on particular questions we are interested in answering. In the context of chemical 

reactivity, for instance, energetic minima and maxima may indeed be of particular interest. 

Other static structures may allow us to answer questions of different kinds (think, for 

instance, of solubility; energetic minima/maxima are often less-important than energetically-

invariant structural features, such as ones corresponding to an “ability” of forming hydrogen 

bonds). Thus, chemistry may generally be perceived as the science which reduces dynamic 

molecular processes to static, informative molecular structures for the purpose of gaining 

desirable predictive power (Figure 1A). 

 

 
Figure A1. A schematic representation of chemical explanations (above); specific examples concerning Eyring’s 

transition-state-theory are also provided (below, in italics) 

 

Some thoughts regarding harnessing TST to PL systems have been later expressed by 

Pauling.60 Trying to rationalize the catalytic “benefit” of enzymatic reactions, he claimed that 

the latter increase the relative concentration of reactive transition state species compared to 

corresponding enzyme-free reactions. Regardless of the practical implications for such claim, 

the motivation behind it may be understood based on the above discussion of TST: instead of 

bothering ourselves with a vast amount of information associated with the entire PL complex, 

we may focus on specific features associated with a single reactive structure. Thus, if we 

wish to quantify a given enzyme’s catalytic efficiency, all we need to do is compare the 

relative concentrations of such species in both enzyme/enzyme-free scenarios. Needless to 

say, the assumption according to which enzymatic reactions take place via single, well-

defined reaction paths may indeed be exposed to criticism; however, the same chemical-

intuition-driven motivation recognized in the very foundation of TST is again seen to offer 
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great explanatory value. Its practical utility, however, is somewhat difficult to assess – due to 

the fact that finding reactive species of interest using current computational techniques is 

often impractical. 

Since Pauling’s above claim had emerged, a few related attempts – based on similar 

argumentation in different practical “packaging” – have also been published.56,61–64 Still, 

searching for reactive transition-state structures, telling the “main story” of continuous PL 

processes, had continued to be the main bottleneck limiting the latter’s applicability. That 

being said, the fact that practical applications of TST to PL systems have met with many 

difficulties does not mean that a static representation of such systems, having desirable 

predictive power, cannot be established. Proving that such possibility exists was, in fact, the 

main motivation for the present paper. Note that our work corresponds, in a sense, to an 

inverse version of TST – since we use bound PL complex structures (i.e., energetic minima) 

as a source of information on dynamic processes. Indeed, it turns out that these structures 

simply provide enough information for answering practical questions of interest (such as ones 

requiring comparative assessments of binding affinities), and that – from our point of view – 

plainly stands for yet another useful manifestation of chemical intuition. 

 

Appendix B: Methodological Meditations 

 

In order to facilitate the readers of this text, we hereby provide representative answers for 

important questions that may seem to arise from it. Both questions and answers have resulted, 

in fact, from actual discussions with colleagues from diverse scientific backgrounds. 

 

Q1. LED vs. Physical Realism 

 

• LED contributions do not represent realistic NCIs – which may not exhibit a well-

defined intermolecular distance dependence (true dispersion, for instance, cannot be 

said to have the R-6 dependence as Edisp; see Ref.65 and references therein). Besides, 

considering that no consistent level of theory was used for obtaining all calculated 

LED contributions – the latter cannot be summed to reproduce the “original” inter-

fragment binding energy values. If that is not enough, geometries drawn from crystal 

structures do not represent true energetic minima on well-defined potential energy 

surfaces for the PL complexes at hand. Thus, the data used in M1-3 consist of 
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approximate quantities that are not rooted in quantum mechanics. How can it then be 

considered as a reliable source of predictive information? 

 

Indeed, the data used in M1-3 may, perhaps, represent an approximation to the “true” NCIs 

taking place between each ligand and Tc AChE. That being said, and putting aside the fact 

that simple regression statistics confirm the informativeness of our predictors (see Q2 below), 

it is important to note that we had no intention of committing our scientific worldview to 

quantum mechanics alone. To us, electronic structure calculations are simply a tool for 

establishing general conclusions – aimed to benefit the science of chemistry. Thus, the use of 

approximate quantities (which were not derived from a fundamental, consistent physical 

model – embodied in a single, well-defined electronic structure method) does not harm any of 

the conclusions drawn in this paper (recall that the main question considered here is: is it 

possible to reduce PL binding to static chemical structures?). 

On a different note, it should be emphasized that despite their seemingly-approximate nature, 

LED contributions do incorporate “high-resolution” information on NCIs – as they are 

derived exclusively from the nonempirical electronic structure calculated for a given system, 

using a well-defined protocol (in this context, see Cioslowski & Surján’s “generalized 

observability criterion” in Ref.66). Thus, and despite the fact they are obtained using different 

levels of theory, the latter may still be calculated and compared across different systems for 

the purpose of arriving at desirable conclusions – as we have chosen to do in this work.  

In this context, what really matters is how the above data are being used, and the purposes for 

which they are used for. Since we have used total IEs and LED contributions as independent 

variables in MLR-based models, all we care about is comparing their corresponding values 

across all PL systems under consideration – as opposed to considering different energetic 

contributions calculated for a single PL complex. For this reason, the strict physical rigor 

associated with the LED approach is not of our current concern – contrary to its predictive-

informative potential. At last, it should actually be mentioned that the fact that the LED 

contributions do not fully add up to their corresponding binding energies does represent a 

practical advantage; it allows us to avoid intervariable linear-dependence issues that would 

prevent us from successfully applying MLR in the first place. 

As previously mentioned in the introduction, all geometries considered in this work simply 

correspond to informative static structures (hypothetical energetic minima, perhaps?), that 

can be used for predicting experimental binding affinities (that is, to offer useful and 

practical understanding of PL systems). Indeed, finding these structures by means of well-
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converged, computational geometry optimizations would probably prove to be difficult (for 

reasons similar to those responsible for the impracticalness of Pauling’s idea, as mentioned in 

Appendix A). However, considering the true nature of information and methods used in this 

paper, it is possible to conclude that doing so should not even be necessary: the crystal 

structures used by us, which result from statistical averaging of many individual complex 

structures and clearly do not correspond to such well-defined minima – have provided us 

with the information we are interested in for achieving our goals. Following a similar logic, 

previously-unknown informative molecular structures may practically be found through, e.g., 

a combination of semi-converged geometry optimizations and simple chemical intuition. The 

question whether a specific structure truly corresponds to a physically-realistic energetic 

minimum should not also not be of particular concern – as long as it is capable of providing 

an informative estimate for a specific PL binding energy, as well as for particular NCIs 

involved in the binding process. 

 

Q2. Causality vs. “Kitchen-Sink Regression” 

 

• In principle, any data may be fitted and used as predictors for reproducing the 

experimental Ki curve (Figure 3.A); so how do you know that your calculated 

energetics contain information that has some causal relationship with the 

experimental observations? 

 

Indeed, we have established that binding energies and LED contributions calculated for a set 

of PL complexes represent enough information for reproducing experimentally-measured Ki 

values in a semi-quantitative manner; what this really means is that the latter may be reduced, 

in the statistical sense, to the former predictors. This does not imply, however, that the 

binding affinity for a given ligand is determined exclusively by the physical factors embodied 

in our calculated data. Nevertheless, MLR is often used to corroborate intuitive causal 

relationships by showing that a given variable(s) incorporates desirable predictive power; for 

a review of statistical inference and its relationship to causality (which have been thoroughly 

discussed in many textbooks), we encourage the reader to browse through, e.g., chapter 2 in 

Ref.67 

In many practical applications, fitted regression coefficients are interpreted to reflect causal 

relationships. That is, in cases where residual errors are small enough, and there seems to be 

an intuitive meaning for the particular regression coefficient calculated for each predictor 
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(which depends on the researcher’s expectations) – the relationship between considered 

predictors and response variable is said to be causal. In the case considered here, coming up 

with some intuitive meaning for calculated regression coefficients would be rather difficult 

(see dedicated spreadsheet in the ESI). That, however, clearly does not mean that our 

calculated data is uninformative, or that it does not have casual implications on 

experimentally-measured binding affinities; the contrary, in fact, may easily be confirmed. 

In order to quantitatively demonstrate the causal-relevance of our predictors, we compared 

the predictive-performances of models M1-3 with those of three alternatives (A1-3); the latter 

have been constructed to incorporate a similar number of independent variables (1,4, and 5, 

respectively), while the specific values “calculated” for each of the ligands considered are 

random numbers found within the range of corresponding quantities used in M1-3. Thus, the 

single predictor used in A1 spans randomly-generated values between 20–1440 

(corresponding to the smallest and largest calculated binding energies used in M1). Similarly, 

Models A2-3 were established to include random numbers found within the range of the 

corresponding LED components used in M2-3. It turns out that for a given n (n=1-3), the 

predictive power of An is substantially lower than that of Mn: A3, for instance, covers just 

21% of the SSQ for experimentally-measured Ki values (compared to 96% for M3). Hence, 

putting chemical intuition aside – the latter findings may indeed be considered as a fair 

testimony for the true informative value of our calculated energetic properties (which is not 

related to some statistical-pragmatic notion of causality): it means that the predictive 

potential of M1-3 cannot be fully-rationalized by means of fitting regression coefficients to 

match a number of observed values. 

It should be noted that it might just happen that some randomly-generated numbers will prove 

to reflect predictive information after such fitting process (a fact often incorporated into 

machine learning techniques68) – but that would clearly not teach us anything about the 

causal relevance of our own calculated data to experimentally-measured Ki values. Needless 

to say, the DLPNO-CCSD(T)/SVP level of theory used above is, by no means, a random 

number generator: it offers a well-defined path towards obtaining physically-meaningful 

energetic quantities. Thus, the fact that the latter provide us with desirable predictive power 

(which cannot trivially be obtained through optimization of regression coefficients, as done 

for models A1-3) may also suggest some causal relationship between our predictors and the 

considered PL binding affinities. 
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Q3. Tc AChE and associated ligands compared to other PL systems 

 

• Some of the reasons for the “push” for dynamic modeling of PL interactions are: (a) 

when binding of the ligand is dynamically accessible – e.g., the binding pocket is 

hidden in certain conformations (this may be associated with allosteric regulation and 

other induced conformational changes); (b) the need for including finite temperature 

effects (such as relevant entropic contributions). To what extent do you think that 

your approach takes these two factors into account? Would you therefore expect it to 

be adequate for any possible PL system, or perhaps just for a particular subclass of PL 

interactions? 

 

First of all, it is worth mentioning that we are not claiming that simple models such as M1-3 

can be expected to provide useful predictions for just any PL system; while we do believe 

that our approach (outlined in both main text and appendices) should generally be considered 

for predictive purposes – we certainly suspect that the particular models considered in this 

work might be inadequate for some PL cases.  

Still, some cases which correspond to reason (a) may also, perhaps, be statistically-reduced to 

specific NCIs between PL pairs (as binding specificity to a particular ligand must incorporate 

some correspondence of this sort). Similarly, reason (b) would indeed push for dynamic 

modeling as long as considered effects are expected to qualitatively change the very 

fundamental PL NCI-based correspondence; if that is not the case – there would be no 

necessary reason to go beyond the static NCI-based picture. Thus, our approach should, in 

principle, incorporate the above factors – as long as the PL binding process is dominated by 

the aforementioned NCI-based correspondence. This would clearly not be true for all possible 

PL binding processes – as may be illustrated using the following simple thought-experiment. 

 

Consider, for instance, a protein that introduces some “random” component into the 

continuous binding process: 

o Case #0: Ongoing conformational changes, for instance, may “hide/reveal” the 

binding pocket independently from any relationship with a particular ligand. Such 

random component, however, should not – in principle – affect any prediction of 

relative binding affinities (as it is not ligand-specific and should affect any binding 

process).  
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o Case #1: Taking an additional step forward, it is possible to think of a protein which 

introduces some random and ligand specific such component. In this case, the bound 

PL structure may not offer enough information for useful predictions – and additional 

sources of information would then have to be considered. 

 

We would certainly expect models M1-3 to fail in the latter case. Nevertheless, additional 

variables (obtained using electronic-structure calculations, or other sources of information) 

may also be used for arriving at useful predictive capabilities – and so our very general 

approach should not be suspected for having inherent, system-specific shortcomings. 

 

Q4. Relationship between the current work and QSAR approaches 

 

• Your MLR-based model seems similar to ones used in quantitative-structure-activity-

relationships (QSAR) studies. Can you explain how your approach differs from 

previously-proposed QSAR schemes? 

 

Indeed, it is possible to argue that some QSAR models are based upon a “philosophy” similar 

to ours; that is, chemical predictions are offered based on calculated structural features that 

are not assumed to remain invariant throughout a molecular process of interest. However, 

approaches of this sort are, to the best of our knowledge, inherently different than the one 

used in this work:69 

 

1. QSAR descriptors (a.k.a independent variables) are not often derived exclusively from 

electronic structure calculations on a bound complex structure. Thus, relationships 

between all predictors and response variable are not rooted in a consistent, uniform or 

intuitively-understandable physical picture. 

2. QSAR descriptors are not explicitly chosen to reflect ‘critical events’ in particular 

molecular processes. In fact, particular QSAR descriptors are often chosen based on 

the statistical robustness of the resulting model alone, while the added information 

corresponding to these predictors is not explicitly discussed.  

 

The fact that fitting techniques such as MLR are used for constructing predictive QSAR 

schemes may certainly suggest some similarities between the latter and the simple models 

(M1-3) used in our work; however, our emphasis lies on electronic-structures- and chemical-
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intuition-based predictor selection. For all it is worth, it should be possible to say that we 

have chosen to implement our perception of chemistry in a QSAR envelope. The main idea, 

however, on drawing predictive information on complex molecular systems from static 

electronic-structure calculations is independent of such particular implementation and should 

be considered as the main message of our text. 

 

Q5. Implications on Chemical Bonding 

 

• You attempt to statistically-reduce a continuous, dynamic biochemical process to 

information drawn from selected static “electron-density snapshots” of isolated 

molecular species. It is possible to argue that the very notion of a chemical bond is 

also based on somewhat similar statistical reductions. Should your current effort 

actually be considered as an attempt for generalizing bonding concepts to PL 

systems? 

 

Despite not being quite aware of this point in the beginning of our investigations, our above 

reasoning and inferences do resemble predictive arguments involving notions of chemical 

bonding. In a sense, chemical bonds do not exist in a dynamic molecular system (as any 

definition of a “bond” would lie on a static electron-density picture). Still, this concept helps 

us chemists to arrive at astonishingly-useful practical predictions (of, e.g., reactivity, 

solubility, and the like – depending on the particular questions considered – as mentioned in 

Appendix A). In the current context, we have chosen to consider ligand "binding" as a 

"critical (instantaneous, therefore static) event" along a dynamic trajectory, that can be used 

for predictive purposes; since all we are currently interested in is predicting biochemically-

significant responses (i.e., enzyme inhibition), "binding" may abstractly be thought of as a set 

of static pictures which provide us with sufficient predictive power. Such notion of bonding 

is rather flexible, and may indeed be useful in a variety of (bio)chemical contexts. We surely 

hope to explore it further in future projects. 

 

Q6. Ad hominem 

 

• “I’ve been in the business for a long while and never witnessed such manuscript 

getting published. You’ve got plenty of verbal discussions and no equations to back 
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them up (especially in the appendices). I’m not sure what it is that you’re doing, but it 

doesn’t feel like science to me” 

 

Scientific truths do not depend on anyone’s feeling of comfort. If you are interested in 

criticizing the above arguments - please do so while sticking to logic. 

 

 

 

 


