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ABSTRACT: A dearomative allylation of aromatic cyanohydrins with 
allyl borates and allyl stannanes under palladium catalysis was devel-
oped. At the initial stage of this study, the dearomative reaction (C4-
substitution of the aromatics) was competing with benzyl substitution. 
To circumvent this issue, the use of palladium and meta-disubstituted 
triarylphosphine as the catalyst in a 1:1 ratio was found to enhance the 
site-selectivity, furnishing the desired dearomatized products. As the 
products possess an unsaturated nitrile moiety, further derivatizations 
of products such as conjugate additions and reductions were achieved.  

The chemical transformation of arenes is a fundamental topic in 
organic synthesis. Many transformations of arenes have been de-
veloped, of which electrophilic aromatic substitutions and cross-
couplings are recognized as key functionalizations of σ-bonds of 
aromatic cores.[1] On the other hand, the transformation of ring 
itself, i.e., the transformation of the π-bonds of arenes such as 
dearomative reactions is less studied. Nevertheless, this type of 
reaction can provide high molecular complexity from simple and 
abundant arenes. With recent developments in metal-catalysis, 
several dearomatization methods have emerged.[2] For example, the 
Glorius group recently achieved efficient hydrogenations of arenes 
to give birth alicyclic compounds with a high stereo-control.[2c–f] 
For dearomative functionalizations, however there are more limita-
tions than with hydrogenations. For example, the efficiency of the 
reaction significantly depends on the electronic nature of the arenes. 
Although electron-rich and electron-poor arenes can mostly be 
utilized as a limiting agent,[3] electron-neutral arenes are regarded 
as inactive arenes, usually requiring excess amounts in a reac-
tion.[4,5]Generally, only nitroarenes[6], aryl malonates[7], and aryl 
iodanes[8] can be utilized for dearomative functionalizations as the 
limiting reagent.  

We recently reported the dearomative allylation of inactive aro-
matic systems initiated by a catalytic bond cleavage (Figure 1A).[9] 
So far, we developed the dearomative allylation of benzyl phos-
phates[9a] as well as aryl bromides[9b] under the influence of a palla-
dium catalyst. Yamamoto and Bao also developed  related reactions 
involving benzyl chlorides.[10] These methods enabled the 
dearomative functionalization of inactive arenes as a limiting rea-
gent. However, the obtained products were unstable and difficult to 
derivatize to functionalized alicyclic systems, that restricting further 
synthetic application. We postulated that this instability was caused 
by the highly reactive exocyclic olefin of the products. To achieve 

the dearomative synthesis of multi-functionalized alicyclic mole-
cules, we selected aromatic cyanohydrin phosphates as the sub-
strate,[11] which possess a cyano group at the benzyl position (Fig-
ure 1B). These were readily prepared from the corresponding alde-
hydes in one step.[12] More importantly, since the dearomatized 
products have an α,β-unsaturated cyano moiety, they are expected 
to be functionalized through a conjugate addition. With this appli-
cation in mind, we herein report the development of dearomative 
allylation of aromatic cyanohydrins by a palladium catalyst. 

 

Figure 1. (A) Catalytic dearomative allylation. (B) Dearomative allyla-
tion of aromatic cyanohydrins  
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We initiated this study by investigating the reaction conditions 
using naphthalene cyanohydrin 1A with allyl trifluoroborate 2a 
(Table 1). As a first trial, our previous reaction conditions for 
dearomative allylation of benzyl phosphates were examined (Table 
1, entry 1).[9a] However, the reactivity of cyanohydrins and simple 
benzyl phosphates are rather different for this catalytic system, 
generating only the undesired benzyl-substituted product 4A in 
83% yield. We hypothesized that this site-selectivity occurred due 
to the highly electrophilic nature of the α-cyano moiety leading to 
undesired benzyl substitution. Thus, the reaction temperature was 
decreased from 60 °C to  room temperature. To our delight, the 
dearomative reaction proceeded to give the desired product 
(dearomative allylation product) 3A in 40% yield, along with the 
undesired 4A in a ratio of 1:1 (Table 1, entry 2). Lowering the reac-
tion temperature to 4 °C resulted in no reaction (Table 1, entry 3). 
Interestingly, when the ratio of metal/ligand was changed, decreas-
ing the amount of ligand improved this site-selectivity (Table 1, 
entry 2 vs. entries 4 and 5). Next, the effect of the ligand was inves-
tigated. Simple PPh3 decreased the yield of 3A and 4A while retain-
ing the site-selectivity (Table 1, entry 6). When using o-, m-, and p-
tolyl phosphines, it was found that m-tolyl phosphine was effective 
(Table 1, entries 7–9). Encouraged by the effect of meta-
substituents, we synthesized and evaluated several m-disubstituted 
triarylphosphines (Table 1, entries 10–13). As a result, electron-
rich m-disubstituted triarylphosphines were  
Table 1. Screening of Reaction Conditionsa 

 

entry ligand 
(mol %) 

base T /°C 3A+4A/% 3A:4A 

1 L1 (20) – 60 83 0:100 

2 L1 (20) – RT 82 49:51 

3 L1 (20) – 4 0 – 

4 L1 (10) – RT 61 74:26 

5 L1 (5) – RT 53 87:13 

6 PPh3 (5) – RT 36 86:14 

7 P(o-tol)3 (5) – RT 3 – 

8 P(m-tol)3 (5) – RT 46 91:9 

9 P(p-tol)3 (5) – RT 33 88:12 

10 L2 (5) – RT 35 91:9 

11 L3 (5) – RT 40 91:9 

12 L4 (5) – RT 44 95:5 

13 L5 (5) – RT 0 – 

14 L4 (5) Cs2CO3 RT 70 97:3 

 

a Conditions: 1A (0.20 mmol), 2 (0.20 mmol), Pd(OAc)2 (5 mol %), 
ligand, base (3.0 equiv), toluene (1.0 mL), 12 h. b NMR yield.  

found to be favorable for both reaction yield and site-selectivity, 
out of which m-dimethoxyphenyl phosphine L4 gave the best result 
(Table 1, entry 12). Delightfully, the addition of Cs2CO3 as a base 
improved the reaction efficiency, furnishing the product 3A in 70% 
yield with high site-selectivity (Table 1, entry 14).  

With the optimized conditions in hand, we evaluated the sub-
strate scope of the present reactions (Scheme 1). The reaction was 
applicable to C4-substituted naphthalenes. Several C4-alkylated 
naphthalene cyanohydrins underwent the reaction, giving the cor-
responding products 3 in moderate to good yields with high site-
selectivity (3A–3C). A sterically demanding isopropyl group was 
also compatible in this reaction (3D). A strained alkyl group such 
as cyclopropyl was tolerated to give 3E in moderate yield. Reactive 
functional groups such as acetal (3G), ester (3I), and silyloxy 
group (3J) were intact under the reaction conditions. Furthermore, 
allyl stannane was found to be applicable as the allylating agent in 
the absence of base, furnishing 3A in good yield with high site-
selectivity. It is noteworthy that these dearomatized products were 
reasonably stable, not decomposing during silica-gel column chro-
matography.  
Scheme 1. Substrate Scope a 

 
a Conditions. 1 (0.20 mmol), 2a (0.20 mmol), Pd(OAc)2 (5 mol %), 

L4 (5 mol %), Cs2CO3 (3.0 equiv), toluene (1.0 mL), RT, 12 h. b 1.0 
mmol scale. b Determined by 1H NMR. 

Me

CN

O
P
OEtO

OEt

KF3B

5 mol % Pd(OAc)2
ligand

base (3.0 equiv)

toluene, T °C

CN
Me

1A

2a (1.0 equiv)

3A

CN

Me

4A

R

R

R R

R

R

P

R = Me
t-Bu
OMe
CF3

(L2)
(L3)
(L4)
(L5)P

NMe2

L1

R

CN

O
P
OEtO

OEt

KF3B

5 mol % Pd(OAc)2
5 mol % L4

Cs2CO3

toluene, RT

CN
R

1

2a (1.0 equiv)

3

CN

R

4

3A
64% (97:3)
50%b (96:4)

3B
70% (98:2)

3C
57% (92:8)

3H (R = Me) 
3I (R = Ac) 
3J (R = TBS)

Isolated yield (ratio of 3:4)

CN
Me

CN
Et

CN

Me
Me

3D
52% (95:5)

3E
50% (91:9)

3F
62% (93:7)

CN CN CN

Me

Me

3G
61% (93:7)

CNCN

RO

O

O

Me

CN

O
P
OEtO

OEt

Bu3Sn

5 mol % Pd(OAc)2
5 mol % L4

toluene, RT
CN

Me

1

2b (1.0 equiv)

3A

CN

Me

4A
79% (96:4)c

Using allyl stannane

: 62% (97:3)
: 60% (93:7)
: 58% (93:7)

Isolated yield (ratio of 3:4)



 

A possible reaction mechanism is outlined in Scheme 2.[13] First 
oxidative addition of C–O bonds to palladium(0) species gives 
benzyl-palladium B, which is in equilibrium between σ- and π-
benzyl species. To this species, allyl borates undergo transmeta-
lation, generating allyl-palladium-benzyl intermediate C. Finally, 
reductive elimination forms the C–C bond at the remote-site, re-
leasing the dearomatized products with regeneration of the active 
palladium(0) species.[14]  
Scheme 2. Proposed Mechanism. 

 

At this stage, we speculate that the observed catalyst-enhanced 
site-selectivity may be triggered by the generation of coordinatively 
unsaturated palladium species B (Scheme 3). The reaction condi-
tions using a 1:1 ratio of palladium and ligand would generate a 
coordinatively unsaturated palladium intermediate. Thus, the allyl 
boron species can undergo transmetalation to give the allyl-Pd-
benzyl intermediate, followed by reductive elimination at the C4 
position to furnish the dearomatized product.[14] In contrast, when 
palladium and ligand were used in a ratio of 1:2 or more, coordina-
tively saturated species D would be generated as the major catalytic 
intermediate. Probably due to the highly electrophilic nature of the 
cyano-bearing benzyl carbon, the allyl borons likely prefers external 
attack onto D, giving the benzyl-substituted compound as the ma-
jor product.  

meta-Disubstituted triarylphosphines likely enforce the genera-
tion of coordinatively unsaturated palladium B by steric repulsion. 
According to Tsuji’s work, meta-disubstituted triarylphosphines 
have a bowl-shaped structure, accelerating the dissociation of other 
ligands but providing reaction space around the metal center.[15] In 
line with these reports, the use of meta-disubstituted tri-
arylphosphines would support the generation of a coordinatively 
unsaturated palladium species in this catalytic system.  
Scheme 3. Possible Role of Catalyst for Site-Selectivity. 

 

Although o-substituted triarylphosphines are also expected to 
give coordinatively unsaturated palladiums, they cannot provide 
enough reaction space around the metal center, blocking the de-
sired transmetalation of allyl borons.[16]  

Finally, we performed several transformations of dearomatized 
product 3A (Scheme 4). The α,β-unsaturated cyano moiety is ex-
pected to be functionalized through several nucleophilic additions. 
Although we expected that 1,4-addition would occur when using 
carbon nucleophiles, the reaction using lithioacetonitrile afforded 
1,6-adduct 5 instead. A similar regioselectivity was observed when 
nitromethane was reacted with 3A in the presence of DBU, furnish-
ing 6. This regioselectivity is likely due to the steric repulsion of the 
δ,γ-unsaturated olefin (disubstituted) vs the α,β-unsaturated olefin 
(trisubstituted) to circumvent the expected 1,4-addition. Further-
more, we succeeded in the reductive derivatization of 3A through 
global hydrogenation, furnishing substituted tetralin 7. Treatment 
of 3A with DIBAL was also successful to deliver enal 8.  
Scheme 4. Derivatization of 3A. 

 
In summary, we developed a dearomative allylation of aromatic 

cyanohydrins by a palladium catalyst. The combination of palladi-
um and m-disubstituted triarylphosphines enhanced site-selectivity, 
furnishing dearomatized molecules. Importantly, the dearomatized 
products were able to be derivatized to a variety of substituted ali-
cyclic systems. We believe that the present work would provide a 
useful synthetic entry to alicyclic molecules and lead to an in-depth 
understanding of the mechanism of related reactions. Further stud-
ies to expand the substrate generality and elucidate the mechanism 
are ongoing in our laboratory.  
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