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Abstract

The Molecular Sciences Software Institute’s (MolSSI) Quantum Chemistry Archive

(QCArchive) project is an umbrella name that covers both a central server hosted by

MolSSI for community data and the Python-based software infrastructure that powers

automated computation and storage of quantum chemistry results. The MolSSI-hosted

central server provides the computational molecular sciences community a location to

freely access tens of millions of quantum chemistry computations for machine learn-

ing, methodology assessment, force-field fitting, and more through a Python interface.
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Facile, user-friendly mining of the centrally archived quantum chemical data also can

be achieved through web applications found at https://qcarchive.molssi.org. The

software infrastructure can be used as a standalone platform to compute, structure,

and distribute hundreds of millions of quantum chemistry computations for individuals

or groups of researchers at any scale. The QCArchive Infrastructure is open-

source (BSD-3C), code repositories can be found at https://github.com/MolSSI, and

releases can be downloaded via PyPI and Conda.

1 Introduction

Data-driven research is uniquely positioned to advance the computational molecular sciences

(CMS), and the current rapid movement of the field towards modern data science techniques

only reinforces this stance. Successful examples of data-based initiatives in inorganic ma-

terials science include the Materials Project1 with 110,000+ registered users, the NOMAD

Laboratory2 with approximately 100 million stored computations, and AFlow3 with nearly

three million compounds. Collectively, these and other e↵orts are enabling new science in

their fields by allowing access to unprecedented quantities of data.4,5 Data repositories also

naturally enable more reproducible and replicable science.6,7 Up to this point, however, there

has been no similar-scale initiative for quantum chemistry (QC).

Quantum chemistry data currently reside in a dishearteningly wide variety of formats

and locations, often being found within supplementary information, on figshare,8 Zenodo,9

research group websites, “available upon request” from manuscripts, or lost entirely. The

result is a fragmented field where data cannot be easily aggregate data at scale over time

which provides additional insights.10 Any e↵ort to create a quantum chemistry data repos-

itory must share data in a manner that is more stable than current methods, is readily

accessible, and survives past the data’s originator.

Quantum chemistry is naturally suited to archiving its calculations. Although a typical

quantum chemical calculation requires substantial computational resources (�1–100 core-
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hours and �1–100 GB of memory), its primary energy, gradient, Hessian, or property output

data occupy very little space (�2kB)1. Based on a sample of 18+ million results already in

the central MolSSI QCArchive server (mqcas) described by this manuscript, we estimate

that 500 million computations can be stored per terabyte (at a cost of �$200–500 for long-

term storage disks and power), representing approximately one billion core-hours of compute

time. While academic compute-resource cost is di�cult to measure, a compute-optimized

AWS cluster costs approximately $0.01 per core hour, yielding a total cost of �$10 million

for one billion core-hours. The general guidance, then, is storing quantum chemistry data

is currently 50,000 to 100,000 times cheaper than regenerating it. Put another way, storing

quantum chemical results is justified so long as 0.01% of results are reused just once.

The mqcas o↵ers a central hub for democratizing community-led large-scale data cam-

paigns and commonly used datasets. For example, in a project partially funded by the Open

Force Field Consortium (OpenFF),11 the mqcas is coordinating a massively distributed

queue of torsion drive computations, wherein multiple academic and industry research groups

contribute computational resources to create force fields for drug-like molecules through

a common best-practices pipeline. Each participating group benefits from the sharing of

computational resources for their specific requirements while also adding to the synergistic

aggregation of computations of others into massive datasets, queryable on demand. The

mqcas hosts these datasets—which include quantum chemical properties such as geome-

tries, energies, nuclear Hessians, electrostatic potentials, and wavefunctions—as a resource

to the community, for whom they can be of direct and immediate use in multiple application

domains, including biomolecular simulation, machine learning (ML), instructional courses in

physical and quantum chemistry, quantum chemical methodology research, drug discovery,

and more. QCArchive makes the ability to perform advanced data-driven research, like

that of OpenFF, available to all with our open-source strategy and centralized hosting of

quantum chemistry data.

1
Orbitals and other atomic orbitals quantities radically increase the total size and are stored sparingly.
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Beyond force-field fitting, applications such as cheminformatics and training ML models

for QC also need to generate large-scale quantum chemical datasets. A common complaint

that MolSSI has heard after interviewing over a hundred groups is that producing useful

large-scale quantum chemical research datasets requires considerable specialized expertise

in multiple domains (cheminformatics, quantum chemistry, high-performance computing,

database management), and tools to simplify the management of computation and data

would be of high value to enabling research in these communities.

2 Goals

For the QCArchive project, we separate our objectives for the QCArchive into software

infrastructure goals usable by the greater CMS community (which powers the mqcas) and

MolSSI’s goals for the mqcas. The mqcas aspires to organize, curate, and share quantum

chemistry data for the benefit of the entire computational molecular sciences community.

These data include molecules, computed properties from single-point calculations (energies,

gradients, Hessians, dipole moments, orbitals, etc.), and composite data from series of calcu-

lations (geometry optimizations, transition-state searches, molecular dynamics trajectories,

etc.).

Major mqcas initiatives are sourced through community engagement and requirements

gathering; these initiatives currently fall into two active areas. The first is to curate method-

ology benchmark sets such as the S2212 intermolecular dataset of small biomolecules and the

YMPJ13 dataset of natural amino acid conformers. Once ingested, a standard set of DFT

and MP2 methods are computed for them using a variety of basis sets, which can then be

compared against their literature benchmark values. (See Sec. 4.2 to browse.) Currently, the

mqcas contains 35 benchmark datasets from the literature, and adding additional datasets

is an ongoing process. The second major initiative is to curate machine learning datasets

from the literature (such as ANI-114,15 and QM916) and compute a standard set of DFT
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functionals for each of them. Currently, 20 machine learning datasets have been curated,

and the computation process is ongoing. (See Sec. 4.1 to browse.) The mqcas also adheres

to Findable, Accessible, Interoperable, and Reusable (FAIR)17 data practices.
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Figure 1: Relationship between the QCArchive project, MolSSI, and the CMS community.

The mqcas can also be used by the community for those in collaboration with MolSSI

and who have target data in mind. In these instances, the community groups can submit

new datasets and computations to the mqcas but are required to supply physical resources

to evaluate submitted computational tasks. Several examples are the Open Force Field

Initiative to expand data for force field fitting and “A Collection of Chemistry DataBases”

(ACCDB)18 who is assisting the expansion of literature datasets. Expanding the community

program is central to the long term goals of the mqcas, and additional community groups

are actively sought.
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The software stack supporting the mqcas, dubbed QCArchive Infrastructure, is

open-source and modular for reuse by the CMS community. The QCArchive Infras-

tructure can be used by individuals, single research groups, or multiple research groups

depending on the data sharing targets of the groups in either public or private settings.

Private QCArchive Infrastructure instances are fully as capable as mqcas but are

isolated from the public mqcas and do not communicate until and unless the owner chooses

to share their data. The open-source QCArchive Infrastructure is already used by a

number of research groups that are una�liated with MolSSI and have now contributed back

dozens of new software features that enhance the capabilities for all researchers using the

infrastructure to simplify both their computation and data management.

3 Infrastructure

3.1 Design goals

• A modular platform. Though it is often appealing to develop monolithic software

to ensure integration between all components, we believe modular software promotes

wider adoption in the open-source arena. This loose coupling allows each building

block of the core infrastructure to be used in projects beyond the QCArchive scope.

• Building on community software. The QCArchive platform exists to promote and

link, rather than replace, existing community software. This is evident in several

building blocks which collectively wrap dozens of community-built codes and seek to

add more through unified interfaces.

• An open developer community. All software developed by MolSSI exists on GitHub,

where contributions, discussion, criticisms, and bug reports are encouraged and recorded

for posterity.

• Software practices. The infrastructure follows MolSSI’s software “Best Practices”19,20
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guidelines for contributing, layout, testing, and module distribution.

• Software distribution. The monthly release cycle is automatically deployed to PyPI,21

Conda,22 and Docker23 images to ensure ease of use in other projects. Examples of all

software projects can also be automatically deployed via Binder24 and Google Colab.25

3.2 Software Components

The QCArchive Infrastructure software components unify to form a platform that

can represent computations as structured data, automatically run those computations on

a diverse set of physical resources, store computation results, and provide a Python-based

front-end to submit and query computations. In addition to forming a complete platform, the

four software components were carefully constructed to be usable outside of theQCArchive

stack to maximize community utility and reusability. A brief overview of each component

can be found below:

• QCSchema- A community built key-value/array description of QC (or QC-like) ob-

jects such as molecules and input/output quantities from QC programs. https:

//github.com/MolSSI/QCSchema

• QCElemental- Periodic table information, version-controlled physical constants,

molecule parsing, testing infrastructure, and QCSchema models. https://github.

com/MolSSI/QCElemental

• QCEngine- Quantum chemistry and CMS community program executor with QC-

Schema enforced input/output models. https://github.com/MolSSI/QCEngine

• QCFractal- Distributed task scheduler and executor, database store for chemistry

results, and organization of results at scale. https://github.com/MolSSI/QCFractal

• QCPortal- Data querying, visualization, organization, and statistical analysis for

chemistry-related results and a front-end client for QCFractal. https://github.
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com/MolSSI/QCPortal

3.2.1 QCElemental

QCElemental encodes data layouts for fundamental CMS entities like Molecule, Opti-

mizationResult, and BasisSet into object-oriented “models” that can be used in Python. In

addition to forming a Python reference implementation of the community-built QCSchema,

the models impose validation to layout (e.g., 3 ⇤ Natoms coordinates) and physics (protons

� electrons = charge) beyond what JSON Schema26 (the implementation of QCSchema)

can specify. Models further define convenience functions like Molecule string parsing, coor-

dinate alignment, and structure measurement. The serialization of models is automatic and

transparent, including binary/JSON and shaped/flat array data, and recursively extends to

all hierarchical models. By embellishing the base QCSchema data layout, QCElemental

can avert much of the serialization, translation, resizing, and validation code that inevitably

surrounds every downstream QCSchema implementation. This focuses community discus-

sion on the implicit contracts for QCSchema transactions that JSON Schema cannot define

and provides modular building blocks for CMS applications.

QCElemental also collects metadata vital to reproducibility in CMS that are di�cult

to find in structured format (often websites or journal tables) and that are being continu-

ously refined, namely physical constants, periodic table metadata (masses, common isotopes,

etc.), covalent radii, etc. These collections are placed behind a light Python API, labeled

by context (e.g., CODATA2018), and backed by unit conversion tools. QCElemental can

thus facilitate migration of community software toward modern and consistent values, while

ensuring that with a context switch, conversions to older data are reproducible. QCSchema

values are stored in atomic units to minimize susceptibility to such details and the QCEle-

mental arbitrary unit conversion is used to support the diverse fields and units CMS codes

demand. A small QCElemental example can be seen in Fig. 2.
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Figure 2: A Jupyter notebook showing a Molecule object created from an XYZ string, the O-
H distance (Bohr) and H-O-H angle (degrees) measured, and the computation of a conversion
factor for a gradient.

3.2.2 QCEngine

QCEngine is a unified function-based execution engine that providesQCSchema input and

output objects for a variety of programs. QCEngine provides this uniform input/output for

any program which can be expressed within the restraints of the schema and, as such, covers

a variety of quantum chemistry, semi-empirical, force field, and machine learning inference

programs. QCEngine works by either interfacing with a program directly at the Python

layer or translating the domain-specific input file that a program expects and parsing the

subsequent log file or, if available, structured output files. The execution layer automatically

discovers the locations and versions of available programs, configures them based on physical

resource constraints such as memory and number of physical cores, and isolates and cleans

up scratch directories.

The persistent use of QCSchema descriptions in QCEngine simplifies writing software

that uses CMS programs. The input to all computations is a QCSchema specification doc-

ument, such as an AtomicInput describing standard input to atomistic calculations (e.g.,
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gradient evaluations). Very few aspects of the inputs to QCEngine are tied to the actual

code which will fulfill the specified calculation, allowing users to e�ciently perform compu-

tations with di↵erent quantum chemistry codes as scientific demands change. The output

from the codes is also returned in a standardized form, which simplifies databases and any

software to analyze the outputs of a QC program. Two examples: 1) a Hessian computed

with Psi427 and NWChem28 can be analyzed with the same software and 2) the geomeTRIC

optimization package29,30 uses QCEngine as an interface to di↵erent quantum chemistry

packages so as to be agnostic the backend program.

QCEngine also automatically gathers information needed to reproduce calculations.

The input QCSchema completely specifies and documents the calculation that was per-

formed, and the QCEngine executable records all required outputs. All computations that

are evaluated with QCEngine return provenance information including program version,

hardware specification, physical resources utilized, and QCEngine version. Tracking this

information provides both reproducibility and history of every computation undertaken with

this software platform. The inputs, provenance, and outputs of a calculation are all stored

in the same document, which makes it less likely that metadata will be lost.

Currently the following programs are interfaced to QCEngine:

• Quantum Chemistry: CFOUR,31 Entos,32 GAMESS,33 Molpro,34,35 NWChem,28 Psi4,27

Q-Chem,36 Terachem,37 Turbomole38

• Semi-empirical: MOPAC39

• ML Potential: TorchANI14,40

• Molecular Mechanics: RDKit,41 OpenMM42

• Analytical Corrections: DFTD3,43,44 MP2D45,46

• Geometry Optimizers: geomeTRIC,30,47 Berny48
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Interfacing to additional programs is an ongoing e↵ort that is open to community con-

tributions and suggestions. Many of the wrappers for specific software has been contributed

by non-core QCEngine developers, such as Entos, Molpro and MOPAC. A short example

computation can be found in Fig. 3.

Figure 3: A Jupyter notebook demonstrating pulling a water geometry from the PubChem
database49 and computing both Q-Chem and Psi4 with the same input. Note the di↵erence
in absolute energies is primarily due to the fact that Q-Chem uses direct SCF algorithms by
default while Psi4 uses density-fitting.

3.2.3 QCFractal

QCFractal is the central server of the QCArchive platform, providing distributed com-

puting, data storage, and data querying capabilities. Fundamentally QCFractal is a

campaign manager designed for long-duration (years) deployments to passively manage all

computation and data storage requirements for an individual researcher or groups of re-

searchers concurrently. For reference, the mqcas has currently run for eight months without

issue, serves data to over a thousand unique users per month, and evaluates 1–5M tasks per

month. It is estimated that the mqcas has the projected capacity to scale by at least 15

11



fold without optimization.

Storage of computations and associated metadata is accomplished by using a SQL re-

lational database (PostgreSQL50). The SQL database is structured so that each type of

QCElemental object stored (Molecule, AtomicResult, etc.) has its own table in the

database, and composite objects like AtomicResult, which contain a Molecule object in-

ternally, reference the required table instead of storing the object. For example, a single

Molecule object can be related to many di↵erent energy or gradient calculations so that the

molecule is not duplicated, saving space, and all computations related to the molecule can be

quickly queried. Each stored object has a carefully constructed unique identifier that can be

computed from the object itself. The unique identifier makes it trivial to identify duplicate

records and prevent the same calculation from being run twice. If a computation with the

same molecule is requested by another computation, each computation links to the same

molecule in the database. This linking structure makes tedious composite computations of

multiple molecular properties e↵ortless.

To evaluate tasks, QCFractal provides a central task queue, which can be evaluated by

a single or many “managers” who interface with a physical resource (campus cluster, super-

computer, cloud resource, or workstation). Each manager can consume either the entire or

a fraction of the physical resource, depending on configuration, through a unified cluster in-

terface. Mangers use existing task execution systems like Dask,51 Parsl,52 RADICAL,53 and

Fireworks54 to accomplish high-throughput distributed computing within a given resource,

leveraging large amounts of software infrastructure work by the community. In particular,

for traditional HPC resources, these task execution systems hook into queuing systems like

SLURM55 to submit “workers” to nodes, which in turn evaluate tasks. Each of these exe-

cution systems eliminates the need for humans to submit each computation to the queuing

system. The managers stay resident on the system and can automatically remove or request

new resources depending on the number of tasks in the central task queue. A diagram of a

task execution system is given in Fig 4. The end result is that users submit tasks through a
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single interface, and the tasks are automatically evaluated on any physical resource to which

the user has access.

QCFractal can also run workflow “services” to orchestrate sophisticated computa-

tional campaigns built out of interdependent tasks. For example, a TorsionDrive56 service

will compute the energy surface of a molecule at a frozen set of dihedral coordinates. The

TorsionDrive program is a standalone open-source package57 that implements an iterative

procedure for computing smooth dihedral scans. At each step in the iterative TorsionDrive

service, new geometry optimizations are supplied by the TorsionDrive package and placed

into QCFractal’s central task queue. Once all computations for each iteration are com-

plete, QCFractal uses the TorsionDrive package to discover the starting geometries of the

next round of geometry optimizations. The TorsionDrive service is iterated until the entire

dihedral scan has been completed, and a smooth energy profile has been achieved. The

mqcas routinely iterates thousands of services like TorsionDrive concurrently to completely

saturate available computational resources.

In addition to the TorsionDrive service, a GridOptimization service that can do multi di-

mensional scans of bonds, angles, and dihedrals combined is also implemented. Many future

services are in development such as automated conformational searches, reaction pathways,

finite di↵erence gradients and Hessians, and more. A core feature of the services is that

they can import the logic of di↵erent programs and request standard building blocks such

as energy and geometry optimizations from the central task queue.
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Figure 4: The full QCArchive Infrastructure and how each layer and module commu-
nicates. Between di↵erent locations, all pieces communicate over TCP/IP protocols; within
individual boxes, all pieces are connected through a single Python interpreter; and between
a resource task queue and workers, communication can come in a variety of RPC sockets
over either MPI or local Ethernet.

3.2.4 QCPortal

QCPortal is a front-end client for QCFractal that is able to access data from the server

in a user-friendly fashion and spawn new compute tasks to be evaluated. The basic orga-

nizational unit of QCPortal is the collection, a grouping of computations into commonly

usable forms. For example, the “Dataset” collection is a dataframe (two-dimensional tabular

data) with rows corresponding to named Molecules and columns corresponding to a model

chemistry (e.g., B3LYP-D3/def2-svp). The cells in the dataframe reference individual com-

putations in the QCFractal database. New molecules or model chemistries can be added

to a Dataset at any time and will be tracked by the Dataset for future use. Data handling

is supported by the popular Pandas58 library for manipulating dataframe objects.

Interactive Python sessions such as Jupyter59 and Google Colab25 are core features of

QCPortal allowing real-time manipulation of data, visualization of common properties,

and built-in charts and properties. This includes visualization capabilities for Molecule ob-

jects (supported by NGLView60), automated performance characteristics of methods com-

puted on Datasets, and graphs that demonstrate the energy profile of a geometry optimiza-
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tion per step.

Figure 5: An image showing QCPortal pulling the S22 Dataset from the mqcas, listing
all current B3LYP interaction energies, and rendering an example molecular complex from
the dataset.

3.3 Examples

A full software stack example is provided in the form of a TorsionDriveDataset, which

computes TorsionDrives for di↵erent molecules at multiple levels of theory. Computation

with QCFractal Datasets typically happens in three stages: 1) defining the molecules
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and relevant metadata (e.g., the dihedral angle to scan) in the Dataset, 2) the addition of

computation specifications for evaluation, and 3) querying of the data during or after the

computations have completed.

For the first stage, aQCFractal client object is created that connects to aQCFractal

server on the internet. In this example, the QCFractal server is on the same computer

as the Jupyter Notebook. A new TorsionDriveDataset is then created with the name “TD

Demo”, and, once created, this Dataset is permanently in the server unless explicitly deleted.

Next, hydrogen peroxide and butane geometries are pulled from QCPortal’s small library

of testing molecules. In general, molecules can be generated and imported from half a dozen

common file formats. Molecules are added with an alias for later reference along with the

zero-index dihedral specification and the granularity of the torsion angle scan grid in degrees

(Fig. 6).

Figure 6: Setup of a new Dataset object.

The second stage involves the specification of the level of theory for each TorsionDrive

computation. To provide a diverse example, a force field (MMFF9461), machine-learned po-
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tential (ANI-1x62), and a quantum chemistry level of theory (B3LYP-D3(BJ)/def2-svp63–65)

are chosen. For each specification, the geometry optimization program, method, basis set

(optionally), and gradient evaluation program are also chosen. Finally, calculations are sub-

mitted to the QCFractal server’s queue (Fig. 7).

Figure 7: Computation on a Dataset object.

The final stage assumes that su�cient time has passed to evaluate the requested compu-

tations. The researcher can then pull the TorsionDriveDataset from the server and begin to

explore the results. Shown is a simple example plotting the relative energy as a function of

the dihedral angle for butane (Fig. 8). In addition to the plot, every geometry optimization,

molecule, gradient evaluation, logfile, and other computational detail can be queried and

analyzed.
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Figure 8: Visualization of a dataset object.

Large datasets in the mqcas can contain hundreds of thousands of molecules (rows) and

hundreds of computational methods (columns).

4 Web Applications

To broaden the accessibility of CMS data beyond Python and Jupyter users, theQCArchive

also provides access to its data through Web applications (Web apps). Web apps serve users

at all levels, from novice undergraduate students to the most advanced researchers and com-

panies. The goal is for users to view and explore data from the mqcas in a facile but powerful

way, making quantum chemistry available for general computational molecular scientists for

a variety of use cases.

Each app is developed as a separate Flask-based66 micro-service with all apps available

through the main QCArchive Web portal (https://qcarchive.molssi.org). This ap-
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proach enables easy extension and addition of new apps and potential contributions from

the community to develop more apps. Plotly Dash
67 is used to compose web apps with-

out requiring the use of Javascript, simplifying the process of hosting and creating new web

applications. The downside to Dash is that fine-tune control over the web app is lost and

missing features require a more complex implementation making it unsuitable for every web

app.

Currently, the QCArchive portal includes two apps, and more are under development

with partners like the Science Gateways Community Institute68 to work on the interactive

app needs of the community. A brief description of current Web apps follows.

4.1 Machine Learning Datasets Web App

The MolSSI Quantum Chemistry Machine Learning (ML) datasets repository provides a

web app front-end to the curated ML datasets in the mqcas. These currently number 20,

including ANI-1,14,15 PC-9,69,70 and ISO-17,71–73 and more are continuously added. Datasets

are ingested into a common format of structured metadata and are available for download in

text format, or in structured HDF5 format. Figure 9 shows a screenshot of the ML datasets

repository. All relevant citation information is shown to ensure the credit to the original

authors is correctly assigned.
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Figure 9: QC Machine Learning Datasets Repository

4.2 Reaction Datasets Web App

The reaction datasets viewer app provides interactive visualization (see Fig. 10) for bench-

marking, providing statistics on hundreds of DFT and semiempirical methods for dozens of

community benchmark datasets such as S22,12,74 HSG,74,75 ACONF,76 HTBH,77 and SSI.78

Analysis through the app can drive best practices for a given chemical problem while

also considering user time and resource constraints. One can imagine pre-defined sets of

tautomers, conformations, torsional scans, and dimers which have been pre-evaluated over

several kinds and levels of theory, e↵ectively providing a framework with which to quickly

evaluate emerging methods
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Figure 10: Reaction Datasets Viewer app.

4.3 Other Apps

Additional apps are being developed based on their usefulness and input from the commu-

nity. For example, a common question that we have heard is the attempt to estimate the

time a given quantum chemistry computation will take. This is often hard for a human to

accomplish as the steep scaling of quantum chemistry methods can easily mean the di↵erence

of one to two orders of magnitude.

The quantum chemistry execution time estimator app predicts the time of a quantum

chemistry computation given a molecule (such as SMILES, InChI, or common file formats

like XYZ), basis set, and level of theory. In addition, time estimations will vary with respect

to the number of threads provided and the physical hardware used. The prediction is based

on a machine learning model trained with hundreds of thousands of computations that exist

in the mqcas and is planned to be released shortly.
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5 Conclusions

There is an urgent and growing need for data best-practices in the computational molecular

sciences as the sheer number of quantum chemistry computations being evaluated across the

community continues to grow exponentially. This growth also puts a focus on the need for

automation, replicability, and reproducibility.6 The QCArchive addresses this need in the

QC space through a MolSSI-hosted centralized data server (mqcas) and a Python-based

software infrastructure (QCArchive Infrastructure).

The mqcas represents an ongoing e↵ort to gather, organize, host, and democratize quan-

tum chemistry data for the benefit of the broader molecular sciences community. This goal

is achieved first through FAIR data hosted by the mqcas and through focusing on the ar-

eas of force-field fitting, methodological benchmarking, and machine learning. These data

are provided in full through either a Python or web interface. To further broaden accessi-

bility and utility of the mqcas data, the QCArchive project is developing web apps that

present chemical insights directly to users without the need for programming ability or data

manipulation.

TheQCArchive Infrastructure software is composed of a number of building blocks

each at a di↵erent level of interaction from fully automated workflows on distributed com-

puting to the conversion factor between units. Independently, the software building blocks

are in use by the community outside of the QCArchive (such as Psi4, geomeTRIC, and

OpenFF) and the hope is these tools will power a larger software ecosystem built o↵ of

QCSchema. When these building blocks are used together they create a unified platform

for computing, structuring, and distributing computations and procedures at scale.

Taken together, these e↵orts have produced a substantial resource for the CMS commu-

nity. At the time of writing, the mqcas contains 12 million molecules, 18 million calculation

results (with full provenance information), and 96 data collections. The QCArchive In-

frastructure demonstrates best practices in community-focused software development

with 28 external code contributors, and use in 18 external software projects since its beta
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launch in August 2019. We hope this kind of software infrastructure and data gathering

methods will push CMS towards a more interoperable, data-driven, and computation com-

moditizing future.
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J. Jusélius, T. Kirsch, K. Klein, W.J. Lauderdale, F. Lipparini, T. Metzroth, L.A.

Mück, D.P. O’Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schi↵mann,

W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D.

Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS

(P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen),

and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see
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(59) Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kel-

ley, K.; Hamrick, J.; Grout, J.; Corlay, S.; Ivanov, P.; Avila, D.; Abdalla, S.; Willing, C.

32



Jupyter Notebooks – a publishing format for reproducible computational workflows. Po-

sitioning and Power in Academic Publishing: Players, Agents and Agendas. 2016; pp

87 – 90.

(60) Nguyen, H.; Case, D. A.; Rose, A. S. NGLview–interactive molecular graphics for

Jupyter notebooks. Bioinformatics 2017, 34, 1241–1242.

(61) Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and

performance of MMFF94. Journal of computational chemistry 1996, 17, 490–519.

(62) Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E. Less is more: Sam-

pling chemical space with active learning. The Journal of chemical physics 2018, 148,

241733.

(63) Becke, A. D. Density-functional thermochemistry. I. The e↵ect of the exchange-only

gradient correction. The Journal of chemical physics 1992, 96, 2155–2160.

(64) Grimme, S.; Ehrlich, S.; Goerigk, L. E↵ect of the damping function in dispersion cor-

rected density functional theory. Journal of computational chemistry 2011, 32, 1456–

1465.

(65) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys.

Chem. Chem. Phys. 2005, 7 .

(66) Flask: web development, one drop at a time For the current version, see https:

//flask.palletsprojects.com/en/1.1.x/ (accessed January 2020).

(67) Dash: Build beautiful, web-based analytic apps. No JavaScript required. For the cur-

rent version, see https://plot.ly/dash/ (accessed January 2020).

(68) Wilkins-Diehr, N.; Zentner, M.; Pierce, M.; Dahan, M.; Lawrence, K.; Hayden, L.;

Mullinix, N. The Science Gateways Community Institute at Two Years. Proceedings of

33



the Practice and Experience on Advanced Research Computing. New York, NY, USA,

2018.

(69) Nakata, M.; Shimazaki, T. PubChemQC Project: A Large-Scale First-Principles Elec-

tronic Structure Database for Data-Driven Chemistry. Journal of Chemical Information

and Modeling 2017, 57, 1300–1308.

(70) Glavatskikh, M.; Leguy, J.; Hunault, G.; Cauchy, T.; Da Mota, B. Dataset’s chemical

diversity limits the generalizability of machine learning predictions. Journal of Chem-

informatics 2019, 11, 69.

(71) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Quantum chemistry

structures and properties of 134 kilo molecules. Scientific Data 2014, 1, 140022.
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