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Abstract

Motivation: Chemical space embedding methods are widely utilized in various
research settings where dimensional reduction, clustering or effective visualization
is required. Still, it remains unsolved to date to embed molecules into a chemical
space in which chemotypes are organized along clear principles and which can be
intuitively interpreted by medicinal chemists.

Results: In this study we present the Hilbert-Curve Assisted Space Embedding
(HCASE) method which was designed to provide intuitive space embedding
results. The method achieves this objective by mapping a set of reference
scaffolds and, subsequently compounds, to a pseudo-Hilbert-Curve (PHC) with
the help of the known Scaffold-Key algorithm. The PHC can be embedded into a
higher dimensional space readily according to established algorithm. Through a
series of experiments, we successfully demonstrate the unique and novel
propertise of the HCASE method in this proof-of-concept study. Experiments
involved a large and a natural product-derived set of 63, 783 and 546 scaffolds,
respectively, both from the ChEMBL database. Chemical space embedding was
performed on the DrugBank and CANVASS libraries. Comparative analysis
demonstrated that the performance of the HCASE method is not only on par, to
say the least, with prior art method, but it excelled in providing intuitive chemical
space embedding.

Availability: https://github.com/ncats/hcase

Keywords: chemical space embedding; clustering; Hilbert-Curve; Scaffold-Keys;
HCASE; dimension reduction

1 Introduction
Embedding molecular structures into a chemical space is a versatile technique

that is central to a wide range of data analysis scenarios in cheminformatics. A

number of methods, like principal component analysis (PCA) [1], multi-dimensional

scaling (MDS) [2], t-Stochastic Neighbor Embedding (t-SNE) [3], Uniform Manifold

Approximation and Projection (UMAP) [4] and the self-organizing maps (SOM)

method [5], help reduce the dimensionality of data to facilitate subsequent cluster

analyses or to provide insightful visualizations. While most of these methods can

be performed in a relatively straightforward manner from an operational point of

view, this somewhat deceiving simplicity comes at the cost of somelimitations to

applicability and interpretability.

For instance, PCA [1] can only analyze linear relations present in the data at hand.

This limitation is overcome by non-linear approaches, such as the related non-metric

multi-dimensional scaling (MDS) [2] and manifold-supported methods [6], such as
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t-Stochastic Neighbor Embedding (t-SNE) [3] and the recent Uniform Manifold

Approximation and Projection (UMAP) [4].

All of these non-linear methods, with the exception of MDS are challenged with

the means of computing the distance between the embedded datapoints. Interpreta-

tion of the underlying organizing principle of the embedded structures is convoluted

for all known space-embedding methods. Also, the chemical space created by both

linear and non-linear methods is influenced by the dataset at hand. This affects

the interpretation of results, and makes the comparison of individually embedded

datasets quite difficult. While this can be addressed to some extent by merging the

datasets before the embedding process, but this solution is not rubust against the

incorporation of additional data.

Background
The aim of performing a chemical space embedding analysis is to create a “map” of

compounds. A coumpound’s position in this map ideally should reflect structural

and/or other profperties of interest (e.g. physichochemical properties), and as a re-

sult, the relative position of compounds within the map should be reflective of their

similarities in these properties. A chemical space map can help medicinal chemists

make quick, intuitive analyses about the structure and properties of compounds in

a project based on their location in the map. For example, one would expect that

compounds within the same chemotype in a structure-activity-relationship (SAR)

series will be placed closely on the map, whereas dissimilar chemotypes farther

apart.

While creating such maps is entirely possible with existing methods, e.g. with t-

SNE, medicinal chemists and data analysts are challenged with the interpretations

of the results. For demonstration purposes, a map (embedding) of approved drugs

has been generated using the t-SNE algorithm.

In order to demonstrate various aspects of the chemical space embedding process,

five drug molecules were selected randomly, as well as the five nearest neighbors

(NNs), i.e. structurally most similar five compounds, of each (see: Fig. 1 ).

As shown on Fig. 2a, the resultant map shows a great clustering and separation of

similar and dissimilar molecules, respectively, as one would expect. However, from a

medicinal chemist’s standpoint some important aspects of the data analysis remain

hidden.

For instance, a chemist might want to know if certain regions of this map encode

certain type of chemotype, e.g. based on size, complexity and so on. Unfortunately,

maps generated with existing embedding methods provide little, if any help to

chemists in this regard. Furthermore, generating a map often requires setting cer-

tain non-intuitive parameters, like the perplexity in the case of t-SNE, which many

chemists may not be familiar with. This parameter influences which compounds

should be closely or farther apart the resulant chemical space map [7]. The choice

of the parameter can affect the layout of the map, and often in an unpredictable

manner, as it is demonstrated on Fig.2b.

Finally, the layout of the map generated by the same space embedding method can

be greatly altered when one adds or removes molecules when repeating the embed-

ding process, as demonstrated on Fig. 1b-1c. This makes it challenging to compare
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the embedding of a library that is changing over time. The only difference between

the two maps is that the Fig.2c was generated using the 90% of the molecules of

the embedding used in Fig.2b and the same highlighted molecules. The two maps

show little resemblance despite the relatively small change in input.

Further information regarding the embedding process of drug molecules with the

t-SNE algorithm is provided in Section “Embedding of Drug Molecules with t-SNE

Algorithm” and Fig. S1-S2 in Additional File 1.

In this study we introduce a novel space embedding method that addresses the

above detailed challenges of existing space embedding methods in creating an intu-

itive chemical space.

Related Methods
Besides the general space embedding methods, chemistry specific space embed-

ding methods exist [8]. The PCA-based “ChemGPS” [9] and Molecular Quantum

Number [10] methods address the issue of creating embedding via a mechanism that

is not influenced by the dataset at hand[11]. The SOM-related “generative topo-

graphic mapping GTM” method by Lin et al [12], and the “constellation plots” [13]

take advantage of scaffold-compound relations to enhance the embedding. Further-

more, the GTM method defines a grid with the help of “landscape structures” that

guides the subsequent embedding of compounds. While the GTM and constella-

tion plot methods indeed address many challenges, the organizing principle of the

compounds, or landscape structures of both methods is based on heuristics, and is

not intuitive from a medicinal chemistry standpoint. A recent method (TMAP) [14]

uses a combination of nearest neighbor and minimal-spanning trees and force-based

network layout to generate embedding, but the organizing principle of the method

is still based on heuristics. Thus, it cannot guarantee that regions in the resultant

map can be intuitively interpreted.

The above methods intended to solve known challenges related to chemical space

embedding, but none of them has solved all the aforementioned challenges to a

degree that would result in intuitive chemical space maps for medicinal chemists.

Nevertheless, these methods gave rise to many important concepts and aspects that

are utilized in this study.

In this proof-of-concept study, we set forth criteria for a chemical space embedding

method that provides intuitive results and easy interpretation from a medicinal

chemistry point of view and devised a new method that produces results reflective

of such characteristics. In the following section, the new method is introduced in

details and its applicability is demonstrated via a set of experiments.

2 Computational Methods and Datasets
In this section, we detail the development of a novel chemical space embedding

method. The description of other analytical methods and dataset involved in this

study is also provided below.



Zahoránszky-Kőhalmi et al. Page 4 of 31

2.1 Development of the Intuitive Structure Embedding Method

2.1.1 Rationale

Here, we define a set of criterions underpinning a method that is capable of providing

a chemical space embedding so that the outcome of the analysis can be interpreted

intuitively from a medicinal chemistry point of view:

• coordinates of structures generated by space embedding process is not influ-

enced by the structural features of other compounds in the compound set to

be embedded

• domains of a generated chemical space should convey well defined structural

meaning

• mapping of structures to coordinates is deterministic

• the organizing principle should be simple to understand and should follow a

well defined ordering of structures

• outcomes of space embeddings performed independently should be directly

comparable both numerically and visually

• method must not be limited to capturing only linear relations

• ability to process reasonably large datasets (consisting of thousands of struc-

tures)

• ability to quantify distance between structures in the embedded space.

Existing chemical-space embedding methods, to our knowledge, don’t meet all

of the above criteria. However, most of these methods could be turned into one

that meets almost all of these criteria following a two-step procedure. First, a pre-

embedding is generated with the help of a pre-defined set of “landscape” structures,

e.g. Bemis-Murcko scaffolds (BMSs) [15]. Next, the most similar landscape structure

is identified for each compound in the data set at hand. Then, each compound would

assume the coordinates of the landscape structure identified as the most similar to a

given compound. However one of the most important criteria from the interpretation

point of view is not met when using the above embedding strategy with existing

methods in that the organizing principle of pre-embedding of landscape structures

remains mostly hidden for the researcher. Moreover, the organizing principle is

practically the result of certain optimization processes that largely depend on the

input data at hand.

In this study, we aimed at constructing an embedding method that addresses

this limitation so that it provides a simple, yet practical, embedding that can be

interpreted intuitively by chemists and data analysts.

2.1.2 Method Design

In the light of the above collected criteria, we devised a novel chemical space em-

bedding algorithm. The devised method was built on incorporating critical concepts

introduced by prior art methods: use of landscape objects organized on a grid, use

of embedding mechanism that is not influenced by the compound set to embedded,

and the ability to change resolution of the embedding [5, 9, 12, 10, 11].
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The foundation of the novel method is provided by a family of so-called space

filling curves, namely by Hilbert-Curves [16, 17, 18]. Provided that an ordering be-

tween data points, here BMSs, exists, with the help of Hilbert-Curve it is possible

to embed the data points into a space of higher dimension, such as 2D, following an

exact mathematical process. This embedding is a limit of embeddings resulted by

utilizing so-called pseudo-Hilbert-Curves (PHCs) of increasing order. The peculiar

characteristics of PHCs is that increasing the order of the PHC the position of a

given data point will converge to a limit in the higher dimension, i.e. in the embed-

ded space the positions of data points are stabilized utilizing PHCs of increasing

order. Considering that implementation exists for embedding PHCs, the question

remained: How can one obtain a well-defined and ordering of BMSs? Luckily, the

Scaffold-Key (SK) algorithm addresses this exact question by providing a solution

for the “intuitive” ordering of BMSs that was motivated by the analytical thinking

of medicinal chemists [19]. For more information on the SK algorithm please refer

to Section 2.3.

In the following section we provide the details of the structure embedding method

that was designed with all the considerations detailed above.

2.1.3 Hilbert-Curve Assisted Structure Embedding Method

In order to define the chemical space of the Hilbert-Curve Assisted Structure Em-

bedding (HCASE) method, a set of reference BMSs needs to be collected. The choice

of reference BMS set depends on the context of scientific investigation. However,

using a diverse set of BMSs or a collection of BMSs derived from compounds of a

large bioactivity data set represent choices that can be adopted in a wide range of

research settings. Note that compound structures that cannot be associated with a

valid BMS structure are eliminated from the input set when generating the reference

BMS set. Next, the SKs of reference BMSs is generated, and the BMSs are ordered

according to their SK using alphanumeric ordering. In case of a tie, the InChI-Keys

of BMSs are used to determine priority. In the arguably rare case when the InChI-

Keys would be identical, then the “first” of such BMSs will gain priority. Of note,

depending on the implementations of sorting algorithm, the choice of “first” BMS in

a tie can be nondeterministic. Still, considering the low probability of such events,

we consider the SK and InChI-Key based ordering practically deterministic.

Next, the reference BMS set is mapped on a line based on the rank of each BMS

emerged from the SK-based ordering process. This line can be thought of a PHC

which can be mapped to a 2D space, or even higher dimensions following a well-

known algorithm [16]. The embedding of compounds with the help of such a line

happens in a few steps.

First, the BMS of the compound at hand is extracted and the corresponding SK

is generated. With the help of the SKs, the closest reference BMSs to the compound

is identified. Next, the compound will assume the position of the closest reference

BMS on the PHC. Finally, the PHC is mapped to a higher dimension space.
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The process of mapping a PHC to higher dimension requires only two parameters

as input: the order of the PHC and the number of dimensions. The latter was always

set to 2D in this study, while the former was varied. Given the nature of PHCs,

increasing the order of the PHC will lead to the stabilization of coordinates in the

embedded space and to a more fine-grained embedding.

Reducing the algorithm to practice required us to take into consideration two

observations. First, the number of potential coordinates in the embedded space

is a function of the order of PHC and the number of dimensions in the available

implementation of PHC algorithm [20, 21].

In 2D, the PHC can be mapped on a N × N grid, where the value of N is

given by Eq. 1, where z denotes the order of the PHC. Accordingly, the x and y

coordinates can take on values between 0 and z − 1, inclusive. Of, note we use the

PHC-z notation in the text to distinguish PHCs of different order. Second, the PHC

emerged from the reference BMS set contains a finite set of data points, i.e. BMSs.

In the light of these limitations it was necessary to introduce a binning-mechanism

in order to mimic the behavior of PHCs.

N = 2z (1)

The binning-mechanism treats the number of potential coordinates (|D|) in the

embedded space as the number of bins (see: Eq 2-3). Then, the bin-size l is deter-

mined based on the ratio of the size of the reference BMS set (|S|) and the number

of bins minus one (see: Eq. 4). Note, that the correction term is necessary as the

Hilbert-curve implementation uses zero-indexing, hence the minus one term. Given

a compound i and its closest reference BMS Si, the bin index bi of the compound

is computed by first dividing the SK-based rank of Si by the bin-size, then round-

ing the resultant number to the nearest integer (see: Eq. 5). Of note, when setting

the parameters of the algorithm, it should be taken into account that limit of the

resolution of the HCASE method is defined by the parameter combination where

the number of potential coordinates exceeds the size of the reference BMS set.

D = {(x, y)} | ∀x : x ∈ [0, N − 1], ∀y : y ∈ [0, N − 1] (2)

|D| = N2 (3)

l =
|S|
|D| − 1

(4)

bi =

⌊
rank(Si)

l

⌉
(5)

Computing the bin indices of each compound gives rise to a mapping on a PHC

which can be mapped to 2D by defining the z parameter [16, 20]. The main steps

of the HCASE algorithm are visualized on Fig. 3.
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2.2 Pseudocode of the HCASE Method

The pseudocode of the HCASE method is provided below. Note that most of

the functions highlighted with bold fonts represent well-known methods, therefore

their pseudocode is not included. Such functions are: generatePseudoHilbertCurve(),

getHCCoordinates(), getScaffoldKey() and getBemisMurckoScaffold(). The binScaf-

folds() and getSKDistance() functions are computed according to Eq. 1-5 and Eq. 6,

respectively.

Note that the lists in the pseudocode are zero-indexed. Furthermore, the elements

of lists and tuples are also referenced according to array notation. Accordingly, the

D[0][0] in the pseudo code reads: in the first item of list D (which is a tuple), the

value of the first variable.

Algorithm 1 HCASE Method

Input: int z (order of PHC)
Input: int n (number of dimensions)
Input: set of molecules M
Input: set of reference Bemis-Murcko scaffolds S

Variable: molecule mol
Variable: scaffold-key sk
Variable: list of (S, sk)-tuples Ssk

Variable: int b (bin index)
Variable: list of (sk, b)-tuples Sbin

Variable: Bemis-Murcko scaffold bms
Variable: (x ∈ N, y ∈ N)-tuple P
Variable: pseudo-Hilbert-Curve PHC
Variable: list of (mol, P )-tuples E

PHC := generatePseudoHilbertCurve (z, n)
for all Si in S do
sk := getScaffoldKey (Si)
Ssk.add (Si, sk)

end for

Ssk := sort Ssk alphanumerically by SK in increasing order
Ssk := deduplicate Ssk by sk, keep first instance of identical tuples
Sbin := binScaffolds (Ssk, z, n)

for all mi in M do
bms := getBemisMurckoScaffold (mi)
sk := getScaffoldKey (bms)
b := getClosestRefererenceBMSBinIndex (sk, Sbin)

P := getHCCoordinates (b, PHC)
E.add (mi, P )

end for
return (E)

int function getClosestRefererenceBMSBinIndex(sk, Sbin)
Variable: int bmin (bin index of closest reference scaffold)
Variable: numeric dsk
Variable: list of (b, dsk)-tuples D

for all si in Sbin do
dsk := getSKDistance (sk, si[0])
D.add (si[1], dsk)

end for
D := sort D by dsk and b, both in increasing order

bmin = D[0][0]

return (bmin)
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2.3 Scaffold-Key Algorithm

As mentioned above, the general idea behind the SK algorithm was to provide an

ordering of BMSs to imitate the thinking process of a medicinal chemist in analyzing

BMSs based on their size, complexity and chemical composition. Furthermore, the

SK algorithm aimed to provide a distance measure that surpasses fingerprint-based

distance measure between scaffolds, due to known limitations [19]. To this end, 32 so-

called “Scaffold-Keys” were defined that each capture unique structural aspects of a

given BMS. The definition behind these 32 keys define the ruleset of the algorithm

that is publicly disclosed in the original publication by Ertl [19]. The SK algorithm

generates a 32-key SK for a given BMS which can be used to sort the BMSs or

to define a distance measure between BMSs. Distance (dSK(i, j)) between a pair

of SKs of respective BMSs i and j can be quantified with the help of their SK

according to Eq. 6 as defined by Ertl. SKi(n) and SKj(n) denote the value of the

nth key in the SK of BMS i and j, respectively.

dSK(i, j) =

32∑
n=1

√
|SKi(n)− SKj(n)|3

n
(6)

Since the SK algorithm does not have a publicly available implementation it was

necessary to create an in-house implementation based on the published ruleset. The

implementation follows the ruleset as truthfully as possible, with the only excep-

tion that optionally, it is possible to generate the InChI-Key [22] of BMS as an

extra (last) key on the top of the original 32 keys. Moreover, a few of the original

rules were defined in a slightly vague manner, therefore we could only attempt to

match those as closely as possible in light of insufficient information. Nevertheless,

clarification of rules, where it was necessary, is provided in “Appendix”. Imple-

mentation of the SK algorithm is publicly available as a source-code repository at:

https://github.com/ncats/hcase [23].

SKs were generated with the in-house implementation of the SK algorithm, as

well as the dSK distances between BMSs.

2.4 General Cheminformatics Operations

Structures of substances were subject to the same standardization scheme un-

less otherwise stated. Standardization comprised of keeping only the largest com-

pound of each substance and was performed in KNIME [24] with the help of CDK

nodes [25, 26, 27, 28]. Bemis-Murcko scaffolds (BMSs) [15] were generated for

molecules using RDKit [29] cheminformatics suite and RDKit KNIME nodes [30].

Molecule structures were depicted with RDKit and ChemAxon’s Marvin Sketch [31].

2.5 K-Nearest-Neighbor Analysis

Using the RDKit implementation of Morgan algorithm [32, 29], Morgan-fingerprint

was generated for compounds with parameters of radius = 3 and fingerprint length =

2, 048. The k-Nearest-Neighbors (KNNs) were identified for query compounds with

the help of computing the Tanimoto-similarity coefficient of pairs of compounds. In

this study the value of k was set to 5.
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2.6 Distance Measure in Embedded 2D Space

The distance of compounds i, j mapped to a PHC can be quantified as the difference

of the respective bin indices bi and bj . This distance can be referred-to-as rank

distance, i.e. dr (see: Eq. 7).

dr(i, j) = |bi − bj | (7)

However, the idea of an intuitive embedding into 2D suggests that structural prox-

imity of compounds should be reflected in proximity of 2D coordinates. Therefore,

given the nature of the HCASE method, it is possible to define a perceived distance

measure of the compounds in the embedded space as detailed below.

Compounds embedded in 2D using the HCASE method are mapped to a latent

grid. Each point of the grid represent a specific BMS or a group of BMSs, depending

on the size of the reference BMS set and the z parameter. Therefore, the distance

of two embedded compounds i, j “stretched” on this grid can be perceived as their

Chebyshev-distance [33] (see: Eq 8). Of note, the Chebyshev-distance is a metric.

However, since it is applied as a perceived distance measure, in this study we will

refer to the Chebyshev-distance metric as Chebyshev-distance measure.

dC(i, j) = max
n
|in − jn| (8)

2.7 Quantifying Space Overlap Similarity of Different Embeddings

Given an embedding generated by the HCASE method, one can compute the num-

ber of compounds associated with a reference BMS. More precisely, one need to

count the number of compounds mapped to the bin the respective BMS was as-

signed to. In the function of z the number of bins is provided by N (see: Eq. 1). This

information can be condensed into an N -dimensional embedding-vector. In such vec-

tor, the value of each dimension reflects the number of compounds associated with

a specific bin, which bin is actually a point in the latent grid behind the embedding.

Quantifying the similarity two embedding-vectors A and B can be performed in

analogous manner to computing the similarity of two molecular count-fingerprints [34]

with the help of a modified Tanimoto-similarity coefficient (see: Eq. 9) [35, 36, 37,

38].

θA,B =

∑N
i=1 AiBi∑N

i=1 A
2
i +

∑N
i=1 B

2
i −

∑N
i=1 AiBi

(9)

2.8 Scaffold t-SNE Method

For the sake of comparison with the HCASE method, we implemented a variation

of the t-SNE method. The modification involves the use of a reference scaffold set to

serve as landscape objects for the embedding of molecules. This modification intends

to convert the t-SNE method in a way that better represents a medicinal chemistry

inspired embedding and that also enables a consistent embedding mechanism of

molecules regardless of the input molecule set at hand.

In the first stage of this method, the embedding of a reference scaffold set is

computed, and the Scaffold-Keys are computed for them. In the second stage, the
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scaffold-keys of compounds to be embedded are computed. The dSK is computed

between each compound and reference scaffold. Compounds assume the embedded

coordinates of the closest reference scaffold according to dSK .

The modified t-SNE method will be referred-to-as Scaffold t-SNE method

throughout the text. The pseudocode of the Scaffold t-SNE method is provided

in “Appendix”, adopting the same notions discussed in Section 2.2.

The Scaffold t-SNE analysis was performed at various perplexity-values of

{5, 10, 20, 30, 40, 50} which are considered as optimal [39, 7]. The rest of the pa-

rameter settings were left to default as defined by “SciKit” (Python library) imple-

mentation of the t-SNE algorithm [40, 41]. Note, that the default values of learning

rate and the number of iterations are: 200 and 1, 000, respectively.

2.9 Input Data

Compound Libraries Compound libraries were collected from two sources: ap-

proved drugs of DrugBank database (version: 2.0.9) [42], and the CANVASS li-

brary [43]. These libraries are comprised of 2, 073 and 344 compounds, respectively.

ChEMBL Scaffolds A set of unique BMSs of size 63, 783 has been extracted from

ChEMBL database (version: 24.1) [44] using the same procedure and KNIME work-

flow [45] that was used to derive the knowledge base of SmartGraph platform [46].

This set was derived from the set of all unique BMSs included in ChEMBL database

based on the number of compounds they are associated with. That is, only BMSs

were selected if they are connected to less than 100 and at least 5 unique com-

pounds. Out of 63, 783 scaffolds, after processing by RDKit and deduplication by

SKs, we identified 55, 961 unique BMSs.

Natural Products Scaffolds A set of natural products were extracted from the

ChEMBL database (version: 23) consisting of 1, 921 compounds [43]. BMSs of these

compounds were identified and their SKs were generated. Subsequently, the BMSs

were deduplicate on the basis of the SKs, which resulted in a set of 546 scaffolds

(NatProd scaffolds).

For the sake of reproducibility of the experiments, all source code and data

used to perform the experiments are publicly available the source-code repository:

https://github.com/ncats/hcase [23].

3 Results and Discussion

3.1 Clustering of Scaffolds Mapped on a Hilbert-Curve

First, the ChEMBL reference BMSs were ordered according to their SKs. Next,

we sought to monitor the position of certain scaffolds as a result of the embedding

process. To this end, we cherry-picked a set of BMSs in a way so that their ranks are

separated by larger and smaller intervals (see: Tab. 1 and Fig. S3 ). Additionally, the

immediate 50 neighbors (in both directions) were also marked, with the respective

colors. The maximal order of PHC to be used was determined by the size of the
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ChEMBL reference scaffold set. A PHC of order z = 8 gives rise to a space that

is defined by a latent grid of 65, 536 points, i.e. coordinates. The size of ChEMBL

scaffold set (55, 961) is less than this value, but is larger than the number of potential

coordinates in a space defined by a PHC of z = 7. Taken these in consideration, the

order of PHCs employed in this investigation was varied in the range of z = [2, 8].

As it was described in Section 2.1.3, the reference scaffolds are assigned to bins

in the function of z. Consequently, low values of z give rise to a low-resolution

latent grid, where many of the marked scaffolds are assigned only to a few grid

points, as expected (see: Fig. 4a-4c). Increasing the value of z, i.e. the resolution of

embedding, it can be seen that the marked BMSs start to separate well, giving rise

to clusters, i.e. groups of closely-binned BMSs (see: Fig. 4d-4g).

Based on the results of the embedding, it can be seen that the HCASE method

is able to produce clusters of varying granularity in the function of parameter z.

This feature therefore provide opportunity to control the resolution of the embed-

ding depending on the use case at hand. Furthermore, the position of clusters is

the function of the bin index or the BMSs, and relative position of scaffolds is de-

termined, due to the nature of PHCs. The stabilization property of PHCs is also

demonstrated by the results. This is a consequence of PHC algorithm implementa-

tion and the fact that BMSs don’t represent a continuum where the absolute value

of scaffolds is known.

These findings support, that using the HCASE method, it is possible to develop an

intuition for identifying the type of scaffolds, or group of scaffolds encoded by various

segments of the embedded space. Therefore, we concluded that the properties of

latent grid generated by HCASE method are adequate to serve as the basis for

compound embedding.

3.2 Embedding of KNNs

Building on the promising results described in the previous section, we sought to

analyze the embedding of a compound library with the help of ChEMBL reference

scaffold set and the HCASE method. To this end, the embedding of the DrugBank

data set was performed. The range of z values were identical to the range utilized

in the previous section, considering that we used the same reference scaffold set, i.e.

ChEMBL. To better understand the embedding process, we selected 5 molecules

randomly from the DrugBank dataset and the k = 5 nearest neighbors of each was

determined as described in Section 2.5.

We checked that the set of nearest neighbors (NNs) of 25 compounds and the 5

randomly selected query compounds constitute a distinct set which we found ideal

for carrying out the analysis at hand. The list of query compounds, their NNs and

the values of Tanimoto-similarity coefficients is provided in Tab. 2 and Fig. 1 in

decreasing order of similarity.

Considering all data points, it can be seen in Fig. 5 that the position of indi-

vidual datapoints is stabilized with increasing order of the underlying PHC. Also,

increasing values of z give rise to a finer-grained clustering of data points.
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Regarding the KNNs, most of them are clustered closely to the query molecules,

as expected, but some of them are place further away. For instance, at z = 8 we can

make the following observations. In the case of query molecule DB04837, i.e. “blue”

series, two of the NNs (“X”, “V”) are positioned farther from DB04837, which is

explained by the more complex BMS present in those two NNs as compared to the

rest of the series. Interestingly, the fifth NN (“Y”) in the same series is co-positioned

with the query compound DB01362 (color: aqua), but it can’t be seen due to overlap

of markers. The reason for this is that “Y” and DB01362 share the same BMS, i.e.

the benzene ring. Consequently, they were mapped to the same reference scaffold

hence positioned to the same coordinate in the embedded space.

Similar trends can be observed in the other NN series as well. Typically, when

the BMSs of NNs differ in exocyclic groups, then they are embedded still relatively

closely. However, when the BMSs differ by extra rings, then they will be place

further away. This phenomenon can be explained by the ordering of scaffolds based

on their SKs. These observations argue that the embedding results in clustering that

matches closely the mindset of a medicinal chemists when analyzing chemotypes.

For example, in the case of the “purple” series (query molecule: DB00977) most of

the NNs in the series share the same or very similar BMS, except compound “L”,

whose BMS is more complex than that of other NNs, hence it is positioned further

away from other members of the series. The peculiarity of this fact is more obvious

when one considers the Taniomoto-similarity of the NNs to the query molecule

in the “purple” series; compound “L” is the second NN of the query compound,

still it is positioned the furthest from other compounds of the series. Separation

of compound “L” from the rest of the series members would be considered correct

from a medicinal chemist’s view, as compound “L” has the most dissimilar BMS in

that series compared to the other BMSs.

3.3 Embedding of Randomly Selected Compounds

In order to contrast the above findings, we selected 25 random molecules from the

DrugBank dataset (see: Fig. S4 ) and compared their embedding with that of the

NN series. In Fig. S5, the embedding of these 25 compounds is shown besides the

embedding of the 5 query molecules of the previous experiment. As it can be seen,

the embedding of the random set exhibit a much more reduced level of clustering

as compared to the case of the NN series. While come clustering is present in this

set, mainly contributed to the presence of benzene ring as the BMS in several

compounds, the overall picture resembles a random distribution of the embedded

coordinates.

In summary, the above findings demonstrate that it is possible with the HCASE

method to embed compounds in a chemical space that is able to differentiate

molecules based on chemotypes, and to provide a logical and intuitive arrange-

ment of these chemotypes. Therefore, it can be argued that clustering emerging in

the embedded space will be reflective of a medicinal chemist’s analytical thinking.
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3.4 Comparison of the Results of Different Embedding Outcomes

After concluding the HCASE method is able to generate intuitive embedding of

a chemical library we intended to analyze how we can compare the outcome of

different embeddings. This first required to investigate the effect of utilizing different

scaffold reference sets, then to quantify how well different embedding results are

aligned with each other.

To this end, we performed separately the embedding of the DrugBank and CAN-

VASS libraries utilizing two different reference scaffold sets: ChEMBL and NatProd.

As explained in Section 3.1 the upper limit of z depends on the size of the reference

scaffold set at hand. We determined that this upper limit is z = 8 in case of the

ChEMBL set. The NatProd scaffold reference set is comprised of 546 BMSs, hence

the upper limit of z is 5.

3.4.1 Qualitative Comparison

First, let us consider the embeddings in the NatProd chemical space as shown in

Fig. S6. The positions of compounds of both libraries are also distributed across all

possible 16 coordinates at z = 2. At z = 3 the CANVASS compounds are assigned

to only 55 coordinates, whereas in the case of DrugBank library all 64 potential

coordinates are assigned to compounds. At higher z values, neither of the libraries

are assigned to all coordinates, and they start to separate in the same chemical

space (see: Fig. 6a).

In the case of the ChEMBL chemical space (see: Fig. S7 ) at z = 2, the coordinates

associated with the embedded compounds of both libraries are distributed across

all potential 16 coordinates. At z = 3, in the case of the CANVASS library, the

compounds are only assigned to 43 different coordinates. However, the compounds

of DrugBank dataset are assigned to all potential coordinates. At higher values of z,

the overlap of the respective pairs of embeddings becomes less and less pronounced,

i.e. the two dataset start to separate, as in the previous case (see: Fig. 6b ).

Based on the qualitative comparison, it can be observed that the DrugBank

dataset occupies larger portion of the embedded space. This is not surprising con-

sidering that CANVASS is a smaller library, and a less diverse one according to the

results of the embeddings. Nevertheless, the overlap of the two libraries seems to

be larger in the NatProd space. As seen, at z = 4 the CANVASS library is more

spread-out in this space. Since this space is defined by scaffolds extracted from the

natural products subset of ChEMBL, the CANVASS library indeed seems as a good

representative of the natural product space. However, the drug molecules represent

structures with BMSs that even better represent the underlying NatProd reference

scaffold set. Considering that many drug molecules are natural product derivatives,

and the presence of larger diversity in the DrugBank vs. the CANVASS library, the

fair amount overlap in this space of the two libraries can be considered reasonable.

In the ChEMBL chemical space both libraries show clustering which becomes

prominent at z > 5 values, although the clustering is more obvious in the case of

CANVASS library. Drug molecules represent this chemical space also to a reasonable
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degree, whereas the CANVASS molecules form “islands”. These islands are mostly

overlapping with members of the DrugBank library. Further, in this chemical space

the unoccupied area is visible to a larger extent as compared to the NatProd space.

Based on the above findings, we concluded that the choice of the reference scaffold

set influences the embedding in two major manner. First, the reference scaffold set

serves as a perspective which the structural similarities are analyzed from. Accord-

ingly, the embedding of CANVASS and DrugBank libraries paint a more similar

picture in the NatProd space than in ChEMBL space. Second, the separation of

structures can be promoted by the choice of the reference scaffold set.

3.4.2 Quantitative Comparison

In the previous section we investigated how the embeddings of two chemical libraries

can be compared qualitatively. However, there can be cases when one might want

to quantify the overlap (similarity) of two embeddings.

To this end, one of the natural solutions is provided by aggregating the number

of compounds associated with each given coordinate in the embedded space. This

information can be condensed to a heatmap, in which cells correspond to specific

coordinates in the embedded space. The color of each cell is the function of the

number of molecules assigned to the respective coordinate. This solution is shown

in Fig. 7, which reflect the aggregated results of embedding the DrugBank and

CANVASS libraries in the NatProd chemical space with the HCASE method at

z = 5. The heatmap provide an intuitive way to quickly see which regions of the

same chemical space are better covered by either of the libraries. Of note, the

aggregated molecule counts were log10-transformed to provide better visualization.

Beyond the graphical solution, it also possible to quantify the overlap of the

embedding of two libraries by using a measure (θ) analogous to the Tanimoto-

similarity coefficient of count-fingerprints, as described in Section 2.6. The results of

quantifying the overlap of two libraries based on θ is provided in Tab. 5. The results

confirm the qualitative observations that the overlap of the two datasets decreases

with increasing values of z, i.e. by increasing the resolution of the embedding. At the

highest resolution, the overlap is greater in the NatProd space than in the ChEMBL

space, just as it was observed in the qualitative analysis. While the values of θ are

quite small in most cases, still, it can be used to quantify the extent of overlap.

3.5 Perceived Distance in the Embedded 2D Space

The promise of utilizing a PHC for chemical space embedding is that the objects

mapped to close proximity on the curve will also be embedded in the higher di-

mension space in close proximity. Therefore, we sought to explore whether those

distance values translate in the embedded 2D space in a way that can be perceived

as distance measure.

Considering that the reference scaffolds create a latent grid behind the embedded

space, it seemed natural to investigate the relation between the rank-distances (dr)

of compounds and the Chebyshev-distances (dC) of embedded coordinates (see:

Section 2.6).
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To this end, we first investigated the correlation of the two different types of

distance measures with the help of the DrugBank and CANVASS compound li-

braries. First, the correlation was determined by taking into account all compounds

per dataset. Results are shown in Tab. 4. It can be seen that there is a reasonable

level of correlation between dr and dC in the case of both datasets. Furthermore,

higher values of parameter z tended to results in slightly higher correlation of the

two distance measures as compared to lower z values. The highest correlation was

found to be 0.73 and 0.72 for the DrugBank and CANVASS datasets, respectively,

when using the ChEMBL reference scaffold set. The highest correlation was found

to be 0.65 in the case of DrugBank dataset and NatProd reference scaffold set com-

bination. Interestingly, in the case of CANVASS dataset and NatProd reference

scaffold set the the correlation values were lower as compared to other data series,

resulting in a maximum value of 0.59 at z = 2. This might be an indication that

the underlying latent grid has limited capacity to distinguish between chemotypes.

To further support these finding, we generated non-overlapping sets of randomly

selected compounds from the DrugBunk dataset. Each set was comprised of 100

compounds. The mean and standard deviation of the correlation between the two

distance measures is provided in Tab. 3. Similarly to the previous findings, the

correlation tended to increase slightly with increasing values of z. Moreover, the

maximal value of mean correlation was equal to the maximal correlation observed

in utilizing the entire dataset, in both cases of using the ChEMBL and NatProd

reference scaffold sets.

In summary, there is a reasonably good correlation between the two distance

measures dr and dC . Also, with increasing values of z the correlation tends to

increases slightly, which is not surprising in the light of the converging nature of

embedding PHCs of higher and higher order. Therefore, we propose that Chebyshev-

distance measure can be considered as a perceived distance measure to quantify

distances in the embedded 2D space generated by the HCASE method.

3.6 Comparison of HCASE Method with Prior Art

As the final experiment, we set forth to compare the HCASE method with prior

art. Considering that the primary feature of the t-SNE algorithm is to preserve

neighborhood information of objects in the embedded space, we decided to use

this method for comparison. However, in order to obtain a meaningful comparison

with the HCASE method it was necessary to modify the original t-SNE algorithm

to some extent as described in Section 2.8 based on considerations discussed in

Section 2.1.1.

The first question we sought to answer was how the embedding of a reference

scaffold set created by the Scaffold t-SNE method compares to that of generated

by the HCASE method. To this end, the embedding of ChEMBL reference scaf-

fold set using the t-SNE algorithm was generated. We highlighted the same set of

cherry-picked scaffolds that was described in Section 3.1, preserving the coloring

scheme. Of note, the t-SNE embedding operates on the Morgan-fingerprints of the

ChEMBL reference set. As shown on Fig. 8a, the position of the clusters belonging
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to the original clusters, is far more scattered as compared to HCASE embedding,

although certain level of clustering can be observed. Further, the logic regarding

the relative positioning of scaffolds is not transparent, therefore it is difficult to

intuitively interpret the resultant chemical space produced by t-SNE embedding.

As shown on Fig. S8 this pehonomenon was observed across a range of perplexity

values that were suggested as optimal (see: Section 2.8).

Next, we sought to investigate Scaffold t-SNE embedding of the same set of 5

randomly selected molecule and their k = 5 nearest neighbors that were described

in Section 3.2, using the embedding of the reference scaffolds in the previous step.

Interestingly, a high level of clustering can be observed in all KNN-series that is

comparable to that produced by the HCASE method (see: Fig. 8b). The reason

for this is that Scaffold t-SNE method takes advantage of the predefined chemical

space of reference scaffolds, and using scaffold-keys the closest reference point of

each compound is identified. Therefore, the embedding will reflect the differences

and similarities of chemotypes to a great degree. This was observation was true in

the case of all the applied perplexity values (see: Fig. S9 ). The embeddings produced

by these two methods differ in three major standpoints.

First, relative placement of KNN series, even just focusing on the query com-

pounds, cannot be explained with a simple organizing principle. Indeed, they follow

the placement of the reference clusters determined by the t-SNE algorithm. How-

ever, the t-SNE algorithm does not guarantee a well-defined layout of embedded

objects as opposed to the HCASE algorithm.

Second, the (relative) position of the coordinates of the embedded molecules pro-

duced by the Scaffold t-SNE method does not seem to converge, i.e. to stabilize,

by varying the value of perplexity parameter. This feature of the Scaffold t-SNE

method does not promote the intuitive interpretation of the results, and is in great

contrast with the converging property of embedded coordinates produced by the

HCASE method.

Finally, given a reference scaffold set, changing the resolution of the Scaffold t-

SNE embedding is challenging, at best. If one wants to use a smaller subset of the

reference scaffold set, then the Scaffold t-SNE method would require the creation

of a new t-SNE space based on the subset of the scaffolds. However, there is no

guarantee that the new space will resemble the original t-SNE space.

Of note, in this study only the perplexity parameters were varied when using

the t-SNE algorithm. While more refined values might be obtained by thorough

hyper-parameter search, the result will not influence the three major differences

discussed above. Furthermore, these observations would translate to any other prior

art method. Even, if they would be modified in an analogous manner as the Scaffold

t-SNE method was derived from the original t-SNE method.

It can be concluded from the comparison of the two methods that existing space-

embedding methods can be modified successfully to produce embeddings with rea-

sonable clustering properties for chemotypes. While the clustering properties of

such methods can be on par with that of the HCASE method, the HCASE method

provides a clear advantage for interpretability.
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4 Conclusions
In this proof-of-concept study we present a HCASE space embedding method that

stands out from existing methods by its unique ability to produce an embedding

that can be easily interpreted by medicinal chemists and data analysts. The novelty

of the method is to create a well-defined latent grid of reference scaffolds, where

the scaffolds are organized by increasing structural complexity. This is achieved by

mapping the reference scaffolds based on their scaffold keys to a pseudo-Hilbert-

Curve that can be readily embedded into higher dimensional space according to a

well-established algorithm. Compounds are subsequently embedded into this grid

based on their proximity to reference scaffolds measured by sScaffold-Key distances.

With the help of a series of experiments, we demonstrated that the HCASE

method indeed meets all the criteria we set forth for an intuitive space embedding

method. Namely, the embedding is able to cluster related chemotypes, and to lay

out the chemotypes in a logical order in the embedded space. The ability to use a

reference scaffold set to define a chemical space assures that independent compound

libraries can be embedded into the same space in a consistent manner. This allows

for direct comparison of the embeddings of different datasets visually, qualitatively

and quantitatively, as long as the underlying reference scaffold set was the same.

Furthermore, the HCASE method is able to generate a series of embeddings with

increasing resolutions. In these series the positions of compounds converge as the

resolution increases, which is not a property that has been accomplished by theother

methods. We have also demonstrated that it is possible to quantify the distances

between the embedded points in the HCASE space by computing the pairwise

Chebyshev-distance values.

The chemotype-clustering ability of HCASE method was characterized with the

help of two reference scaffold sets (ChEMBL: 63, 783 scaffolds, NatProd: 546 scaf-

folds) and two compound libraries (DrugBank: 2, 073 compounds, CANVASS: 344

compounds). The analysis of embedding KNN series has shown that HCASE method

is able to cluster closely related structures in the embedded space. As expected, the

degree of clustering was higher in the KNN series as compared to a series of ran-

domly selected molecules. Also, we compared the overlap of the HCASE ebbending

of the two compound libraries in two different reference scaffold set spaces. The

results demonstrated that reference scaffold sets can be used to define a perspective

for embedded space comparison, e.g. to compare embeddings in a natural prod-

uct space. Furthermore, we provided the means to compare HCASE embeddings

quantitatively.

Finally, we compared the properties of space embeddings generated by HCASE

method and a prior art method, which was modified for the sake of meaningful

comparison. We found that the clustering performance of the modified prior art

method was nearly as good as that of the HCASE method. However, the results of

the HCASE method can be easily interpreted from a medicinal chemistry point of

view, unlike the results of the other method.

In conclusion, the presented HCASE method is attributed with novel and unique

characteristics that can render it as a desirable data reduction and clustering

method in any research setting where medicinal chemistry perspective is essential.
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5 Outlook
In light of the structurally interpretable property of the HCASE method, it would

be a natural extension to create interactive visualization of results. That is, when

selecting a region of interest on the embedding plot, the underlying scaffold(s) could

be visualized in an application to provide more structural context for the position of

embedded compounds. Furthermore, inspired by SOM and GTM method, it might

be helpful to quantify how well the chemotype of an embedded compound matches

that of the reference scaffolds associated with that position. This property might

be the mean of distances computed between a given compound and the reference

scaffolds associated with its position.

Appendix
The following remarks needed to be made regarding the in-house implementation

of Scaffold-Key algorithm [19, 23]. When a specific key is referred in the remarks

then the key ID reflects the order of the keys as published by Ertl [19].

• Rings were determined as “smallest set of simple rings for a molecule” (SSSR)

as implemented by RDKit [29].

• The following atoms were considered as heteroatoms in implementing the

Scaffol-Key algorithm: Li, Be, B, N, O, F, Mg, Al, Si, P, S, Cl, Zn, As, Se, Br,

Te, I, Pt, Hg, Mn, Fe, Co, Ni, Cu, Ga, Ge, Rh, Pd, Ag, Cd, Sn. Relevance:

many keys related to heteroatoms.

• Definition of “multiple linker” was not provided by the Scaffold-Key algo-

rithm. Hence, we quantified this property as the number of bonds associated

with the branched linker atom. Relevance: key 19.

• In fully conjugated rings, the number of bonds was determined as follows.

In RDKit, the conjugated system is associated with an ID. If all members

of a ring are assigned to the same ID then the ring was considered as fully

conjugated, otherwise as not fully conjugated. Relevance: key 7, 8.

• Number of multiple bonds in not fully conjugated rings: double, triple and

aromatic bonds were all counted. Relevance: key 8.

• Exocyclic atoms: atoms connected to rings with double bond. Relevance: key

31.

• Exolinker atoms: atoms connected to linker substructure with double bond

(exolinker is not part of the linking substructure). Relevance: key 31.

• Heteroatoms associated with more than two bonds: total number of non-

hydrogen bonds for heteroatom. Relevance: key 32.

Pseudocode of the Scaffold t-SNE Method
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Algorithm 2 Scaffold t-SNE Method

Input: set of molecules M
Input: set of reference Bemis-Murcko scaffolds S

Variable: molecule mol
Variable: scaffold-key sk
Variable: list of (S, sk)-tuples Ssk

Variable: list of (sk, b)-tuples Sbin

Variable: Bemis-Murcko scaffold bms
Variable: (x ∈ N, y ∈ N)-tuple P
Variable: list of P items T
Variable: list of (sk, P )-tuples Escaffold

Variable: fingerprint fp
Variable: list of fingerprints F
Variable: list of (mol, Tcoord) E

for all Si in S do
sk := getScaffoldKey (Si)
Ssk.add (Si, sk)
fp := generateFP(Si)
F .add(fp)

end for

Ssk := sort Ssk alphanumerically by SK in increasing order
Ssk := deduplicate Ssk by sk, keep first instance of identical tuples
T := tSNE (F)

Escaffold := (Ssk, T )

for all mi in M do
bms := getBemisMurckoScaffold (mi)
sk := getScaffoldKey (bms)
P := getClosestRefererenceBMSCoordinate (sk, Escaffold)

E.add (mi, P )

end for
return (E)

int function getClosestRefererenceBMSCoordinate(sk, Escaffold)
(x ∈ N, y ∈ N)-tuple Pmol
Variable: numeric dsk
Variable: list of (P , dsk)-tuples D

for all ei in Escaffold do
dsk := getSKDistance (sk, ei[0])
D.add (ei[1], dsk)

end for
D := sort D by dsk and b, both in increasing order

Pmol = D[0][0]

return (Pmol)
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Table 1: Cherry-picked BMSs of the ChEMBL Reference Scaffold Set.
Cherry-Picked Reference Scaffold Rank Color

5, 000 blue
15, 000 orange
16, 000 green
25, 000 red
26, 000 purple
35, 000 brown
44, 000 pink
45, 000 gray
55, 000 yellow-green

Table 2: K = 5 nearest neighbors of 5 randomly selected drug

molecules. Fingerprint: Morgan (radius=3, lenght=2048).
Cquery CNN rank sim

DB00006 DB04931 1 0.44
DB00006 DB01284 2 0.41
DB00006 DB00050 3 0.39
DB00006 DB09067 4 0.38
DB00006 DB06825 5 0.37
DB00849 DB01174 1 0.49
DB00849 DB00794 2 0.44
DB00849 DB05246 3 0.32
DB00849 DB01437 4 0.32
DB00849 DB00252 5 0.28
DB00977 DB01357 1 0.70
DB00977 DB04575 2 0.63
DB00977 DB00655 3 0.51
DB00977 DB00783 4 0.51
DB00977 DB04573 5 0.50
DB01362 DB01249 1 0.88
DB01362 DB09135 2 0.86
DB01362 DB09134 3 0.62
DB01362 DB09313 4 0.27
DB01362 DB01578 5 0.22
DB04837 DB11609 1 0.35
DB04837 DB00257 2 0.31
DB04837 DB00333 3 0.27
DB04837 DB01231 4 0.26
DB04837 DB08944 5 0.26

Table 3: Correlation of Chebyshev-distances and SK-rank distances in

embedded subsets of DrugBank dataset.
Reference Scaffold Set z Correlation - Mean Correlation - Std

ChEMBL 2 0.70 0.03
ChEMBL 3 0.72 0.03
ChEMBL 4 0.72 0.03
ChEMBL 5 0.73 0.03
ChEMBL 6 0.73 0.03
ChEMBL 7 0.73 0.03
ChEMBL 8 0.73 0.03
NatProd 2 0.64 0.04
NatProd 3 0.63 0.04
NatProd 4 0.65 0.03
NatProd 5 0.65 0.03

Tables
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Table 4: Correlation of Chebyshev–distances and SK–rank distances.
Dataset Reference Scaffold Set z Correlation

DrugBank ChEMBL 2 0.70
DrugBank ChEMBL 3 0.72
DrugBank ChEMBL 4 0.72
DrugBank ChEMBL 5 0.73
DrugBank ChEMBL 6 0.73
DrugBank ChEMBL 7 0.73
DrugBank ChEMBL 8 0.73
DrugBank NatProd 2 0.63
DrugBank NatProd 3 0.63
DrugBank NatProd 4 0.65
DrugBank NatProd 5 0.64

CANVASS ChEMBL 2 0.65
CANVASS ChEMBL 3 0.72
CANVASS ChEMBL 4 0.72
CANVASS ChEMBL 5 0.72
CANVASS ChEMBL 6 0.72
CANVASS ChEMBL 7 0.72
CANVASS ChEMBL 8 0.72
CANVASS NatProd 2 0.60
CANVASS NatProd 3 0.56
CANVASS NatProd 4 0.57
CANVASS NatProd 5 0.58

Table 5: Space overlap between DrugBank and CANVASS libraries in

different chemical spaces.
Reference Scaffold Set z θ

ChEMBL 2 0.20
ChEMBL 3 0.16
ChEMBL 4 0.11
ChEMBL 5 0.09
ChEMBL 6 0.06
ChEMBL 7 0.05
ChEMBL 8 0.05
NatProd 2 0.19
NatProd 3 0.13
NatProd 4 0.09
NatProd 5 0.07

Figures
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Figure 1: KNNs of randomly selected molecules. First column con-
tains the query structures and subsequent columns contain the k = 5 NNs
in decreasing order of similarity. Tanimoto-similarity was computed using
Morgan-fingerprints, radius = 3, length = 2048. The value of Tanimoto-
similarity coefficient and the label of compounds are shown after the com-
pound IDs for NNs. The BMSs of compounds are highlighted by red.
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Figure 2: Maps generated by t-SNE Analysis of Drug Molecules.
Embedding of DrugBank molecules performed by the original t-SNE algo-
rithm at various perplexity values and repeating the embedding with a sub-
set of drug molecules. The randomly selected five molecules are marked by
enlarged (x) symbol. Green: DB00006, orange: DB00849, purple: DB00977,
aqua: DB01362, blue: DB04837. The NNs of each molecule are indicated by
(+) symbol with matching color. Molecules are labeled according to Fig. 1.
A) Drug molecules, perplexity = 5. B) Drug molecules, perplexity = 40. C)
Subset, perplexity = 40.
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Figure 3: HCASE method. The process of embedding compounds into
a chemical space with the HCASE method is demonstrated. The chemical
space is defined by a reference scaffolds which are ordered based on their
Scaffold-Keys (SK). The HCASE method maps the reference scaffolds on
a series of PHCs of increasing order. Then, a compound of the library to
be embedded are mapped to its closest scaffold based on their Scaffold-Key
distances (dSK). A binning step is also included in the process to make sure
that each of the reference scaffolds, hence each compound, can be mapped to
one of the possible coordinates in the higher dimension space. The number
of possible coordinates is influenced by the order of the PHC the scaffolds
are mapped to. A compound highlighted by yellow is tracked in this process.
As it can be seen, the position of the compound in a 2D space is function
of the order of the PHC it was mapped to. Due to the nature of PHCs the
position of compounds converges to a “stable” position when increasing the
order of PHCs.
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Figure 4: Embedding of Cherry-Picked Scaffolds. The embedding of
several BMSs and their neighborhood is tracked. The cherry-picked scaffolds
and their respective colors are provided in Tab.1.
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Figure 5: KNN Analysis. Shown is the embedding of k = 5 nearest neigh-
bors of 5 randomly selected compounds from the DrugBank dataset. The or-
der of PHC utilized for structure embedding is indicated by suffix. Enlarged
(x) signs indicate the query compound of KNN analysis; green: DB00006, or-
ange: DB00849, purple: DB00977, aqua: DB01362, blue: DB04837. (+) signs
indicate the NNs of a query compound with identical color. Gray circles
indicate other DrugBank compounds. Compounds are labeled according to
Fig. 1.
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Figure 6: Comparing Embeddings in Natural Product and
ChEMBL Scaffold Space. Blue: CANVASS compounds, yellow: drugs.
Overlapping datapoints are colored by green-brown color due to the trans-
parency of the datapoints. A) NatProd Scaffold Space, PHC-5. B) ChEMBL
Scaffold Space, PHC-8.
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Figure 7: Distribution of Compounds Embedded with the HCASE
Method. Compounds were embedded into the NatProd scaffold space with
the help of HCASE method. DrugBank and CANVASS datasets into a space
defined by NatProd reference scaffolds. The intensity of each cell of the
heatmaps is proportional to the log10 of the number of compounds assigned
to each cell, i.e. position in the embedded space. A) Embedding of DrugBank
dataset. B) Embedding of CANVASS dataset.
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Figure 8: Embedding of ChEMBL Reference Scaffolds with and
Drug Molecules with Scaffold t-SNE. The parameters of t-SNE embed-
ding were set to default values, except for perplexity, i.e. learning rate = 200,
iteration number 1, 000. A) t-SNE embedding of ChEMBL reference scaffolds
at perplexity = 40. Highlighted are the scaffolds (see: Tab.1) cherry-picked
from the ChEMBL reference scaffold set. B) Embedding of k = 5 Nearest
Neighbors of selected DrugBank Molecules with Scaffold t-SNE. Enlarged
(x) signs indicate the query compound of KNN analysis; green: DB00006, or-
ange: DB00849, purple: DB00977, aqua: DB01362, blue: DB04837. (+) signs
indicate the NNs of a query compound with identical color. Compounds are
labeled according to Fig. 1


