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Abstract. The generation of carbon-centered radicals from air-sensitive organoboron 

compounds via nucleohomolytic substitution at boron is one of the most general methods to 

generate non-functionalized and functionalized radicals. Due to their reduced Lewis acidity, 

the very popular, air-stable, and readily available alkylboronic pinacol esters are not suitable 

substrates for this process. Herein, is reported their in situ conversion to alkylboronic catechol 

esters by boron-transesterification with a substoichiometric amount of catechol methyl borate 

(MeO–Bcat) telescoped onto a wide array of radical chain processes. This simple one-pot, 

radical-chain, deboronative protocol allows for the conversion of pinacol boronic esters into 

iodides, bromides, chlorides, and thioethers. The process is also suitable the formation of 

nitriles and allylated compounds via C–C bond formation using sulfonyl radical traps. Finally, 

a particularly mild protocol for the protodeboronation of pinacol boronic esters is given. The 

power of combining radical and classical boron chemistry, is illustrated with a highly modular 

5-membered ring formation using a combination of a three-component coupling reaction and 

a protodeboronative cyclization. 
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Radical reactions are becoming routinely applied in research laboratories involved in 

synthesis ranging from natural products to organic materials.1–3 Several approaches have been 

developed over the years to run radical processes: non-chain reactions based on the persistent 

radical effect involving homolytic cleavage of a weak bond,4 single electron transfer 

processes using stoichiometric or catalytic redox active agents,5,6 photochemistry7,8 and chain 

processes.9–14 All these approaches are complementary and have led to significant synthetic 

methods. Chain reactions are particularly attractive since, beside the reagents, they only 

require a substoichiometric (often tiny) amount of a radical initiator to take place. However, 

the mildness of chain processes offers unique opportunities for applications with highly 

functionalized substrates. For the generation of alkyl radicals in a chain process, alkyl halides, 

chalcogenides, xanthates and Barton esters have been used as radical precursors. 

Organoboron derivatives have also been used successfully for the generation of alkyl 

radicals15–18 via a nucleohomolytic substitution process.19 For instance, trialkylboranes 

provide efficiently alkyl radicals but application of this type of precursor is limited to the 

generation of simple alkyl radicals since only one of the three alkyl groups at boron is 

transformed into a radical.20 Several years ago, we demonstrated that catechol alkylboronic 

esters (R–Bcat) are a very efficient source of alkyl radicals.21–23 However, more stable and 

easy to handle boronic acid derivatives such as pinacol alkylboronic ester (R–Bpin) are 

radical inactive and therefore not suitable for the direct generation of alkyl radicals in a chain 

process. The generation of radicals from R–Bpin is a highly attractive process that has been 

tackled in the past by several groups. In an early report,24 we have demonstrated that R–Bpin 

can be directly used in a radical protodeboronation processes by taking advantage of an in situ 

boron-transesterification with 4-tert-butylcatechol (TBC) catalyzed by sulfuric acid (Scheme 

1, A).  



 

 

Scheme 1. Strategies for the generation of alkyl radicals from stable pinacol boronic esters. 

In this reaction, TBC has a dual role of i) diol for the transesterification and, ii) hydrogen 

atom source for the radical chain reaction. This approach suffers from relatively severe 

reaction conditions, i.e. the use of 20 mol% of sulfuric acid at 80 °C, and is limited to 

protodeboronation. Indeed, TBC used in excess for the transesterification step outcompetes 

other radical traps by fast transfer of hydrogen atoms to the alkyl radicals. Non-chain 

approaches such as the generation of radicals via electrochemical oxidation of the ate 

complexes derived from R–Bpin have been described.25,26 For instance, Lennox and Stahl 

reported the generation of benzylic radicals from ArCH(R)–Bpin·NaOH complexes and were 

able to trap them with TEMPO (Scheme 1, B).25 Similarily, Aggarwal has developed a 

radical-mediated protodeboronation reaction of R–Bpin upon treatment with phenyllithium to 

generate the corresponding ate complexes followed by an oxidative cleavage with Mn(III) 

salts in the presence of TBC (Scheme 1, C).27 This procedure has also been employed by 

Studer,28 who has recently developed a photoredox catalyzed protodeboronation of ate 

complexes derived from pinacol boronic ester and PhLi complexes using thiophenol as a 

source of hydrogen atoms.29 Recently, Ley described an acridinium photocatalyzed oxidative 

generation of alkyl radicals from pinacol alkylboronic ester - dimethylaminopyridine 
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complexes using flow technology.30 Other ate complexes such as alkyl trifluoroborates31–61 

and organo(triol)borates35,36 as well as boronic acids30,57,62–65 have also been successfully 

oxidized to deliver the corresponding alkyl radicals using either electrochemical, chemical, or 

photoredox catalyzed oxidation.66 Based on the preliminary results described in Scheme 1A, 

we report here particularly simple conditions to furnish radicals from a variety of different 

pinacol alkylboronic esters made possible by an in situ transesterification. This approach is 

not limited to protodeboronation and a broad range of C–X and C–C bond forming reactions 

using a variety of radical traps are possible (Scheme 1, D). 

Transesterification. Finding a suitable transesterification method was the key element of our 

strategy. The most obvious method, i.e. the transesterification with catechol has already been 

reported by us24 but was rapidly abandoned since residual catechol is acting as an excellent 

source of hydrogen atom in a competitive radical protodeboronation reaction.67,68 To 

circumvent the undesired protodeboronation, alternative procedures for the 

transesterifications that do not involve free catechol were examined. Transesterification of 

pinacol alkylboronate R–Bpin with catechol boronic or boric esters was a promising 

alternative since no free catechol will be present in solution. To avoid the presence of two 

different radical precursors in the reaction medium, it is important to use radical inactive 

catechol boronic or boric esters. The boronic esters catechol methylboronic ester (Me–Bcat) 

and catechol phenylboronic ester (Ph–Bcat) were tested first, both of them are radical 

inactive, i.e. unable to generate the corresponding highly reactive methyl and phenyl radicals. 

Under acid catalysis (4 mol% CF3SO3H), transesterification took place with both boronic 

esters. However, better results in term of catalyst loading and efficacy were obtained with 

catechol methyl borate (MeO–Bcat). The transesterification between pinacol 2-

phenylethylboronic ester 1a and MeO–Bcat was investigated in a more systematic way (eq 1). 

The reaction could be followed by 1H-NMR and results are summarized in Table 1 (see SI for 

NMR spectra). In the absence of acid, no reaction took place (entry 1). Trifluoroacetic acid 

and methanesulfonic acid (1 mol%) were both able to catalyze the transesterification. 

However, after 4 h, the equilibrium was not reached (Table 1, entries 2–5). Interestingly, 

trifluoromethanesulfonic acid generated in situ from TMS-triflate and methanol provided a 

46:54 mixture of 1a/1a' after 2 h (Table 1, entry 6). Longer reaction times did not alter the 

ratio demonstrating that the thermodynamic equilibrium was reached (Table 1, entry 7). 

Decreasing the reaction times showed that the equilibrium was reached by 45 minutes (Table 

1, entries 8–10). Based on these results, transesterification with MeO–Bcat catalyzed by in 



 

situ generated triflic acid was adopted for the development of the one-pot transesterification-

radical process. 

Table 1. Transesterification of 1a with MeO–Bcat (1 equivalent).  

 

Entry Acida Time 1a/1a' 

1 – 4 h 100:0 

2 CF3CO2H 2 h 88:12 

3 CF3CO2H 4 h 79:21 

4 CH3SO3H 2 h 85:15 

5 CH3SO3H 4 h 68:32 

6 CF3SO3H 2 h 46:54 

7 CF3SO3H 4 h 45:55 

8 CF3SO3H 45 min 46:54 

9 CF3SO3H 30 min 49:51 

10 CF3SO3H 15 min 63:37 

a) Using 1 mol% of the acid at 80 °C in benzene-d6. The ratio of 1a/1a' was determined by 

integrations of the diagnostic α-boryl peaks in 1H NMR (1a: 1.26 ppm (t, J = 8.0 Hz, 2H); 

1a': 1.41 ppm (t, J = 8.2 Hz, 2H)). 

Deboronative halogenation and chalcogenation. The radical bromination of 1a with 

benzenesulfonyl bromide initiated by di-tert-butylhyponitrite (DTBHN)69 was examined. 

Gratifyingly, it was immediately observed that only a substoichiometric amount of MeOBcat 

was necessary to run the reaction to completion (Scheme 2). Using 1 mol% of TMSOTf and 

MeOH and 0.3 equivalent of MeOBcat afforded the desired bromide 2a in 68% yield after 4 

h. The yield increased to 95% after 24 h. Using a smaller amount of MeO–Bcat (0.1 equiv) 

was detrimental to the yield. A potential reaction mechanism is provided in Scheme 2 (frame). 

The radical chain process is coupled with a boron-transesterification reaction. The fact that 

only a substoichiometric of the radically inactive MeO–Bcat is necessary to reach high 
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conversion and yields suggest that the PhSO2–Bcat generated in the radical chain reaction is 

also acting as a transesterification reagent. 

 

Scheme 2. Optimization of the radical deboronative bromination of 1a. 

The optimized reaction conditions were then tested with a variety of substrates and with 

different halogenating and chalcogenating radical traps such as benzenesulfonyl halides and 

S-phenyl benzenethiosulfonate. The results are summarized in Scheme 3. The reaction 

worked for a broad range of substrates such as primary (1a–1c) and secondary (1d–1f) 

alkylboronic esters (Scheme 3, A). Boronic esters delivering stabilized benzylic (1g) and α-

phosphonyl (1h) radicals provide the expected bromides 2g and 2h (Scheme 3, B). The 

halogenation of radicals derived from α-chlorinated pinacol boronic esters 1i–1m, easily 

prepared via Matteson homologation of pinacol alkylboronic ester using lithiated 

dichloromethane, proceeded efficiently (Scheme 3, C). Overall therefore, this reaction 

sequence can convert a boryl group into either a dichloromethyl, a bromochloromethyl, or an 

iodochloromethyl group – three transformations that cannot be achieved easily using known 

chemistry. The α-iodinated boronic ester 1n was brominated to gem-bromoiodo compound 2n 

in 86% yield. This example demonstrates further that this method is very valuable and general 

for the preparation of unsymmetrical gem-dihalides (see formation of compounds 2i–n). 

Finally, the iodination of 1n provided the symmetrical gem-diiodo derivative 4n in excellent 

yield. 
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Scheme 3. Deboronative halogenation and chalcogenation of pinacol boronic esters. i) 

Isolated yield; ii) GC yield. 

Deboronative alkylation. Formation of carbon–carbon bonds using different sulfonyl radical 

traps was investigated next. Simples alkyl radicals derived from 1a–d provided the desired 

allylated products 6a–d in moderate to good yields using 1.5 equivalents of the trap (Scheme 

4, A). The tertiary β-keto radical derived from 1o gave 6o in modest yield. The cyanation of 

1e and 1o proceeded well to give 8e and 8o, respectively. Stabilized radicals derived from 1g 

and 1h gave the expected allylated products 6g, 6h, and 7h in satisfactory yields (Scheme 4, 

B). Finally, the α-chlorinated radicals derived from 1i–1l reacted well with electron deficient 

and electron rich allylsulfones leading to 6i–6m and 7j–m, respectively (Scheme 4, C). The 

deboronative cyanation of 1i afforded the α-chloronitrile 8i in 79% yield. Interestingly, all 
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these reactions have been performed using a small excess of the radical trap (1.5 equivalents) 

leaving room for optimization when structurally more complex organoboranes will be used. 

 

Scheme 4. Deboronative alkylation of pinacol boronic esters using sulfone radical traps. i) 

Isolated yield; ii) GC yield; iii) 1H NMR yield. 

Protodeboronation. Finally, the protodeboronation of pinacol alkylboronic esters was 

investigated under our mild radical chain reaction conditions using TBC as a source of 

hydrogen atoms (Scheme 5, conditions a). Under these conditions, primary and secondary 

alkyl boronates are efficiently converted to the protodeboronated products 9a, 9b, 9d, and 9e 

(Scheme 5, A). The α-chlorinated boronates 1i–1m provided the protodeboronated products 

9i–9m in high yields. Remarkably, the α-iodoboronate 1n gave 9n in 89% yield 

demonstrating further the very high level of chemoselectivity of this radical 
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protodeboronation process. The protodeboronation with TBC on α-halogenated boronates 1i–

1n were run without MeOBcat (condition b). These substrates could be protodeboronated 

without triflic acid catalysis and only slight reductions in yield. The higher reactivity of the α-

haloalkylboronic esters relative to non-halogenated alkylboronic esters is attributed to the 

higher acidity of the boron atom that facilitates the transesterification. 

 

Scheme 5. Protodeboronation of pinacol boronic esters. i) isolated yield; ii) GC yield; iii) 1H 

NMR yield. 

Finally, to demonstrate the potential of merging the rich chemistry of boronic ester with 

radical chemistry, we have prepared the 5-membered ring 12 via a two-step procedure 

involving a three-component coupling reaction between dimethyl (3,3-dimethylallyl)malonic 

acid, pinacol vinylboronic ester and n-butyllithium followed by deboronative radical 

cyclization (Scheme 6). The reported procedure of the three-component coupling process70 

was significantly improved by avoiding the use of any radical initiator. The chain reaction is 

presumably initiated by means of an electron transfer from the ate complex to the α-

bromomalonate. Overall, in the transformation, three new C–C bonds and one C–H bond are 

formed. The bonds highlighted in red are formed by radical processes and in blue by an ionic 

1,2-metallate (or anionotropic) rearrangement. 
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Scheme 6. 5-Membered ring synthesis via merging radical and ionic chemistry of pinacol 

boronic esters. 

Conclusions. We have developed a simple and efficient set of radical chain reactions starting 

from air stable pinacol alkylboronic esters. Activation of the radical inactive R–Bpin via 

transesterification with the boric ester MeO–Bcat under acid catalysis provides an access to a 

broad range of radical precursors. The merger of the rich chemistry of boronic esters with 

radical reactions is expected to open a tremendous number of applications for the synthesis 

and derivatization of complex target molecules such as natural products and other 

pharmacologically relevant compounds. 
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