
 

 
NOTE: None of the molecules have been synthesized and tested in vitro or in vivo. These are not drugs 
for 2019-nCov coronavirus. Expert medicinal chemists are encouraged to review and comment on the 

molecules in the article and on the website.  
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The emergence of the 2019 novel coronavirus (2019-nCoV), for which there is no vaccine or any 
known effective treatment created a sense of urgency for novel drug discovery approaches. One 
of the most important 2019-nCoV protein targets is the 3C-like protease for which the crystal 
structure is known. Most of the immediate efforts are focused on drug repurposing of known 
clinically-approved drugs and virtual screening for the molecules available from chemical libraries 
that may not work well. For example, the IC50 of lopinavir, an HIV protease inhibitor, against the 
3C-like protease is approximately 50 micromolar. In an attempt to address this challenge,  on 
January 28th, 2020 Insilico Medicine decided to utilize a part of its generative chemistry pipeline 
to design novel drug-like inhibitors of 2019-nCoV and started generation on January 30th. It 
utilized three of its previously validated generative chemistry approaches: crystal-derived pocked-
based generator, homology modelling-based generation, and ligand-based generation. Novel 
druglike compounds generated using these approaches are being published at 
www.insilico.com/ncov-sprint/ and will be continuously updated. Several molecules will be 
synthesized and tested using the internal resources; however, the team is seeking collaborations 
to synthesize, test, and, if needed, optimize the published molecules.  
 
 
 
 
 
 
 
 



 

 
Introduction 
 
Coronaviruses (CoVs) are a large family of viruses belonging to the family Coronaviridae. The 
limited number of coronaviruses known to be circulating in humans cause mild infections and they 
were regarded as relatively harmless respiratory human pathogens 1. The emergence of the 
severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East Respiratory 
Syndrome (MERS) virus revealed that coronaviruses can cause severe and sometimes fatal 
respiratory tract infections in humans. The first known case of SARS-CoV occurred in Foshan, 
China in November 2002 and new cases emerged in mainland China in February 2003. The first 
emergence of MERS-CoV occurred in June 2012 in Saudi Arabia 2. These events demonstrated 
that the threats of CoVs should not be underestimated and that it is of paramount importance to 
advance the knowledge on the replication of these viruses and their interactions with the hosts to 
develop treatments and vaccines. These successive outbreaks also highlight the long-term threat 
of cross-species transmission events leading to outbreaks in humans and the possible re-
emergence of similar virus infection that should be considered seriously 3.  SARS-CoV and 
MERS-CoV are two major causes of severe atypical pneumonia in humans and share important 
features that contribute to preferential viral replication in the lower respiratory tract and viral 
immunopathology.  In December 2019, atypical pneumonia cases emerged in Wuhan, Hubei, 
China, with clinical presentations consistent with viral pneumonia. The cause was quickly 
identified as being a novel CoV, which was named 2019 novel coronavirus (2019-nCoV).  
Investigations of the epidemiological, clinical, laboratory and radiological characteristics, 
treatment, and outcomes of patients infected by 2019-nCoV demonstrated that the infection 
caused clusters of severe respiratory illness similar to SARS-CoV 4.  Early clinical investigations 
showed that although the 2019-nCoV can cause severe illness in some patients, it initially did not 
transmit readily between people. However, more recent epidemiological data suggest the new 
virus has undergone human host adaptation/evolution and has become more efficient in human 
to human transmission. Analysis of 2019-nCoV genome sequences obtained from patients during 
the beginning of the outbreak demonstrated that they are almost identical to each other and share 
79.5% sequence identity to SARS-CoV 5. The nCoV-2019 is 96% identical at the whole genome 
level to a bat coronavirus. The 2019-nCoV genomic sequence was used to perform comparative 
genetic and functional analysis with the human SARS virus and coronaviruses recovered from 
other species. Phylogenetic analysis of CoVs of different species indicated that 2019-nCoV could 
have originated from Chinese horseshoe bats, but the intermediate transmission vehicle has not 
yet been identified 6. According to this study,  2019-nCoV belongs to a novel type of bat 
coronavirus owing to a high degree of variation from the human SARS virus. 2019-nCoV is the 
seventh member of the family of CoVs that infect humans. Like  SARS-CoV, 2019-nCoV enters 
target cells through an endosomal pathway and also uses the same cell entry receptor, 
Angiotensin-converting enzyme II (ACE2) 5 7. Detailed analysis of the interaction of receptor 
binding domains (RBDs) of 2019-nCoV with human ACE2 indicated that the affinity of binding to 
a human cell is lower than that of human SARS virus from which it was inferred that the infectivity 
and pathogenicity of this new virus could be lower than the human SARS virus 6.  Single-cell RNA 
expression profiling of ACE2 was carried out 8. The analysis of the ACE2 RNA expression profile 
in the normal human lungs showed that the ACE2 virus receptor expression is concentrated in a 



 

small population of type II alveolar cells which is also expressed many other genes that positively 
regulate  2019-nCoV reproduction and transmission. 
 
CoV structure  and  main strategies for targeting 2019-nCoV 
 
The Coronaviridae family consists of four genera based on their genetic properties, including 
genus Alphacoronavirus, genus Betacoronavirus, genus Gammacoronavirus, and genus 
Deltacoronavirus. The coronavirus RNA genome (ranging from 26 to 32 kb) is the largest among 
all RNA viruses and the viral particle is about 125 nm in diameter 9.  CoVs have a complex genome 
expression strategy. In addition to a role in virus replication or virus assembly, many of the CoV 
proteins expressed in the infected cell contribute to the coronavirus-host interactions. This 
includes interactions with the host cell to create an optimal environment for CoV replication, 
alteration of the host gene expression and neutralization of the host’s antiviral defenses. These 
coronavirus–host interactions are key to viral pathogenesis 10. The genes for non-structural 
proteins constitute two-thirds of the CoV genome. Among the structural proteins, 4 are of special 
interest namely spike (S), envelope (E), membrane (M), and nucleocapsid (N). The S, E, and M 
proteins are contained within the viral membrane. The M and E proteins are involved in viral 
assembly, while the N protein is required for RNA genome assembly. The S protein, a surface-
located trimeric glycoprotein of CoVs, plays a  functional role in viral entry into host cells, viral 
infection, and pathogenesis and was considered as a major therapeutic target for treatments and 
vaccines against SARS-CoV and MERS-CoV. Therapeutics investigated at that time included 
peptides that block RBD-ACE2-binding and peptides that bind the S protein to inhibit the 
production of functional S1 and S2 subunits and the consequent fusion of the viral envelope with 
the host cell membrane 1. 
 
Although CoVs share many similarities they also have undergone substantial genetic evolution. 
Identification of promising targets for antiviral therapies and vaccines against 2019-nCoV should 
exploit the structural similarities between SARS-CoV and 2019-nCoV and focus on proteins that 
are highly conserved across multiple CoVs. There is an ongoing effort to ensure that all scientific 
materials known about 2019-nCoV such as curated data and updated research reports are 
available to the scientific community. For instance, the initiative  https://ghddi-
ailab.github.io/Targeting2019-nCoV/  supported by the Global Health Drug Discovery Institute 
(GHDDI) contains experimental data of CoV related studies, homology models for 2019-nCoV 
targets as well as for SARS-CoV and MERS-CoV protein targets. Among the many potential 
targets against SARS-CoV and several other CoVs, replication-related enzymes, such as 
protease, are highly conserved 5.  Drugs that inhibit conserved proteases are capable of 
preventing replication and proliferation of the virus by interfering with the post-translational 
processing of essential viral polypeptides. They can also reduce the risk of mutation mediated 
drug-resistance. This was the case for the SARS-CoV 11, as inhibitors targeting the main protease 
involved in replication and proliferation were the most effective means to alleviate the epidemic. 
Once the target is identified, computational drug repurposing procedures were launched to 
identify suitable drugs. Following this approach, Lopinavir and Ritonavir, two HIV-1 protease 
inhibitors, were identified to be capable of inhibiting SARS-CoV main protease 12. The SARS-CoV 
main protease has 96.1% of similarity with the 2019-nCoV main protease, hence it can be used 



 

as a homologous target for screening drugs that inhibit the replication and proliferation of 2019-
nCoV.  
 
In this work the selected target is the C30 Endopeptidase, also referred to as the 3C-like 
proteinase or coronavirus 3C-like protease (3CLP) or coronavirus main protease (Mpro). 3CLP  is 
a homodimeric cysteine protease and a member of a family of enzymes found in the Coronavirus 
polyprotein 13. It cleaves the polyproteins into individual polypeptides that are required for 
replication and transcription 14 15. Following the translation of the messenger RNA to yield the 
polyproteins, the 3CLP is first auto-cleaved from the polyproteins to become a mature enzyme 16. 
The 3CLP then cleaves all the 11 remaining downstream non-structural proteins. 3CLP plays a 
central  role in the viral replication cycle and is an attractive target against the human SARS virus 
17 
 
Computational Approaches for 2019-nCoV 
 
Computational drug repurposing is an effective approach to find new indications for already known 
drugs 18 19.  A computational drug repurposing approach typically relies on an integrated pipeline 
which includes a virtual screening of drug libraries to find suitable drug-target pairs using methods 
such as molecular similarity while homology modelling is used to model the target. Molecular 
docking and binding free energy calculations are used to predict drug-target interactions and 
binding affinity 20. The emergence of resistance to existing antiviral drugs and re-emerging viral 
infections are the biggest challenges in antiviral drug discovery. The drug repurposing approach 
allows finding new antiviral agents within a short period to overcome the challenges in antiviral 
therapy. Computational drug repurposing has been used to identify drug candidates for viral 
infectious diseases like Ebola, ZIKA, dengue and influenza infections 21. These methods were 
also used to identify potential drugs against SARS-CoV and MERS-CoV 22; 23 and following the 
2019-nCoV outbreak, computational repurposing has been applied for 2019-nCoV. The results of 
some of those investigations have already been reported. For instance, by looking for drugs with 
high binding capacity with SARS-CoV main protease,  4 small molecule drugs, Prulifloxacin, 
Bictegravir, Nelfinavir, and Tegobuvi,  were identified as repurposing candidates against 2019-
nCoV24. These 4 molecules were selected by high-throughput computational screening of a library 
of 8,000 experimental and approved drugs and small molecules obtained from Drugbank and 
using the structures and sequences of SARS-CoV main protease downloaded from the PDB 
database. Molecular similarity search was performed by using a strategy based on the similar 
sequences of the structure-revealed molecules. The crystal structure of the main protease 
monomer was used as a target protein for molecular docking and a protein-ligand interaction 
analysis was performed on the resulting 690 candidates. Toxins, neurologic drugs, and antitumor 
drugs with strong side effects were discarded from the initial set of 690 candidates leaving 50 
molecules with the capability to bind the SARS-CoV main protease. After filtering for approved 
drugs and performing further kinetic and biochemical analysis, the four remaining drugs were 
Prulifloxacin, Bictegravir, Nelfinavir, and Tegobuvi. Interestingly, Nelfinavir, an HIV-1 protease 
inhibitor to treat HIV, was also predicted to be a potential inhibitor of 2019-nCoV main protease 
by another computational-based study combining homology modelling, molecular docking and 
binding free energy calculation 25. In this work, the main 2019-nCoV protease structures were 



 

modeled using the SARS homologue (PDB ID: 2GTB) as a template. Molecular docking was 
performed and 1903 approved drugs were tested against the model. Based on the docking score 
and after further three-dimensional similarity analysis, 15 drugs were selected. 10 additional new 
models of the main 2019-nCoV protease were used for additional docking analysis of these 15 
drugs. 6 drugs (Nelfinavir, Praziquantel, Pitavastatin, Perampanel, Eszopiclone, and Zopiclone) 
had good binding modes and were selected for further analysis. Binding free energy calculation 
was performed for 4 of the 6 drugs and Nelfinavir was selected as the most promising candidate. 
In another recent study26, the main 2019-nCoV protease was also used as a target to find 
repurposing candidates through computational screening among clinically approved medicines. 
The study identified a list of 10 commercial medicines that may form hydrogen bonds to key 
residues within the binding pocket of 2019-nCoV main protease and may also have a higher 
tolerance to resistance mutations. 
 
Generative Chemistry Approaches 
 
Considering the virtually unlimited number of chemical structures that can be generated de novo, 
conventional computational drug design approaches tend to include limited numbers of fragments 
and/or employ sophisticated search strategies to sample hit compounds from a predefined area 
of the chemical space. To enable scientists to exploit the whole drug-like chemical space, a new 
type of computational methods for drug discovery has been developed using the recent advances 
in deep learning (DL) and artificial intelligence (AI). Such techniques can automatically extract 
high-dimensional abstract information without the need for manual feature design and learn 
nonlinear mappings between molecular structures and their biological and pharmacological 
properties. Deep generative models can utilize large datasets for training and perform in silico 
design of de novo molecular structures with predefined properties 27. The first model of this type, 
a molecular generator using an adversarial auto-encoder (AAE) to generate molecular 
fingerprints, was released in early 2017 28. Since then, many architectures were proposed to 
generate not just valid chemical structures, but also molecules matching certain bioactivity and 
novelty profiles as well as other features of interest.  Several milestones were recently 
accomplished with the use of generative chemistry in drug discovery, demonstrating that it is 
possible to generate molecules that can be synthesized, are active in vitro, metabolically stable, 
and elicit in vivo activity in disease-relevant models. The first example of an in vitro active 
molecule obtained through generative chemistry was the JAK3 inhibitor 29. Another generative 
model, Generative Tensorial Reinforcement Learning (GENTRL), generated discoidin domain 
receptor DDR1 and DDR2 inhibitors. DDR1 and DDR2 inhibitors with different property and 
selectivity profiles were assayed in vitro, followed by in vivo mouse experiments that validate the 
pharmacokinetics of DDR1 inhibitors 30. This experiment demonstrated that generative chemistry 
is capable of finding novel molecular structures with optimized properties which could not be found 
using repurposing approaches and other standard computational methods. With a timeframe of 
fewer than 25 days between the initial target selection and the generation of the lead compounds, 
it demonstrates that this method is also time effective. 
 
 
 



 

Insilico Medicine 2019-nCoV Sprint Timeline and Methods 
 
Insilico Medicine’s drug discovery system consists of three main pipelines: target discovery, small 
molecule drug discovery, and predictors of clinical trial outcomes (Figure 1). This system is 
designed to achieve maximum automation of drug discovery processes for a broad range of 
human diseases. Our small molecule drug discovery pipeline can be used to generate inhibitors 
of bacterial and viral protein targets. Multiple publications explaining the basic concepts and 
approaches in generative chemistry were published by the team 28–36. 
 
Since there is a known protease target for 2019-nCoV and its sequence and structure are known, 
we decided to apply only the generative chemistry pipeline to generate the possible drug-like hits.  
 

 
Figure 1: Insilico Medicine drug discovery pipeline. The generative modules utilizing crystal 
structure, homology modelling, and ligand-based generative chemistry pipelines were used to 
generate the molecules for the 3C-like protease. 
 
At the end of January, the news of the 2019-nCoV showed that the virus is substantially more 
dangerous than previously thought. While multiple teams already proposed the most likely 
repurposing candidates, we decided to support the ongoing efforts with a different strategy and 
employed the generative chemistry approach to design novel small molecules designed 
specifically against 2019-nCoV. Using the 2019-nCoV 3C-like protease as a target, we planned 
out the generative chemistry timeline (Figure 2) starting with target selection on January 28th and 
publication of the molecules from the three generative approaches on February 5th. We also 
agreed with the key synthetic chemistry partner to start synthesizing and testing several 
generated molecules right after publication.  
 
 
 
 



 

Three parallel approaches were utilized to generate novel structures (pocket-based, ligand-based 
and homology model-based generation, represented in Figure 3). 
 

 
Figure 2: Insilico Medicine 2019-nCoV Small Molecule Generation Sprint Timeline 

 
 

 
Input data and datasets 
 
Crystal structure of 2019-nCoV 3C-like protease   
 
The crystal structure of 2019-nCoV 3C-like protease was obtained from Dr. Rao’s laboratory. The 
structure was solved with a 2.1-angstrom resolution in complex with the covalent inhibitor named 
N3. The SARS-CoV main protease has been previously crystallized with the same inhibitor.17 The 
ligand was extracted from the crystal and employed in the ligand-based generation. Then, the 
binding site was annotated utilizing our proprietary pocket module to create amino acid residues 
mapping suitable as input data for target structure-based generation. 
 
 
Homology modelling 
 
The homology model of the 2019-nCoV 3C-like protease in complex with non-covalent ligand was 
built using the primary sequence corresponding to its crystal structure provided by Dr. Rao’s 
laboratory (vide supra). The X-ray structure 4MDS 37 (1.6 Å resolution) of SARS-CoV Mpro was 
used as a template which was co-crystallized with a non-covalent inhibitor and had a very high 
level of similarity with the 2019-nCoV 3C-like protease (95.25% identity). The homology modelling 
was performed using SWISS-MODEL 38 39. Given the almost complete identity of 2019-nCoV and 
SARS-CoV proteases in their ligand binding sites, we further refined the obtained homology 
model with the inhibitor bound in ligand pocket using position restrained minimization with 
GROMACS 40 with the Cα atoms of protein and all heavy atoms of ligand restrained by harmonic 
constraints (kspring=100 kJ/mol/nm2). Two protonation states of His41 situated in the binding pocket 
were considered. The constructed homology model was preprocessed for generation as 
described above for crystal structure. 
 
Co-crystalized fragment 



 

 
The 3D structure of the N3 inhibitor was extracted from the solved complex. The propanoate 
substructure was replaced by a propenoate, then it was converted to the E-configuration to restore 
the compound structure that occurred before covalent addition. The obtained conformation was 
used to build the shape of the ligand as well as two pharmacophore hypotheses using our 
proprietary modules. For each hypothesis, 7 pharmacophore points were selected according to 
the interactions in the initial crystal structure and coverage of the peptidomimetic scaffold. The 
constructed ligand shape and hypotheses were exploited for estimating how generated structures 
fit the structural features essential for binding. 
 
Protease dataset 
 
The protease dataset was assembled with molecules active against various proteases in 
enzymatic assays extracted from the Integrity database 41, Experimental Pharmacology module 
and ChEMBL 42,43. The records from the ChEMBL database were downloaded with the following 
activity standard types: 'Potency', 'IC50', 'Ki', 'EC50', 'Kd' (assay confidence score ≥ 8, assay type: 

B, F). The activities from the Integrity database were downloaded using the following parameters: 

'IC50', 'Ki', 'EC50', 'Kd', and mass concentrations (e.g. mg/l) were converted to M values by 
molecular weight. Integrity records were standardized using the pChEMBL value format 
(logarithmic scale –log10 of a numeric value in M) and merged with the records from ChEMBL. 
The resulting records with pChEMBL values less than 5.0 (10μM in terms of IC50) were then 
removed. 
 
The structural duplicates were filtered out after the standardization procedure and the removal of 
salt parts from salt compositions. Mild medicinal chemistry filters (MCFs) were applied to filter out 

highly non-drug-like molecules (e.g. metals, polycondensed aromatics, chloramines, radicals, 

hydrazines, isonitriles, nitroso compounds) as well as structures containing cycles bigger than 8 

atoms and polypeptides (n≥4). The resulting dataset contained 60,293 unique structures. 
 
To tailor the scoring and the rewarding functions to the given problem, a protease peptidomimetics 
dataset was collected from the protease dataset using SMARTS queries for common 
peptidomimetic substructures, filtering compounds with pChEMBL value less than 6.0, and 
suppressing the overrepresented chemotypes. The resulting protease peptidomimetics dataset 
contained 5,891 compounds. 
 
 
 
 
 
 
 



 

 
Generative pipeline 
 
We launched Insilico Medicine’s generative chemistry platform for every input data type: crystal 
structure, homology model and co-crystalized ligand. 
 

 
Figure 3: Insilico Medicine 2019-nCoV Small Molecule Generation Procedure 

 
 
During the generative phase, a total of 28 machine learning (ML) models generated molecular 
structures and optimized them with reinforcement learning (RL) employing the reward function 
described below. We used different ML approaches such as generative autoencoders, generative 
adversarial networks, genetic algorithms, and language models. The models exploited various 
molecular representations, including fingerprints, string representations, and graphs. Every model 
was optimizing the reward function to explore the chemical space, exploit promising clusters, and 
generate new molecules with high scores. The rewarding function was a weighted sum of multiple 
intermediate rewards: medicinal chemistry and drug-likeness scoring, active chemistry scoring, 
structural scoring (fitting to ligand features and/or binding pocket), novelty scoring, and diversity 
scoring. 
 
Medicinal chemistry scoring assigned a low reward to molecules with structural alerts and a high 
reward to molecules with useful substructures. Drug-likeness scoring drove the generation 
towards the molecules with molecular properties that are representative for protease 
peptidomimetics dataset—logP: 1.49–6.00; Molecular weights (MW): 400–800; Number of 
hydrogen bond donors (HBD): 1–10; Number of hydrogen bond acceptors (HBA): 2–10; 
Topological polar surface area (TopoPSA): 80–210; MCE-1844: 40–180; Number of stereocenters 
(nSC): 0–3. 
 
Active chemistry scoring utilized self-organizing maps trained on protease peptidomimetics 
dataset. We used novelty and diversity scoring in the optimization procedure to explore the 
chemical space and output a novel and diverse set of molecular structures. Generated 
compounds were penalized for the similarity to the existing molecules and previously explored 
clusters. We performed structural scoring with the provided crystal structure or homology model 
and pharmacophore/shape scoring for structure-based and ligand-based generations, 
respectively. We ran the distributed pipeline for 72 hours on the internal computing cluster with 
64 NVIDIA Titan V GPUs. 
 



 

 
 
Results 
 
In this study, we used our proprietary generative chemistry pipeline utilizing the knowledge of the 
crystal structure and homology model of the target protein. We launched the generative pipeline 
three times for every input data type: crystal structure, homology models and co-crystalized 
ligand. For each launch, the highest-ranking structures were selected for further analysis. Figure 
4 shows some representative examples from the chemical space produced by our generative 
pipeline launch for the crystal structure. More compounds for generations based on crystal 
structure, homology models, and co-crystallized ligand are available as described in the section 
“Availability of structures”. These virtual structures display high 3D-complexity and 
correspondingly high values of MCE-18, and contain stereo- and/or spiro centers  (Table 1), which 
are common characteristics of peptidomimetics and PPI inhibitors. We assessed the similarity of 
the structures with compounds from the ChEMBL database using the search engine on the 
ChEMBL website. The analysis revealed that there are no molecules with the same core structure 
among the compounds with similarity values more than 0.7 (see Figure 5). 
  

 
 
Figure 4. Representative examples of the structures generated to target the main protease of 
2019-nCoV. Novelty was assessed using similarity search in ChEMBL Database. ChEMBL ID 
numbers and maximal similarity coefficients are listed, “no” means that there are no structures 
with similarity >0.7.  
 
 
 
 
 
 



 

Table 1. The physicochemical descriptors for the representative examples of generated 
structures. MW—molecular weight, nRot—number of rotatable bonds, nAR—number of aromatic 
rings, nSC—number of stereocenters, HBA—number of hydrogen bond acceptors, HBD—
number of hydrogen bond donors, MCE-18—medicinal chemistry evolution 2018 descriptor. 
 

ID MW nRot nAR nSC HBA HBD MCE-18 TopoPSA 

INSCoV-001 636 9 3 1 4 4 162 115 

INSCoV-002 563 9 3 2 3 3 100 79 

INSCoV-003 589 10 3 2 4 7 105 163 

INSCoV-004 439 3 2 1 3 5 88 108 

INSCoV-005 578 5 3 1 5 1 163 108 

INSCoV-006 610 9 3 1 4 4 104 120 

 



 

 
Figure 5. The assessment of similarity between generated structures and compounds from the 
ChEMBL database utilizing the tool implemented into ChEMBL search. The closest molecules 
from ChEMBL with ID numbers are presented on the right as well as ChEMBL similarity scores. 
 



 

Availability of Structures 
 
The most recent data package is available at insilico.com/ncov-sprint. We will continue to update 
the data package with new compounds during the following weeks. These data could be used to 
perform subsequent computer modelling simulations or to synthesize and test the compounds in 
vitro against the 2019-nCoV main protease. 
 
Conclusion and discussion 
 
Despite the economic and societal impact of CoV infections and the likelihood of future outbreaks 
of even more serious pathogenic CoVs in humans, there is still a lack of effective antiviral 
strategies to treat CoVs and few options to prevent CoV infections 10. Given the high prevalence 
and wide distribution of CoVs, the novel virus could emerge periodically in humans as a 
consequence of frequent cross-species infections and occasional spillover events 45. The 
development of effective and time-efficient computational methods for designing compounds that 
can treat CoV infections is critical. In this study, we have used our integrated AI-based drug 
discovery pipeline to generate novel drug compounds against 2019-nCoV. The results 
demonstrate the cost-effectiveness and time efficiency of this type of new method for the 
development of novel treatments against CoV infections. 
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