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Abstract

The free energy of a process is the fundamental quantity that determines its spontaneity or
propensity at a given temperature. Binding free energy of a drug candidate to its biomolecular
target is used as an objective quantity in drug design. Binding kinetics — rates of association (kop)
and dissociation (kog) — have also demonstrated utility for their ability to predict efficacy and in
some cases have been shown to be more predictive than the binding free energy alone. Although
challenging, some methods exist to calculate binding kinetics from molecular simulations. While
the kinetics of the binding process are related to the free energy by the log of their ratio, it is
not straightforward to account for common, practical details pertaining to the calculation of rates
in molecular simulations, such as the finite simulation volume or the particular definition of the
“bound” and “unbound” states. Here we derive a set of correction terms that can be applied to
calculations of binding free energies using rates observed in simulations. One term accounts for
the particular definitions of the bound and unbound states. The second term accounts for residual
electrostatic interactions that might still be present between the molecules, which is especially
useful if one or both of the molecules carry an explicit charge. The third term accounts for
the volume of the unbound state in the simulation box, which is useful to keep the simulated
volume as small as possible during rate calculations. We apply these correction terms to revisit
the calculation of binding free energies from rate constants for a host-guest system that was part
of a blind prediction challenge, where significant deviations were observed between free energies
calculated with rate ratios and those calculated from alchemical perturbation. The correction
terms combine to significantly decrease the error with respect to computational benchmarks, from

3.4 to 0.76 kcal/mol.
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I. INTRODUCTION

In recent years there is a growing appreciation for the utility of binding kinetics in the
prediction of drug efficacy [1-10]. Pharmacokinetic and pharmacodynamic models of drug
activity in the body are inherently out of equilibrium: a drug is administered, it is absorbed,
distributed to different tissues, metabolized and eliminated from the body. As such, kinetic
constants of binding and release — beyond just the equilibrium constants of binding — are
required to model drug action when the timescales of binding and release cannot be separated
from the other competing processes [11]. The relationship between molecular structure and
the kinetics of binding (also called “structure-kinetic relationships” or SKR) is complicated,
as small changes to structure can change kinetic constants by orders of magnitude [5]. It
is important to note that changes in kinetics are not always tied to changes in affinity [12],
and that to accurately predict changes in kinetics, models of the ligand-binding transition
state are needed to estimate transition-state stabilization or destabilization [13].

Computational methods that reveal structures of transition states and calculate bind-
ing (kon) and unbinding (kog) rate constants for real compounds are in their infancy, but
are quickly developing [14]. It is a tremendous challenge to obtain reliable values for these
quantities, as 1) they depend on the entire (un)binding pathway, not just its endpoints, and
2) the timescales of ligand binding and release often exceed the capabilities of molecular
dynamics simulations by orders of magnitude. Specialized computing platforms have been
applied to generate continuous binding pathways [15], although the unbinding process is typ-
ically beyond the reach of molecular dynamics simulation for compounds beyond millimolar
drug fragments [8, 16]. Recent studies have used enhanced sampling methods in molecu-
lar dynamics to simulate ligand (un)binding pathways and determine mechanisms and rate
constants ko, and kg [17-25]. Some of these rate constants have shown surprisingly good
agreement with experiment — given the extraordinarily long timescales involved — however
these have the confounding uncertainty of force field accuracy [26, 27|, there is a possibil-
ity for fortuitous cancellation of error. Unfortunately, the computational cost required to
predict these quantities is typically massive [27], especially for large protein systems and
ligands with extremely long residence times, precluding the study of these events under a
series of different simulation conditions (e.g. forcefields, water models, polarizability).

In the field of biomolecular modeling, blind challenges — where a series of objectives are



released by the organizers, and participants entries are directly judged by their agreement
with experiment — have been useful catalysts for the development of predictive algorithms
[28-31]. Although no blind challenge currently exists for the prediction of k., and kg, we
recently participated in the SAMPL6 SAMPLing challenge, which required participants to
compute free energies as a function of simulation time and to compare the computational cost
of different free energy calculation methods [32-34]. This challenge allows sampling methods
to be assessed independently of force field accuracy, as all entries used the same initial
coordinates, force field parameters and partial charges. Importantly, the challenge makes
use of very small model systems (host-guest) that require considerably less computational
resources to simulate, which allowed us to efficiently simulate binding and release for a
number of systems, determine k., and kg, and predict values for the binding free energy
(AG) that would then be compared to experimental observables, as well as results from
alchemical free energy perturbation methods [35, 36].
The binding free energy was determined as a function of rate constants:
ki

off

AG = —kgT'In

(1)

where C° is a reference concentration of 1 mol/L. In this paper, we revisit this equation
in detail and explicitly examine the assumptions made when the rate constants used in
Eq. 1 are computed through typical simulations with finite box-size and periodic boundary
conditions. In Section IIT A we derive three correction terms that can be easily computed and
facilitate a better connection with both experiment and alchemical computational free energy
calculations. To examine questions of convergence, we reproduce our binding and unbinding
simulations with larger numbers of replicas and longer simulation times. We also explore
the effects of the Langevin integrator on the prediction of unbinding and binding rates;
in particular, how altering the friction coefficient (7), defined in the Langevin integrator,
impacts the binding and release processes. Although v does not appear in the internal energy
function, and hence cannot affect thermodynamic properties such as the binding free energy,
we examine whether lower friction coefficients can accelerate the convergence of unbinding

simulations.



II. METHODS
A. Host-guest systems

The host-guest system utilized in this study is referred to as “OA-G6” (Fig. 1), where
the host is a Gibb deep cavity cavitand, referred to as an “octa acid” or “OA” [37]. OA
forms a basket-like structure with 4-fold symmetry, functionalized with four benzoic-acid
substituents on the top rim of the basket and four more on the bottom. The guest ligand we
study here is 4-methyl pentanoic acid (referred to as “G6”). This ligand harbors a negative
charge at the carboxyl end of the alkyl chain.

A

FIG. 1: (A) The initial pose for the OA-G6 system (side view: left, top view: right). Note that
some atoms from the host are removed in the side view for clarity. The carboxyl oxygens are shown

in sphere representation. (B) The chemical structure of the G6 ligand in the deprotonated form.

B. Molecular dynamics

The OA-G6 configuration was obtained from the organizers of the SAMPLing challenge
[32]. The system was solvated in a (roughly) cubic box with box length 4.28, 4.33 and
4.33 nm in the z, y and 2z dimensions, respectively. The system provided had a total of
7976 atoms: 2586 water molecules to solvate the system, 12 sodium and 3 chloride ions to
neutralize the system, and the remaining atoms belonging to either the host or the guest.

OpenMM v7.2.1 [38] was used to run dynamics with the CUDA v9.0.176 platform. A Monte



Carlo barostat is used to maintain a constant pressure of 1 atm. A timestep of 2 fs was used
across all simulations.

We utilize the Langevin integrator, which uses a drag term and a noise term to account
for the friction of solvent molecules and high velocity collisions that perturb the system.
Langevin dynamics allows for the temperature to be controlled and can be used as a ther-
mostat; we run all dynamics here at 300 K. Our host-guest system follows the Langevin

equation, shown below:

F =ma = —-VU(r) —yv + /2vkgTR(t) (2)

where U(r) is the particle interaction potential, R(t) is a random Gaussian noise term, 7’
is the temperature, kg is the Boltzmann constant, and v is the friction coefficient. The
friction term plays two different roles here, both modulating the second “drag” term, and
the Gaussian noise. As ~ approaches zero, the noise gets weaker and the dynamics becomes
more deterministic. Here we run binding and unbinding simulations with v values of 1.0,

0.1 and 0.01 ps~.

C. Reweighting of Ensembles by Variance Optimization

To generate an ensemble of ligand unbinding events, we need to employ enhanced sam-
pling as the timescale of ligand unbinding events in this system is prohibitively long: we
found in previous studies a mean first passage time of 2.1 s [34], which is six orders of mag-
nitude longer than the reach of conventional MD sampling. In this work, we implement the
REVO resampling method, based on weighted ensemble (WE) framework, to encourage the
sampling of rare unbinding/rebinding events. WE accelerates the sampling of rare events us-
ing an ensemble of trajectories that are each assigned a statistical weight [39]. The ensemble
is integrated forward in time in a parallel fashion, and periodically “resampled” by cloning
certain trajectories and merging others. When a trajectory is cloned, its weight is divided
amongst the clones, but the multiple copies of the trajectory go on to evolve independently.
By repeatedly cloning trajectories that are in undersampled regions of space we can obtain
statistics on very long-timescale events using only short-timescale simulations.

The REVO resampling method (Resampling Ensembles by Variation Optimization) was

designed to efficiently perform cloning and merging operations on small ensembles of tra-



jectories that are evolving in high-dimensional spaces [40]. This is valuable in situations
where it is difficult to define one or two progress variables that capture the long-timescale
events of interest. In REVO, coupled cloning and merging operations are proposed (e.g.
clone trajectory i, and merge trajectories j and k) and are accepted or rejected based on an

objective function called the “trajectory variation”:
V= Z Vi= Z Z(dij/do)a¢i¢j (3)
i i

where d;; is the distance between trajectories ¢ and j, o and dy are parameters, and ¢,
is a function that measures the importance, or “novelty” of a trajectory z, which in our
work here is strictly a function of the weight of the trajectory: ¢; = logw; — C, where w;
is the weight of trajectory ¢ and C' is a constant. Trajectories with the highest V; values in
Eq. 3 are chosen for cloning, and those with the lowest V; are chosen for merging. More
information about the algorithm can be found in previous work [40].

We run separate simulations for the binding and unbinding processes. In our unbinding
simulations, the ligands start in the bound state and are terminated as they unbind. In the
rebinding simulations, the ligands start in the unbound state and are terminated as they
bind. The distance function (d;;) we use in Eq. 3 is different for these two simulation types.
For the unbinding simulations, we superimpose the hosts from trajectories ¢ and 7, and then
compute the root mean squared distance (RMSD) between the guest molecules, without
any further alignment [41, 42],. As there is 4-fold symmetry in this system, we perform the
alignment four times (once for each symmetrically-equivalent mapping) and use the smallest
such distance as d;;. For the rebinding simulations, we calculate the distance to the native
state for each trajectory (d,auve(X;)), which again takes into account the four symmetry
mappings, using the lowest such distance. The distance between trajectories ¢ and j is then
calculated as di; = |1/dnative(Xi) — 1/dnative(X;)|, where the inverse is used to prioritize

differences between small values of d,,4¢ve-

D. Calculating rates by ensemble splitting

A major advantage of the REVO method, much like other weighted ensemble methods,
is that it can calculate kinetic parameters in real time as the simulation progresses. This is

achieved by running separate simulations for the binding and unbinding processes, and in



each case, measuring the trajectory flux into the opposite basin [43-47]. The unbound basin
is defined as the set of structures where the closest host-guest interatomic distance is > 1
nm, following previous work [21, 41, 42]. The bound basin is defined as the set of structures
where the guest RMSD (compared to the native structure) is < 0.1 nm after aligning to
the host. Again, this RMSD measurement takes into account the four symmetry-equivalent

mappings of OA.

A B

Punbound

Unbinding ensemble

Equilibrium

Pbound Binding ensemble

FIG. 2: Splitting an equilibrium ensemble into two history-dependent ensembles using basins.
The bound and unbound basins are shown in grey and light orange, respectively. The unbinding
ensemble (B, top) contains all trajectories that last visited the bound basin, which are shown in
black. The binding ensemble (B, bottom, also referred to as the “rebinding” ensemble) contains
all trajectories that last visited the unbound basin, shown in red. Simulations in a given ensemble
are terminated once they reach the destination basin and thus switch ensembles. The trajectory
flux between ensembles is denoted by ¢, _,, and ¢p_,,. The quantity 7 refers to the probability of
the entire top ensemble, and the quantity f; denotes the probability of the bound basin within the

unbinding ensemble.

In our studies, the binding and rebinding REVO simulations are conducted separately.
However, the methodology of obtaining on and off rates is essentially the same. After each
dynamics step, if a walker has entered the opposite basin, as described above, its weight is
recorded and its structure is “warped” back to the starting structure at the beginning of the
simulation. The atomic coordinates are set to the starting structure and the velocities are

reinitialized; however, the weight of the trajectory remains the same. Before the warping



event to the starting structure, the structure of the walker is recorded and is referred to as
an “exit point”. In our unbinding simulations, the initial starting structure is the initial
bound pose provided. In our rebinding simulations, the initial starting structure is chosen
from a set of exit points generated from the unbinding simulations. Therefore, the unbinding
analyses were performed prior to initialization and the subsequent running of our rebinding
simulations.

The off and on rates are calculated by using the flux of trajectories into either the unbound

or bound state, respectively.

_ D Wi

Ko (t) . (4)
fanlt) = 25 5)

where the sum is over the set of “warped” trajectories, t is the elapsed simulation time, and
C' is the concentration of ligand, computed as 1/V where V' is the box volume. The box
volume was approximately 80.2 nm?, corresponding to a concentration of ligand of 0.0207
M.

There are a few key differences between the REVO simulations discussed here and our pre-
vious studies [34]. For both the unbinding and rebinding simulations in this study, the total
simulation time is 2.25 times longer compared to our previous study, as our current unbind-
ing and rebinding simulations were run for 4500 and 450 cycles, respectively. Additionally,
ten independent unbinding simulations were run for each of the four friction coefficients,
whereas our previous study only ran five independent simulations for each starting pose.
However, only five independent rebinding simulations were run for each of the coefficients,
as we observe much less variation in the kg, estimates. Finally, 48 walkers were used in both
studies and the time per cycle is consistent, where the unbinding simulations are 20 ps/cycle

and the rebinding simulations are 200 ps/cycle.

E. Calculating electrostatic interaction energies

The electrostatic energy between the host and guest molecules for use in the second

correction term was calculated as: Fiy, = ﬁ% where (), is the partial charge of atom
w iJ

a used in the force field during simulation. r;; is the interatomic distance between atoms

i and j calculated by using the minimum image convention. €, = 6.88 x 1079 F/m is



the permittivity of water at 300 K calculated by linear interpolation of the water dielectric

constant at 298.15 and 303.15 K [48].

III. RESULTS
A. Derivation of correction terms

The binding free energy can be calculated using the rate constants k., and k.g as AG =
Ghound — Gunbound = —kKT'In K.,Cy = —kT'In %, where K., is the binding equilibrium
constant, Cj is the reference concentration of 1 mol/L, k is Boltzmann’s constant and T is
the temperature in Kelvin. While this relationship is correct in the macroscopic limit, it
fails to account for the box size and the volume of the unbound state in finite simulation
environments with periodic boundary conditions. Here we derive a more accurate expression
for the binding free energy that accounts for the finite box size in a typical MD simulation.

Our starting point is an expression for K.,, which is valid for a dilute solution in ther-

modynamic equilibrium. We use the notation of Woo and Roux (see Eq. 4 from Ref. [49]):

dl [ dXe PV
Keq — fbound f* — (6)
Jounc 16 (ry —17) [ dXe™?

where U is the internal energy of the system, § = 1/kT is the inverse temperature, r; is

the center of mass of the ligand (referred to as a “guest” molecule) and r} is an arbitrary
position of the guest in the bulk. Note that d1 integrates over the guest positions, and
dX integrates over everything else: the host and the solvent degrees of freedom. Note also
that K., has units of volume, as the delta function constraining the center of mass in the
denominator removes three spatial degrees of freedom.

Here we examine the calculation of free energies using rates determined from split en-
semble calculations (Fig. 2, see Section IID for more details). We denote the probability of
these two ensembles as m, and m,, where m, + 7, = 1, and:

ﬂ _ ¢u—>b
m B ¢b—>u (7)

where ¢, is the time-averaged flux from the a ensemble to the b ensemble (i.e. across the

dotted lines in Fig. 2). The equilibrium probability of a position X can be obtained by

combining estimates from both ensembles:
P(X) = pu(X) 7y + po(X) 7 (8)

10



where p,(X) is the probability of conformation X in ensemble a, which is normalized such
that [ p.(X)dX = 1.

Let us define the bound state as the domain of the integral in the numerator of Eq. 6,
and the unbound state as a set of structures considered unbound in simulation (not the
same as the bulk state in Eq. 6). These states are shown as shaded regions in Fig. 2. The

ratio of the probabilities of these two states, at equilibrium, is given by:

Pbound — fbound dldee*BU
Punbound funbound dl deGiﬁU

which can also be calculated in our ensemble splitting simulations:

Pbound _ T fboundpb(X)dX _ 7beb
Punbound Um unboundpu<X)dX 7"-ufu

(9)

(10)

where f, is the probability of the basin state within ensemble a.

Expanding Eq. 6 we have:

dl f dXG_/BU funbound d1 f dXG_BU

funbound d1 f dXe=PV fbulk d]‘(s(rl - rT) f dXe—PU

— Trbfb funbound d1 f dX@iBU
Tt Jon d10(r1 — 1) [ dXe=PU

K. — fbound

eq —

(11)

The unbound state in simulation is far enough that the host and guest do not interact directly
through van der Waals interactions, although if both molecules carry an explicit charge —
as in the example considered here — there could still be significant host-guest electrostatic
interactions. To account for these, we introduce another intermediate state with an altered
energy function (U*) which is the same as U except that it does not include electrostatic
interactions between the host and the guest:

Moo Junpouna @1 S dXe™ [ g @1 [ dXe 7
Tufu [ypounq A1 [ dXe=8U" [ d1d(ry —rf) [ dXe BV

= ﬂ-bf_b <66E1nt>71 funbound d].dee_BU*
Tufu anb L d1o(ry — 1) [ dXe U

where Ej,y = U — U* and the subscript “unb” indicates an ensemble average over structures

Koy = (12)

(13)

in the unbound state obtained with the normal energy function U. Note the final step used
the relation:

dl [ dXePPinte=BU
dl [ dXe=PU

d]_deefﬂU* — funbound
d1 [ dXe=PU

f unbound

= <eBEi“° b (14)

funbound funbound

11



We can now reasonably assume that the guest in the unbound state is non-interacting
with the host. This allows us to write eV as e#Uce=AUns where Uy are the terms in the
energy function that depend only on the coordinates of the guest, and Uyg are terms that
only depend on the host and the solvent. We can then pull the integral [ dXe #V#s out of

the numerator and denominator of the last term of Eq. 11:

funbound d1 f dXB?BU* funbound dleiBUG

- . 15
fbulk dld(rl - I'I) f dXeBU fbulk d15(r1 — r’f)e*ﬁUG ( )

The bottom integral has the center of mass of the ligand fixed and is only over internal and
rotational degrees of freedom of the ligand. This can also be separated and removed from

the numerator, which simplifies the ratio to be the volume of the unbound state, defined as:

Junbouna d1€~77¢
VIm ound — SRR = dR n R 16
o = e ol = | dRou(R) (16)
guest

where we use GG; to denote the internal and rotational degrees of freedom of the guest that
remain after specification of r;. The quantity ¢, (R) is the fraction of conformers with center
of mass R that satisfy the unbound boundary conditions: here, that the guest atoms are all
farther than a cutoff distance of 1 nm away from the host. This integral can be calculated
by Monte Carlo, where a center of mass position and orientation of the ligand is randomly

generated, and the number of successful unbound conformers is recorded:

Nunbound
Vinbound = Vboxm' (17)
Note that for large boxes Vinbound & Vhox-
Putting this all together we have:
Keq = Tl <€6Ei“t>;nlb Vinbound (18)
T fu
which differs from the straightforward interpretation used in our previous work [34]:
Ky, = W:{’L] = :—z%ox (19)
Using AG = —kT In(K.,Cp), we have:
AG = AG’ — kTn (%) + kT In (Pt —EkTIn (%) (20)

which explicitly shows AG as the sum of AG® = —kT In(K?,Cy) and the three newly derived

correction terms. The first term will go to zero in the limit that the basin states are chosen to

12



represent the vast majority of the probability in both the binding and unbinding ensembles.
In other words, this term goes to zero when both f, and f, approach one. The second term
is likely to only be non-negligible in the case of explicitly charged host and guest molecules
and regardless would go to zero as the definition of the unbound state is moved to farther
and farther distances. The third term would also go to zero for large simulation boxes,
but in practice this is often not feasible due to computational constraints. Consequently,
Vinbound/ Vbox could be much less than one, introducing a correction in the positive direction.

Below we calculate these three correction terms and apply them to free energy calculations.

B. Extended trajectory ensembles with lower friction coefficients

In previous work, we used a Langevin integrator with a value of v = 1 ps~! for the friction
coefficient. As the simulations already have explicit solvent, this adds extra friction into the
system that is not physical. Here we investigate whether reducing v to values less than one
will significantly affect our rate calculations. We thus run a set of trajectory ensembles at
multiple values of v and extend each ensemble to be larger and longer than those published
in our prior study [34] to more fully examine questions of convergence.

As v governs the coupling to the Langevin thermostat, we determine the minimum value
of v where our target temperature (300 K) is maintained. We first ran a series of short simu-
lations (one 10 ns trajectory for each 7) and find that temperature control is completely lost
for friction coefficients less than v = 0.001 (Figure 3A). We then ran longer simulations for
v =1,0.1, 0.01 and 0.001, examining not only the mean temperature, but the probability of
significant temperature fluctuations, which could spur anomalous results in our ligand disso-
ciation simulations. Figure 3B shows the probability distribution of observed temperatures
over an ensemble of 240 trajectories run for 90 ns each. For v = 0.01, 0.1 and 1 ps™!, the
temperature distribution is normally distributed around the mean (300 K) as seen by the
parabolic curves on a log scale. Temperature control is not fully maintained for v = 0.001

ps—!, as shown by a rightward shift and slight widening of the parabolic distribution. We

thus restrict our analysis to three values of the friction coefficient: v = 0.01, 0.1 and 1 ps™.
We run both unbinding and rebinding REVO simulations for the OAG6 system. For
unbinding, we ran 10 simulations for each of the three friction coefficients; for rebinding,

we ran 5 simulations for each coefficient, yielding a total of 30 simulations for unbinding
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FIG. 3: (A) Average temperatures observed in short simulations for different friction coefficients
(7). (B) Probability distributions of observed temperatures from ensembles of longer simulations

with different ~.

and 15 simulations for rebinding. A set of binding and unbinding simulations were also
run for v = 0.001 — despite the impaired temperature control — which are reported in the
Supplemental Information. The estimates for the unbinding and binding fluxes are depicted
in Figure 4, where each curve represents an individual REVO simulation. The averages,
illustrated with a bolded line, are calculated by averaging the trajectory flux over the entire
set of simulations for that value of v. The upward jumps on these plots indicate that an
exit point was recorded that has a higher weight than was previously observed.

By reducing v to values less than 1, we observed no change in the binding rates, and
small changes to the unbinding rates which are on the border of significance. With regard
to unbinding rates, the two largest friction coefficients yielded the smallest error and similar

kog values, where v = 1 yielded an average off rate of 16.4 s=*

and v = 0.1 yielded an off
rate of 11.5 s7*. The off-rate increased by 10-fold for v = 0.01, although this is mostly
driven by exit points observed in a single simulation. In our previous OA-G6 results using
v = 1, we calculated an unbinding rate of 0.48 s~ which slightly differs from the value
calculated in this study using v = 1 (Table I). Unbinding rates for v = 0.001 ps~! were
approximately 1000-fold higher, although these are known to be affected by a higher average
temperature (SI). Taking a closer look at the binding rates, we saw no discernible difference

across the friction coefficients. The binding rate was approximately 10° s~ M~!, for all

friction coefficients, which was about 5-fold larger when compared to our previous study
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FIG. 4: Predicted on- (top) and off-rates (bottom) as a function of simulation time. Each panel
is labeled according to the friction coefficient used for that set of simulations. The independent
simulations are shown in shades of orange (ko) and blue (kog), and the averages are depicted by

bold black lines.

using v = 1. For both binding and unbinding rates we have more confidence in the results

obtained here, as they are based on more extensive simulation data.

TABLE I: Binding and unbinding rates as a function of friction coefficient (). The uncertainties
shown use the standard error of the mean calculated from 5 and 10 independent REVO runs for
binding and unbinding, respectively. The quantities from Ref. [34] were obtained with 5 REVO

runs that used different initial conformations, each of which were 2000 cycles in length.

Eon (108 M~1s™1) | kog (s71)
v = 0.01 17+1 122 + 94
y=0.1 16 £ 2 22 4 12
N = 13+1 16.4+9.4
Ref. [34] (y=1)[2.8+1.0 0.48 +0.11
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For both the unbinding and rebinding simulations, across all friction coefficients, we
observed at least 1000 warping events (Figure S4). As expected, we observe that rebinding
occurs with a much higher probability when compared to unbinding, by several orders of
magnitude. The unbinding walker weights are limited at the low end by the minimum walker
probability (pmin), which is set to 107!2. The rebinding walker weights are limited at the high
end by the maximum walker probability (pmaz), Which is set to 1071 respectively. Figure
S4 shows that the 10-fold larger unbinding rate fro v = 0.01 was largely due to a single
unbinding point in a single simulation, which underscores the sensitivity and uncertainty of
rate calculations using trajectory fluxes. Figure S2 shows unbinding fluxes for v = 0.001,
which is known to have elevated temperatures. There we see a large number of high-weight

unbinding events in two different simulations, leading to the 1000-fold increase in kqg-.

C. Free energy estimates, correction terms and comparison with previous bench-

marks

As the friction coefficient unevenly affected the rates of binding and unbinding, there was
a net effect on the binding free energies. As shown in Figure 5 and Table II, the binding
free energy increases as the friction coefficient is lowered, independent of the free energy
correction terms derived in Section III A. Table II shows the free energies computed using
the averaged fluxes across all simulations at each v value. For all friction coefficients, the
calculated free energy was always higher than that from our previous study (—12.1 kcal /mol;
red line), even for v = 1, signifying that extending the simulation time aided in predicting
experimentally determined binding free energies.

The correction terms are calculated using data obtained from the simulations, but they
are mostly functions of geometric properties of the simulation box and boundary conditions,
and are not expected to change as a function of 7. The first term, —kT In f,/f,, was
calculated to be 0.74 £ 0.10 kcal/mol, with f, and f, taking on values of 0.157 and 0.54
respectively. As described in Section IIT A, f, is the probability of the being in the bound
basin given that you are in the unbinding ensemble, which is calculated using the sum of
the weights of trajectories in the bound basin, divided by the total sum of the weights of
the trajectories considered. The f;, value in particular was lower than expected, indicating

that our definition of the bound state might be too restrictive, even though we did account
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TABLE II: Raw (AGY) and corrected (AGeor) free energy values using simulation data from
three different friction coefficients. Values are in kcal/mol and uncertainties are calculated using

propagation of the standard error of the mean.

AGO(kcal /mol) | AGcorr (kcal /mol)
v =0.01 —-983+£046 |-7.11+047
v=0.1 —10.78 £0.32 |—8.06 £0.33
v=1 —10.85+£0.34 |—8.134+0.36
Ref. [34] (y =1)|-12.1+£1.0 |-9.38+1.0
Comp. ref. [32] |— —-7.0£0.1
Exp. [50] - —4.97 £ 0.02

for all symmetry-equivalent conformations in our calculation of f.

The second term, +kT In <65Eint>unb, was calculated to be 1.64 £ 0.002 kcal/mol. This
was calculated by determining the electrostatic interaction energies (see Section ITE) for
the set of unbound states observed in the rebinding simulations. The expectation value in
the correction term again accounted for trajectory weights and was computed using 71428
interaction energy measurements that were selected from the unbound ensemble. The uncer-
tainty was computed as the standard error of the mean of this set of energies. To calculate
the third correction term, —k7T In (%), we directly estimated Vinpouna/Vbox using the
Monte Carlo procedure described in Section IIT A. The ratio was computed as 0.56 + 0.0037
using five batches of 10000 trials each, where the uncertainty is the standard error of the
mean across the sets of trials.

Together these three terms sum to 2.72 kecal/mol, which is a significant correction to the
binding free energies computed here. Over half of this comes from the residual electrostatic
interaction energy between the host and the guest. Note that both the host and the guest
have negative charges, and the residual interaction between the two molecules is repulsive.
Turning this interaction off releases 1.64 kcal/mol of energy, which lowers the free energy
gap between the bound and unbound states. The corrected and uncorrected free energies
are shown as a function of v in Figure 5. For v > 0.01 the calculated free energies are almost
equal to within standard error and the correction terms significantly reduce the error with

respect to the computational reference value [32, 33].
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FIG. 5: Free energies as a function of friction coefficient. The dark blue line shows the uncorrected
free energies calculated at three different v values. The light blue line shows the corrected values,
which are shifted upwards by 2.72 kcal/mol. The thin red line shows the value reported in Ref. [34],

I and used a smaller dataset than is reported here.

which employed a friction coefficient of 1.0 ps™
The black horizontal line shows the value of a computational reference computed using alchemical
perturbation, reported in Ref. [32]. The dashed grey line shows the experimental measurement,

reported in Ref. [50].
IV. DISCUSSION AND CONCLUSION

In this study, we sought to better connect the calculation of binding and unbinding
rates with the calculation of binding free energies. The rate calculations measured the
microscopic fluxes of trajectories from one basin to another. These fluxes can be visualized in
an extended history-dependent conformation space, where trajectories change their “color”
based on which basin (“bound” or “unbound”) they have most recently visited [43-47]. The
ratio of these rates gives a ratio of two populations: the trajectories that have most recently
visited the “bound” basin and the trajectories that have most recently visited the “unbound”
basin. The first correction term adjusts this ratio to instead only account for the probability
contained within the basins themselves and is particular to rates that are calculated using

this history-dependent formalism. The third term can be seen as a volume correction term,
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which is used to accurately account for the volume in the unbound state. This is done in
other approaches where restraints are used, such as umbrella sampling [51-53]. In our case
the unbound state cannot be easily approximated by a geometric object, such as the volume
of a spherical shell.

The second term accounts for residual interactions in the unbound ensemble. This could
be used by other approaches that directly determine free energy differences between bound
and unbound conformations, such as umbrella sampling. The conventional approach is to
define a simulation box that is large enough such that the interactions between the host and
guest are negligible in the unbound state. However, this can significantly increase the cost
of the simulation, It is worth noting that umbrella sampling results for this system (OA-
G6) obtained by Song et al. [53], —8.50 kcal/mol, were also below both the computational
benchmark and the experimental value. Their unbound state was defined as a 20 A distance
between an atom in the guest and a dummy atom in the center of the host, which is roughly
comparable to our unbound basin of 10 A of clearance between the host and the guest.
Assuming a similar value for the electrostatic correction term, it would have brought their
prediction to —6.86 kcal/mol, which is in line with the computational benchmarks [32].

The electrostatic term can also be viewed as a sort of “decoupling” between the host and
the guest, and it is warranted to discuss similarities and differences with similar procedures
in alchemical free energy methods. They are similar in that we are computing a free energy
between two Hamiltonians, one in which an interaction is turned off. We could thus use
similar techniques for computing these free energy differences, such as thermodynamic inte-
gration [54, 55], BAR [56], MBAR [36, 55], or MM /PBSA [57], although here we effectively
use a simple free energy perturbation (FEP) expression [58, 59]. The approaches are dif-
ferent in that we are only considering ensembles of structures where the interactions being
turned off are relatively weak. We are assuming here — as is always the case with FEP —
that the conformational ensembles of both the host and the guest are highly overlapping
between the two Hamiltonians, which considerably simplifies the problem. We also note
that although we employ electrostatic decoupling to compute free energies, our simulations
still reveal important information about the (un)binding kinetics and mechanism.

We also examined the role that the Langevin integrator plays in the prediction of kinetic
and thermodynamic quantities. In particular, we adjusted the friction coefficient (v), defined

in the Langevin integrator, while maintaining the stability of temperature at 300 K. We did
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not expect that altering the friction coefficient would have an impact on the calculation of
equilibrium quantities. As 7 does not appear in the Hamiltonian of the system, it should
not affect the probability of a given microstate P(X), which is given by the Canonical
probability density exp(—FU(X)). While we did expect it to affect rates, we expected that
these effects would offset: that if unbinding was accelerated 10-fold, we would observe the
binding process to be sped up by the same factor. However, we observe that the on-rate was
very stable as a function of v, while the off-rate changed slightly. One explanation is that
unbinding is much more rare event when compared to rebinding, and estimates of k. were
not converged. Lower friction coefficients could be accelerating sampling of these events and
making it easier to observe higher probability walkers unbind in our simulations.

Convergence is of utmost priority in weighted ensemble simulations that calculate kinetic
quantities. In our previous study, we hypothesized that it was possible that extending the
time of the unbinding simulations could capture more high weight walkers exiting from the
bound state. Indeed, we observe a higher unbinding flux in this study across all friction
coefficients. In Figure 4, we observe large upward jumps, for all v values, even after 40 ns of
simulation time per walker, which was sampling limit in our previous study. These upward
jumps, as previously described, signify that an exit point was recorded that has a higher
weight than previously observed. This highlights the challenges involved in accurate deter-
mination of rate fluxes for rare events. It is worth noting that by using our correction terms
to account for small unbound volumes and persistent but small electrostatic interactions
in the unbound state, we can keep box sizes small, allowing for better convergence of rate
fluxes at fixed computational cost.

Of course the binding free energy alone is still an important quantity for drug design [60].
If one is only interested in the absolute binding free energy, calculating it through the ratio of
rates is needlessly complicated; free energy is a state function and thus only depends on the
endpoints of the binding pathway. The prediction of k.g and k., themselves is challenging,
since they are not state functions: they depend on the transition path ensemble between
the bound and unbound state. Sampling of these physical pathways is a large challenge for
molecular dynamics, largely due to the long timescales of the binding and release processes.
Ensuring that the ratio of rates is consistent with binding free energy calculations - as done
here - provides an additional, powerful consistency check. In particular, comparing to well-

converged computational benchmarks is more useful than experimental quantities, as we
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avoid an additional layer of uncertainty associated with the force field used to describe the

system.
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