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Abstract

The free energy of a process is the fundamental quantity that determines its spontaneity or

propensity at a given temperature. Binding free energy of a drug candidate to its biomolecular

target is used as an objective quantity in drug design. Binding kinetics – rates of association (kon)

and dissociation (koff) – have also demonstrated utility for their ability to predict efficacy and in

some cases have been shown to be more predictive than the binding free energy alone. Although

challenging, some methods exist to calculate binding kinetics from molecular simulations. While

the kinetics of the binding process are related to the free energy by the log of their ratio, it is

not straightforward to account for common, practical details pertaining to the calculation of rates

in molecular simulations, such as the finite simulation volume or the particular definition of the

“bound” and “unbound” states. Here we derive a set of correction terms that can be applied to

calculations of binding free energies using rates observed in simulations. One term accounts for

the particular definitions of the bound and unbound states. The second term accounts for residual

electrostatic interactions that might still be present between the molecules, which is especially

useful if one or both of the molecules carry an explicit charge. The third term accounts for

the volume of the unbound state in the simulation box, which is useful to keep the simulated

volume as small as possible during rate calculations. We apply these correction terms to revisit

the calculation of binding free energies from rate constants for a host-guest system that was part

of a blind prediction challenge, where significant deviations were observed between free energies

calculated with rate ratios and those calculated from alchemical perturbation. The correction

terms combine to significantly decrease the error with respect to computational benchmarks, from

3.4 to 0.76 kcal/mol.

∗Electronic address: alexrd@msu.edu
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I. INTRODUCTION

In recent years there is a growing appreciation for the utility of binding kinetics in the

prediction of drug efficacy [1–10]. Pharmacokinetic and pharmacodynamic models of drug

activity in the body are inherently out of equilibrium: a drug is administered, it is absorbed,

distributed to different tissues, metabolized and eliminated from the body. As such, kinetic

constants of binding and release – beyond just the equilibrium constants of binding – are

required to model drug action when the timescales of binding and release cannot be separated

from the other competing processes [11]. The relationship between molecular structure and

the kinetics of binding (also called “structure-kinetic relationships” or SKR) is complicated,

as small changes to structure can change kinetic constants by orders of magnitude [5]. It

is important to note that changes in kinetics are not always tied to changes in affinity [12],

and that to accurately predict changes in kinetics, models of the ligand-binding transition

state are needed to estimate transition-state stabilization or destabilization [13].

Computational methods that reveal structures of transition states and calculate bind-

ing (kon) and unbinding (koff) rate constants for real compounds are in their infancy, but

are quickly developing [14]. It is a tremendous challenge to obtain reliable values for these

quantities, as 1) they depend on the entire (un)binding pathway, not just its endpoints, and

2) the timescales of ligand binding and release often exceed the capabilities of molecular

dynamics simulations by orders of magnitude. Specialized computing platforms have been

applied to generate continuous binding pathways [15], although the unbinding process is typ-

ically beyond the reach of molecular dynamics simulation for compounds beyond millimolar

drug fragments [8, 16]. Recent studies have used enhanced sampling methods in molecu-

lar dynamics to simulate ligand (un)binding pathways and determine mechanisms and rate

constants kon and koff [17–25]. Some of these rate constants have shown surprisingly good

agreement with experiment – given the extraordinarily long timescales involved – however

these have the confounding uncertainty of force field accuracy [26, 27], there is a possibil-

ity for fortuitous cancellation of error. Unfortunately, the computational cost required to

predict these quantities is typically massive [27], especially for large protein systems and

ligands with extremely long residence times, precluding the study of these events under a

series of different simulation conditions (e.g. forcefields, water models, polarizability).

In the field of biomolecular modeling, blind challenges – where a series of objectives are
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released by the organizers, and participants entries are directly judged by their agreement

with experiment – have been useful catalysts for the development of predictive algorithms

[28–31]. Although no blind challenge currently exists for the prediction of kon and koff, we

recently participated in the SAMPL6 SAMPLing challenge, which required participants to

compute free energies as a function of simulation time and to compare the computational cost

of different free energy calculation methods [32–34]. This challenge allows sampling methods

to be assessed independently of force field accuracy, as all entries used the same initial

coordinates, force field parameters and partial charges. Importantly, the challenge makes

use of very small model systems (host-guest) that require considerably less computational

resources to simulate, which allowed us to efficiently simulate binding and release for a

number of systems, determine kon and koff, and predict values for the binding free energy

(∆G) that would then be compared to experimental observables, as well as results from

alchemical free energy perturbation methods [35, 36].

The binding free energy was determined as a function of rate constants:

∆G = −kBT ln
C0kon

koff

(1)

where C0 is a reference concentration of 1 mol/L. In this paper, we revisit this equation

in detail and explicitly examine the assumptions made when the rate constants used in

Eq. 1 are computed through typical simulations with finite box-size and periodic boundary

conditions. In Section III A we derive three correction terms that can be easily computed and

facilitate a better connection with both experiment and alchemical computational free energy

calculations. To examine questions of convergence, we reproduce our binding and unbinding

simulations with larger numbers of replicas and longer simulation times. We also explore

the effects of the Langevin integrator on the prediction of unbinding and binding rates;

in particular, how altering the friction coefficient (γ), defined in the Langevin integrator,

impacts the binding and release processes. Although γ does not appear in the internal energy

function, and hence cannot affect thermodynamic properties such as the binding free energy,

we examine whether lower friction coefficients can accelerate the convergence of unbinding

simulations.
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II. METHODS

A. Host-guest systems

The host-guest system utilized in this study is referred to as “OA-G6” (Fig. 1), where

the host is a Gibb deep cavity cavitand, referred to as an “octa acid” or “OA” [37]. OA

forms a basket-like structure with 4-fold symmetry, functionalized with four benzoic-acid

substituents on the top rim of the basket and four more on the bottom. The guest ligand we

study here is 4-methyl pentanoic acid (referred to as “G6”). This ligand harbors a negative

charge at the carboxyl end of the alkyl chain.

side top

H       3       C       

CH       3       

O       

O       
-

A B

FIG. 1: (A) The initial pose for the OA-G6 system (side view: left, top view: right). Note that

some atoms from the host are removed in the side view for clarity. The carboxyl oxygens are shown

in sphere representation. (B) The chemical structure of the G6 ligand in the deprotonated form.

B. Molecular dynamics

The OA-G6 configuration was obtained from the organizers of the SAMPLing challenge

[32]. The system was solvated in a (roughly) cubic box with box length 4.28, 4.33 and

4.33 nm in the x, y and z dimensions, respectively. The system provided had a total of

7976 atoms: 2586 water molecules to solvate the system, 12 sodium and 3 chloride ions to

neutralize the system, and the remaining atoms belonging to either the host or the guest.

OpenMM v7.2.1 [38] was used to run dynamics with the CUDA v9.0.176 platform. A Monte
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Carlo barostat is used to maintain a constant pressure of 1 atm. A timestep of 2 fs was used

across all simulations.

We utilize the Langevin integrator, which uses a drag term and a noise term to account

for the friction of solvent molecules and high velocity collisions that perturb the system.

Langevin dynamics allows for the temperature to be controlled and can be used as a ther-

mostat; we run all dynamics here at 300 K. Our host-guest system follows the Langevin

equation, shown below:

F = ma = −∇U(r)− γv +
√

2γkBTR(t) (2)

where U(r) is the particle interaction potential, R(t) is a random Gaussian noise term, T

is the temperature, kB is the Boltzmann constant, and γ is the friction coefficient. The

friction term plays two different roles here, both modulating the second “drag” term, and

the Gaussian noise. As γ approaches zero, the noise gets weaker and the dynamics becomes

more deterministic. Here we run binding and unbinding simulations with γ values of 1.0,

0.1 and 0.01 ps−1.

C. Reweighting of Ensembles by Variance Optimization

To generate an ensemble of ligand unbinding events, we need to employ enhanced sam-

pling as the timescale of ligand unbinding events in this system is prohibitively long: we

found in previous studies a mean first passage time of 2.1 s [34], which is six orders of mag-

nitude longer than the reach of conventional MD sampling. In this work, we implement the

REVO resampling method, based on weighted ensemble (WE) framework, to encourage the

sampling of rare unbinding/rebinding events. WE accelerates the sampling of rare events us-

ing an ensemble of trajectories that are each assigned a statistical weight [39]. The ensemble

is integrated forward in time in a parallel fashion, and periodically “resampled” by cloning

certain trajectories and merging others. When a trajectory is cloned, its weight is divided

amongst the clones, but the multiple copies of the trajectory go on to evolve independently.

By repeatedly cloning trajectories that are in undersampled regions of space we can obtain

statistics on very long-timescale events using only short-timescale simulations.

The REVO resampling method (Resampling Ensembles by Variation Optimization) was

designed to efficiently perform cloning and merging operations on small ensembles of tra-
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jectories that are evolving in high-dimensional spaces [40]. This is valuable in situations

where it is difficult to define one or two progress variables that capture the long-timescale

events of interest. In REVO, coupled cloning and merging operations are proposed (e.g.

clone trajectory i, and merge trajectories j and k) and are accepted or rejected based on an

objective function called the “trajectory variation”:

V =
∑
i

Vi =
∑
i

∑
j

(dij/d0)αφiφj (3)

where dij is the distance between trajectories i and j, α and d0 are parameters, and φx

is a function that measures the importance, or “novelty” of a trajectory x, which in our

work here is strictly a function of the weight of the trajectory: φi = logwi − C, where wi

is the weight of trajectory i and C is a constant. Trajectories with the highest Vi values in

Eq. 3 are chosen for cloning, and those with the lowest Vi are chosen for merging. More

information about the algorithm can be found in previous work [40].

We run separate simulations for the binding and unbinding processes. In our unbinding

simulations, the ligands start in the bound state and are terminated as they unbind. In the

rebinding simulations, the ligands start in the unbound state and are terminated as they

bind. The distance function (dij) we use in Eq. 3 is different for these two simulation types.

For the unbinding simulations, we superimpose the hosts from trajectories i and j, and then

compute the root mean squared distance (RMSD) between the guest molecules, without

any further alignment [41, 42],. As there is 4-fold symmetry in this system, we perform the

alignment four times (once for each symmetrically-equivalent mapping) and use the smallest

such distance as dij. For the rebinding simulations, we calculate the distance to the native

state for each trajectory (dnative(Xi)), which again takes into account the four symmetry

mappings, using the lowest such distance. The distance between trajectories i and j is then

calculated as dij = |1/dnative(Xi) − 1/dnative(Xj)|, where the inverse is used to prioritize

differences between small values of dnative.

D. Calculating rates by ensemble splitting

A major advantage of the REVO method, much like other weighted ensemble methods,

is that it can calculate kinetic parameters in real time as the simulation progresses. This is

achieved by running separate simulations for the binding and unbinding processes, and in
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each case, measuring the trajectory flux into the opposite basin [43–47]. The unbound basin

is defined as the set of structures where the closest host-guest interatomic distance is > 1

nm, following previous work [21, 41, 42]. The bound basin is defined as the set of structures

where the guest RMSD (compared to the native structure) is < 0.1 nm after aligning to

the host. Again, this RMSD measurement takes into account the four symmetry-equivalent

mappings of OA.

A B

Equilibrium

Unbinding ensemble

Binding ensemble

FIG. 2: Splitting an equilibrium ensemble into two history-dependent ensembles using basins.

The bound and unbound basins are shown in grey and light orange, respectively. The unbinding

ensemble (B, top) contains all trajectories that last visited the bound basin, which are shown in

black. The binding ensemble (B, bottom, also referred to as the “rebinding” ensemble) contains

all trajectories that last visited the unbound basin, shown in red. Simulations in a given ensemble

are terminated once they reach the destination basin and thus switch ensembles. The trajectory

flux between ensembles is denoted by φu→b and φb→u. The quantity πb refers to the probability of

the entire top ensemble, and the quantity fb denotes the probability of the bound basin within the

unbinding ensemble.

In our studies, the binding and rebinding REVO simulations are conducted separately.

However, the methodology of obtaining on and off rates is essentially the same. After each

dynamics step, if a walker has entered the opposite basin, as described above, its weight is

recorded and its structure is “warped” back to the starting structure at the beginning of the

simulation. The atomic coordinates are set to the starting structure and the velocities are

reinitialized; however, the weight of the trajectory remains the same. Before the warping
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event to the starting structure, the structure of the walker is recorded and is referred to as

an “exit point”. In our unbinding simulations, the initial starting structure is the initial

bound pose provided. In our rebinding simulations, the initial starting structure is chosen

from a set of exit points generated from the unbinding simulations. Therefore, the unbinding

analyses were performed prior to initialization and the subsequent running of our rebinding

simulations.

The off and on rates are calculated by using the flux of trajectories into either the unbound

or bound state, respectively.

koff(t) =

∑
iwi
t

(4)

kon(t) =

∑
iwi
Ct

(5)

where the sum is over the set of “warped” trajectories, t is the elapsed simulation time, and

C is the concentration of ligand, computed as 1/V where V is the box volume. The box

volume was approximately 80.2 nm3, corresponding to a concentration of ligand of 0.0207

M.

There are a few key differences between the REVO simulations discussed here and our pre-

vious studies [34]. For both the unbinding and rebinding simulations in this study, the total

simulation time is 2.25 times longer compared to our previous study, as our current unbind-

ing and rebinding simulations were run for 4500 and 450 cycles, respectively. Additionally,

ten independent unbinding simulations were run for each of the four friction coefficients,

whereas our previous study only ran five independent simulations for each starting pose.

However, only five independent rebinding simulations were run for each of the coefficients,

as we observe much less variation in the kon estimates. Finally, 48 walkers were used in both

studies and the time per cycle is consistent, where the unbinding simulations are 20 ps/cycle

and the rebinding simulations are 200 ps/cycle.

E. Calculating electrostatic interaction energies

The electrostatic energy between the host and guest molecules for use in the second

correction term was calculated as: Eint = 1
4πεw

QiQj

rij
where Qa is the partial charge of atom

a used in the force field during simulation. rij is the interatomic distance between atoms

i and j calculated by using the minimum image convention. εw = 6.88 × 10−10 F/m is
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the permittivity of water at 300 K calculated by linear interpolation of the water dielectric

constant at 298.15 and 303.15 K [48].

III. RESULTS

A. Derivation of correction terms

The binding free energy can be calculated using the rate constants kon and koff as ∆G =

Gbound − Gunbound = −kT lnKeqC0 = −kT ln C0kon

koff
, where Keq is the binding equilibrium

constant, C0 is the reference concentration of 1 mol/L, k is Boltzmann’s constant and T is

the temperature in Kelvin. While this relationship is correct in the macroscopic limit, it

fails to account for the box size and the volume of the unbound state in finite simulation

environments with periodic boundary conditions. Here we derive a more accurate expression

for the binding free energy that accounts for the finite box size in a typical MD simulation.

Our starting point is an expression for Keq, which is valid for a dilute solution in ther-

modynamic equilibrium. We use the notation of Woo and Roux (see Eq. 4 from Ref. [49]):

Keq =

∫
bound

d1
∫
dXe−βU∫

bulk
d1δ(r1 − r∗1)

∫
dXe−βU

(6)

where U is the internal energy of the system, β = 1/kT is the inverse temperature, r1 is

the center of mass of the ligand (referred to as a “guest” molecule) and r∗1 is an arbitrary

position of the guest in the bulk. Note that d1 integrates over the guest positions, and

dX integrates over everything else: the host and the solvent degrees of freedom. Note also

that Keq has units of volume, as the delta function constraining the center of mass in the

denominator removes three spatial degrees of freedom.

Here we examine the calculation of free energies using rates determined from split en-

semble calculations (Fig. 2, see Section II D for more details). We denote the probability of

these two ensembles as πb and πu, where πb + πu = 1, and:

πb
πu

=
φu→b
φb→u

(7)

where φa→b is the time-averaged flux from the a ensemble to the b ensemble (i.e. across the

dotted lines in Fig. 2). The equilibrium probability of a position X can be obtained by

combining estimates from both ensembles:

p(X) = pu(X)πu + pb(X)πb (8)
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where pa(X) is the probability of conformation X in ensemble a, which is normalized such

that
∫
pa(X)dX = 1.

Let us define the bound state as the domain of the integral in the numerator of Eq. 6,

and the unbound state as a set of structures considered unbound in simulation (not the

same as the bulk state in Eq. 6). These states are shown as shaded regions in Fig. 2. The

ratio of the probabilities of these two states, at equilibrium, is given by:

pbound

punbound

=

∫
bound

d1
∫
dXe−βU∫

unbound
d1
∫
dXe−βU

(9)

which can also be calculated in our ensemble splitting simulations:

pbound

punbound

=
πb
∫

bound
pb(X)dX

πu
∫

unbound
pu(X)dX

=
πbfb
πufu

(10)

where fa is the probability of the basin state within ensemble a.

Expanding Eq. 6 we have:

Keq =

∫
bound

d1
∫
dXe−βU∫

unbound
d1
∫
dXe−βU

∫
unbound

d1
∫
dXe−βU∫

bulk
d1δ(r1 − r∗1)

∫
dXe−βU

=
πbfb
πufu

∫
unbound

d1
∫
dXe−βU∫

bulk
d1δ(r1 − r∗1)

∫
dXe−βU

. (11)

The unbound state in simulation is far enough that the host and guest do not interact directly

through van der Waals interactions, although if both molecules carry an explicit charge –

as in the example considered here – there could still be significant host-guest electrostatic

interactions. To account for these, we introduce another intermediate state with an altered

energy function (U∗) which is the same as U except that it does not include electrostatic

interactions between the host and the guest:

Keq =
πbfb
πufu

∫
unbound

d1
∫
dXe−βU∫

unbound
d1
∫
dXe−βU∗

∫
unbound

d1
∫
dXe−βU

∗∫
bulk

d1δ(r1 − r∗1)
∫
dXe−βU

(12)

=
πbfb
πufu

〈
eβEint

〉−1

unb

∫
unbound

d1
∫
dXe−βU

∗∫
bulk

d1δ(r1 − r∗1)
∫
dXe−βU

(13)

where Eint = U −U∗ and the subscript “unb” indicates an ensemble average over structures

in the unbound state obtained with the normal energy function U . Note the final step used

the relation: ∫
unbound

d1
∫
dXe−βU

∗∫
unbound

d1
∫
dXe−βU

=

∫
unbound

d1
∫
dXeβEinte−βU∫

unbound
d1
∫
dXe−βU

=
〈
eβEint

〉
unb

. (14)
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We can now reasonably assume that the guest in the unbound state is non-interacting

with the host. This allows us to write e−βU as e−βUGe−βUHS , where UG are the terms in the

energy function that depend only on the coordinates of the guest, and UHS are terms that

only depend on the host and the solvent. We can then pull the integral
∫
dXe−βUHS out of

the numerator and denominator of the last term of Eq. 11:∫
unbound

d1
∫
dXe−βU

∗∫
bulk

d1δ(r1 − r∗1)
∫
dXe−βU

=

∫
unbound

d1e−βUG∫
bulk

d1δ(r1 − r∗1)e−βUG
. (15)

The bottom integral has the center of mass of the ligand fixed and is only over internal and

rotational degrees of freedom of the ligand. This can also be separated and removed from

the numerator, which simplifies the ratio to be the volume of the unbound state, defined as:

Vunbound =

∫
unbound

d1e−βUG∫
guest

dG1e−βUG
=

∫
box

dRφu(R) (16)

where we use G1 to denote the internal and rotational degrees of freedom of the guest that

remain after specification of r1. The quantity φu(R) is the fraction of conformers with center

of mass R that satisfy the unbound boundary conditions: here, that the guest atoms are all

farther than a cutoff distance of 1 nm away from the host. This integral can be calculated

by Monte Carlo, where a center of mass position and orientation of the ligand is randomly

generated, and the number of successful unbound conformers is recorded:

Vunbound = Vbox
Nunbound

Ntrials

. (17)

Note that for large boxes Vunbound ≈ Vbox.

Putting this all together we have:

Keq =
πbfb
πufu

〈
eβEint

〉−1

unb
Vunbound, (18)

which differs from the straightforward interpretation used in our previous work [34]:

K0
eq =

πb
πu[L]

=
πb
πu
Vbox (19)

Using ∆G = −kT ln(KeqC0), we have:

∆G = ∆G0 − kT ln

(
fb
fu

)
+ kT ln

〈
eβEint

〉
unb
− kT ln

(
Vunbound

Vbox

)
(20)

which explicitly shows ∆G as the sum of ∆G0 = −kT ln(K0
eqC0) and the three newly derived

correction terms. The first term will go to zero in the limit that the basin states are chosen to
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represent the vast majority of the probability in both the binding and unbinding ensembles.

In other words, this term goes to zero when both fb and fu approach one. The second term

is likely to only be non-negligible in the case of explicitly charged host and guest molecules

and regardless would go to zero as the definition of the unbound state is moved to farther

and farther distances. The third term would also go to zero for large simulation boxes,

but in practice this is often not feasible due to computational constraints. Consequently,

Vunbound/Vbox could be much less than one, introducing a correction in the positive direction.

Below we calculate these three correction terms and apply them to free energy calculations.

B. Extended trajectory ensembles with lower friction coefficients

In previous work, we used a Langevin integrator with a value of γ = 1 ps−1 for the friction

coefficient. As the simulations already have explicit solvent, this adds extra friction into the

system that is not physical. Here we investigate whether reducing γ to values less than one

will significantly affect our rate calculations. We thus run a set of trajectory ensembles at

multiple values of γ and extend each ensemble to be larger and longer than those published

in our prior study [34] to more fully examine questions of convergence.

As γ governs the coupling to the Langevin thermostat, we determine the minimum value

of γ where our target temperature (300 K) is maintained. We first ran a series of short simu-

lations (one 10 ns trajectory for each γ) and find that temperature control is completely lost

for friction coefficients less than γ = 0.001 (Figure 3A). We then ran longer simulations for

γ = 1, 0.1, 0.01 and 0.001, examining not only the mean temperature, but the probability of

significant temperature fluctuations, which could spur anomalous results in our ligand disso-

ciation simulations. Figure 3B shows the probability distribution of observed temperatures

over an ensemble of 240 trajectories run for 90 ns each. For γ = 0.01, 0.1 and 1 ps−1, the

temperature distribution is normally distributed around the mean (300 K) as seen by the

parabolic curves on a log scale. Temperature control is not fully maintained for γ = 0.001

ps−1, as shown by a rightward shift and slight widening of the parabolic distribution. We

thus restrict our analysis to three values of the friction coefficient: γ = 0.01, 0.1 and 1 ps−1.

We run both unbinding and rebinding REVO simulations for the OAG6 system. For

unbinding, we ran 10 simulations for each of the three friction coefficients; for rebinding,

we ran 5 simulations for each coefficient, yielding a total of 30 simulations for unbinding
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FIG. 3: (A) Average temperatures observed in short simulations for different friction coefficients

(γ). (B) Probability distributions of observed temperatures from ensembles of longer simulations

with different γ.

and 15 simulations for rebinding. A set of binding and unbinding simulations were also

run for γ = 0.001 – despite the impaired temperature control – which are reported in the

Supplemental Information. The estimates for the unbinding and binding fluxes are depicted

in Figure 4, where each curve represents an individual REVO simulation. The averages,

illustrated with a bolded line, are calculated by averaging the trajectory flux over the entire

set of simulations for that value of γ. The upward jumps on these plots indicate that an

exit point was recorded that has a higher weight than was previously observed.

By reducing γ to values less than 1, we observed no change in the binding rates, and

small changes to the unbinding rates which are on the border of significance. With regard

to unbinding rates, the two largest friction coefficients yielded the smallest error and similar

koff values, where γ = 1 yielded an average off rate of 16.4 s−1 and γ = 0.1 yielded an off

rate of 11.5 s−1. The off-rate increased by 10-fold for γ = 0.01, although this is mostly

driven by exit points observed in a single simulation. In our previous OA-G6 results using

γ = 1, we calculated an unbinding rate of 0.48 s−1 which slightly differs from the value

calculated in this study using γ = 1 (Table I). Unbinding rates for γ = 0.001 ps−1 were

approximately 1000-fold higher, although these are known to be affected by a higher average

temperature (SI). Taking a closer look at the binding rates, we saw no discernible difference

across the friction coefficients. The binding rate was approximately 109 s−1 M−1, for all

friction coefficients, which was about 5-fold larger when compared to our previous study
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FIG. 4: Predicted on- (top) and off-rates (bottom) as a function of simulation time. Each panel

is labeled according to the friction coefficient used for that set of simulations. The independent

simulations are shown in shades of orange (kon) and blue (koff), and the averages are depicted by

bold black lines.

using γ = 1. For both binding and unbinding rates we have more confidence in the results

obtained here, as they are based on more extensive simulation data.

TABLE I: Binding and unbinding rates as a function of friction coefficient (γ). The uncertainties

shown use the standard error of the mean calculated from 5 and 10 independent REVO runs for

binding and unbinding, respectively. The quantities from Ref. [34] were obtained with 5 REVO

runs that used different initial conformations, each of which were 2000 cycles in length.

kon (108 M−1s−1) koff (s−1)

γ = 0.01 17± 1 122± 94

γ = 0.1 16± 2 22± 12

γ = 1 13± 1 16.4± 9.4

Ref. [34] (γ = 1) 2.8± 1.0 0.48± 0.11
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For both the unbinding and rebinding simulations, across all friction coefficients, we

observed at least 1000 warping events (Figure S4). As expected, we observe that rebinding

occurs with a much higher probability when compared to unbinding, by several orders of

magnitude. The unbinding walker weights are limited at the low end by the minimum walker

probability (pmin), which is set to 10−12. The rebinding walker weights are limited at the high

end by the maximum walker probability (pmax), which is set to 10−1. respectively. Figure

S4 shows that the 10-fold larger unbinding rate fro γ = 0.01 was largely due to a single

unbinding point in a single simulation, which underscores the sensitivity and uncertainty of

rate calculations using trajectory fluxes. Figure S2 shows unbinding fluxes for γ = 0.001,

which is known to have elevated temperatures. There we see a large number of high-weight

unbinding events in two different simulations, leading to the 1000-fold increase in koff.

C. Free energy estimates, correction terms and comparison with previous bench-

marks

As the friction coefficient unevenly affected the rates of binding and unbinding, there was

a net effect on the binding free energies. As shown in Figure 5 and Table II, the binding

free energy increases as the friction coefficient is lowered, independent of the free energy

correction terms derived in Section III A. Table II shows the free energies computed using

the averaged fluxes across all simulations at each γ value. For all friction coefficients, the

calculated free energy was always higher than that from our previous study (−12.1 kcal/mol;

red line), even for γ = 1, signifying that extending the simulation time aided in predicting

experimentally determined binding free energies.

The correction terms are calculated using data obtained from the simulations, but they

are mostly functions of geometric properties of the simulation box and boundary conditions,

and are not expected to change as a function of γ. The first term, −kT ln fb/fu, was

calculated to be 0.74 ± 0.10 kcal/mol, with fb and fu taking on values of 0.157 and 0.54

respectively. As described in Section III A, fb is the probability of the being in the bound

basin given that you are in the unbinding ensemble, which is calculated using the sum of

the weights of trajectories in the bound basin, divided by the total sum of the weights of

the trajectories considered. The fb value in particular was lower than expected, indicating

that our definition of the bound state might be too restrictive, even though we did account
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TABLE II: Raw (∆G0) and corrected (∆Gcorr) free energy values using simulation data from

three different friction coefficients. Values are in kcal/mol and uncertainties are calculated using

propagation of the standard error of the mean.

∆G0(kcal/mol) ∆Gcorr(kcal/mol)

γ = 0.01 −9.83± 0.46 −7.11± 0.47

γ = 0.1 −10.78± 0.32 −8.06± 0.33

γ = 1 −10.85± 0.34 −8.13± 0.36

Ref. [34] (γ = 1) −12.1± 1.0 −9.38± 1.0

Comp. ref. [32] − −7.0± 0.1

Exp. [50] − −4.97± 0.02

for all symmetry-equivalent conformations in our calculation of fb.

The second term, +kT ln
〈
eβEint

〉
unb

, was calculated to be 1.64 ± 0.002 kcal/mol. This

was calculated by determining the electrostatic interaction energies (see Section II E) for

the set of unbound states observed in the rebinding simulations. The expectation value in

the correction term again accounted for trajectory weights and was computed using 71428

interaction energy measurements that were selected from the unbound ensemble. The uncer-

tainty was computed as the standard error of the mean of this set of energies. To calculate

the third correction term, −kT ln
(
Vunbound

Vbox

)
, we directly estimated Vunbound/Vbox using the

Monte Carlo procedure described in Section III A. The ratio was computed as 0.56± 0.0037

using five batches of 10000 trials each, where the uncertainty is the standard error of the

mean across the sets of trials.

Together these three terms sum to 2.72 kcal/mol, which is a significant correction to the

binding free energies computed here. Over half of this comes from the residual electrostatic

interaction energy between the host and the guest. Note that both the host and the guest

have negative charges, and the residual interaction between the two molecules is repulsive.

Turning this interaction off releases 1.64 kcal/mol of energy, which lowers the free energy

gap between the bound and unbound states. The corrected and uncorrected free energies

are shown as a function of γ in Figure 5. For γ ≥ 0.01 the calculated free energies are almost

equal to within standard error and the correction terms significantly reduce the error with

respect to the computational reference value [32, 33].
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FIG. 5: Free energies as a function of friction coefficient. The dark blue line shows the uncorrected

free energies calculated at three different γ values. The light blue line shows the corrected values,

which are shifted upwards by 2.72 kcal/mol. The thin red line shows the value reported in Ref. [34],

which employed a friction coefficient of 1.0 ps−1 and used a smaller dataset than is reported here.

The black horizontal line shows the value of a computational reference computed using alchemical

perturbation, reported in Ref. [32]. The dashed grey line shows the experimental measurement,

reported in Ref. [50].

IV. DISCUSSION AND CONCLUSION

In this study, we sought to better connect the calculation of binding and unbinding

rates with the calculation of binding free energies. The rate calculations measured the

microscopic fluxes of trajectories from one basin to another. These fluxes can be visualized in

an extended history-dependent conformation space, where trajectories change their “color”

based on which basin (“bound” or “unbound”) they have most recently visited [43–47]. The

ratio of these rates gives a ratio of two populations: the trajectories that have most recently

visited the “bound” basin and the trajectories that have most recently visited the “unbound”

basin. The first correction term adjusts this ratio to instead only account for the probability

contained within the basins themselves and is particular to rates that are calculated using

this history-dependent formalism. The third term can be seen as a volume correction term,
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which is used to accurately account for the volume in the unbound state. This is done in

other approaches where restraints are used, such as umbrella sampling [51–53]. In our case

the unbound state cannot be easily approximated by a geometric object, such as the volume

of a spherical shell.

The second term accounts for residual interactions in the unbound ensemble. This could

be used by other approaches that directly determine free energy differences between bound

and unbound conformations, such as umbrella sampling. The conventional approach is to

define a simulation box that is large enough such that the interactions between the host and

guest are negligible in the unbound state. However, this can significantly increase the cost

of the simulation, It is worth noting that umbrella sampling results for this system (OA-

G6) obtained by Song et al. [53], −8.50 kcal/mol, were also below both the computational

benchmark and the experimental value. Their unbound state was defined as a 20 Å distance

between an atom in the guest and a dummy atom in the center of the host, which is roughly

comparable to our unbound basin of 10 Å of clearance between the host and the guest.

Assuming a similar value for the electrostatic correction term, it would have brought their

prediction to −6.86 kcal/mol, which is in line with the computational benchmarks [32].

The electrostatic term can also be viewed as a sort of “decoupling” between the host and

the guest, and it is warranted to discuss similarities and differences with similar procedures

in alchemical free energy methods. They are similar in that we are computing a free energy

between two Hamiltonians, one in which an interaction is turned off. We could thus use

similar techniques for computing these free energy differences, such as thermodynamic inte-

gration [54, 55], BAR [56], MBAR [36, 55], or MM/PBSA [57], although here we effectively

use a simple free energy perturbation (FEP) expression [58, 59]. The approaches are dif-

ferent in that we are only considering ensembles of structures where the interactions being

turned off are relatively weak. We are assuming here – as is always the case with FEP –

that the conformational ensembles of both the host and the guest are highly overlapping

between the two Hamiltonians, which considerably simplifies the problem. We also note

that although we employ electrostatic decoupling to compute free energies, our simulations

still reveal important information about the (un)binding kinetics and mechanism.

We also examined the role that the Langevin integrator plays in the prediction of kinetic

and thermodynamic quantities. In particular, we adjusted the friction coefficient (γ), defined

in the Langevin integrator, while maintaining the stability of temperature at 300 K. We did
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not expect that altering the friction coefficient would have an impact on the calculation of

equilibrium quantities. As γ does not appear in the Hamiltonian of the system, it should

not affect the probability of a given microstate P (X), which is given by the Canonical

probability density exp(−βU(X)). While we did expect it to affect rates, we expected that

these effects would offset: that if unbinding was accelerated 10-fold, we would observe the

binding process to be sped up by the same factor. However, we observe that the on-rate was

very stable as a function of γ, while the off-rate changed slightly. One explanation is that

unbinding is much more rare event when compared to rebinding, and estimates of koff were

not converged. Lower friction coefficients could be accelerating sampling of these events and

making it easier to observe higher probability walkers unbind in our simulations.

Convergence is of utmost priority in weighted ensemble simulations that calculate kinetic

quantities. In our previous study, we hypothesized that it was possible that extending the

time of the unbinding simulations could capture more high weight walkers exiting from the

bound state. Indeed, we observe a higher unbinding flux in this study across all friction

coefficients. In Figure 4, we observe large upward jumps, for all γ values, even after 40 ns of

simulation time per walker, which was sampling limit in our previous study. These upward

jumps, as previously described, signify that an exit point was recorded that has a higher

weight than previously observed. This highlights the challenges involved in accurate deter-

mination of rate fluxes for rare events. It is worth noting that by using our correction terms

to account for small unbound volumes and persistent but small electrostatic interactions

in the unbound state, we can keep box sizes small, allowing for better convergence of rate

fluxes at fixed computational cost.

Of course the binding free energy alone is still an important quantity for drug design [60].

If one is only interested in the absolute binding free energy, calculating it through the ratio of

rates is needlessly complicated; free energy is a state function and thus only depends on the

endpoints of the binding pathway. The prediction of koff and kon themselves is challenging,

since they are not state functions: they depend on the transition path ensemble between

the bound and unbound state. Sampling of these physical pathways is a large challenge for

molecular dynamics, largely due to the long timescales of the binding and release processes.

Ensuring that the ratio of rates is consistent with binding free energy calculations - as done

here - provides an additional, powerful consistency check. In particular, comparing to well-

converged computational benchmarks is more useful than experimental quantities, as we
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avoid an additional layer of uncertainty associated with the force field used to describe the

system.
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