Direct Reversible Decarboxylation from Stable Organic Acids in Solution
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Abstract Many classical and emerging methodologies in organic chemistry rely on carbon dioxide
extrusion to generate reactive intermediates for subsequent bond-forming events. Synthetic reactions
that involve the microscopic reverse, the carboxylation of reactive intermediates such as organometallic
nucleophiles, occur under vastly different reaction conditions. We found that under appropriate conditions
chemically stable C(sp®) carboxylates undergo rapid, uncatalyzed reversible decarboxylation in solution.
The decarboxylation/carboxylation process occurs through the generation and trapping of otherwise
undetectable carbanion intermediates that are largely resistant to protodecarboxylation in the presence
of Brgnsted acids or to trapping by external electrophiles. Isotopically labelled carboxylic acids, including
drug molecules and valuable synthetic intermediates, can be prepared in high chemical and isotopic yield
by simply supplying an atmosphere of '*CO, to carboxylate salts in polar aprotic solvents. Our results
indicate that the reversibility of decarboxylation from organic acids should be taken into consideration

when designing and executing decarboxylative functionalization processes.

Decarboxylation is a fundamental step in biochemical processes and synthetic organic chemistry.
Fermentation, respiration, and the biosynthesis of many secondary metabolites involve the loss of CO,
from organic acids." Decarboxylases accelerate these reactions by stabilization of developing reactive
intermediates, often a carbanion, and encourage CO, diffusion from the active site, enabling otherwise
unfeasible decarboxylations to occur under physiological condition (Fig 1A).? Acid substrates lacking
anion stabilizing groups adjacent to the reactive carbon center are inert towards spontaneous
decarboxylation without resorting to pyrolysis conditions (Fig 1B).> Thus, synthetic reactions driven by
decarboxylation often require high reaction temperatures,* the use of oxidizing agents,® or stoichiometric
chemical modification of the carboxylate unit.®

Carboxylation reactions, the microscopic reverse of decarboxylation, are equally valuable
processes in biology and synthetic chemistry. Despite a shared reaction pathway, the biochemical
machinery that promote carboxylation in CO, fixation operate by a distinct set of substrates and enzymes

from those that promote decarboxylation in all but a few rare exceptions.’ Similarly, synthetic techniques
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that generate carboxylic acid derivatives from CO, require strongly nucleophilic organometallics and/or
in-situ stoichiometric (electro)chemical substrate reduction.®

The potential for the reversibility of decarboxylation/carboxylation mechanistic steps is largely
ignored in synthetic methodologies that rely on these reactions. Reports of direct non-enzymatic
reversible CO,-exchange processes of carboxylic acids are restricted to specialized substrate/mediator
pairs.’ Exchange of carboxylate groups in simple aliphatic acids with CO, has been documented, but
requires heating of neat substrates at 280-400 °C."° Currently, state-of-the-art methods to prepare
C(sp®)-"""CO, labeled carboxylic acid-derived targets, sought after in (pre)clinical absorption,
distribution, metabolism, and excretion (ADME) studies,"" involve circuitous pathways consisting of
chemical activation-decarboxylation-metalation-carboxylation steps mediated by transition metals (Fig
1C)."? The exchange of C(sp?)-carboxylate groups catalyzed by transition metals has been demonstrated,
however reactivity is restricted to stabilized aromatic substrates at high temperature (=280 °C)."* While
valuable methods for obtaining labelled targets, these indirect techniques are accompanied by low
chemical yields and modest incorporation of isotopic label. Due to these limitations, classical nucleophilic
substitution reactions with labelled cyanide followed by hydrolysis or processes that use labelled carbon
monoxide remain widely used.™

In the course of our studies on catalytic decarboxylative cross-coupling reactions,’ we questioned
whether the apparent stability of organic carboxylates could arise from reversible
decarboxylation/carboxylation events in solution. Supporting this hypothesis, we observed that simple
organic acids that are stable towards protodecarboxylation in solution undergo spontaneous incorporation
of *CO, when supplied at atmospheric pressure (Fig 1D). This behavior is general to a range of C(sp°)
carboxylic acids that feature modest electron-withdrawing groups adjacent to the carboxylate unit
(aromatics, carbonyls, imines, nitriles). An understanding of this phenomenon can be exploited to prepare

isotopically labelled drug molecules and synthetic precursors in an operationally trivial manner.
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Fig 1. Overview of decarboxylative processes and carboxylate exchange. (a) Decarboxylation is
catalyzed by enzymes under physiological conditions (E*: electrophile). (b) The feasibility of
protodecarboxylation depends on the stability of the carbanion intermediate generated. (¢) Current
carboxylate exchange technology requires a series of irreversible activation steps. (d) This work.

The potassium aryl acetate 1 exemplifies the reversible decarboxylation/carboxylation behavior of
otherwise chemically stable carboxylic acids. A 0.1 M solution of 1 in DMF at 20 °C undergoes CO,
exchange when placed under an atmosphere of '>CO,. In a reaction where approximately seven
equivalents of *CO; is supplied (13 mL of CO, at ~1 atm, dissolved *CO, concentration of 0.25 M),
equilibrium between '?C and "*C is achieved in 15 hours (Fig 2A, red trace). Quantitative recovery of
carboxylate 1 with 83% '*C-enrichment was possible by acid/base extractive workup. Under similar
conditions with five equivalents of a weak Brgnsted acid (MeOH) no protodecarboxylation of 1 is observed
(Fig 2A, black trace). These results demonstrate that re-capture of the putative carbanion intermediate
generated by decarboxylation of 1 with dissolved CO; is significantly more favorable than protonation.
The apparent stability of 1 arises from efficient recapture of CO, by an otherwise hidden intermediate.

The counter-cation of the carboxylate salt impacts carboxylate exchange reactivity (Fig 2B). The

carboxylic acid of 1 is not reactive, no *CO, exchange or protodecarboxylation was observed in DMF at
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Fig 2. Carboxylate exchange of a stable aryl acetic acid. (a) Comparison of CO, exchange (red) and
protonation with MeOH (black). (b) Impact of salt and reaction conditions.
70 °C. Li* and Na* salts of 1 react more slowly, while transition metal salts (Zn?* or Cu?*) are inert. The

use of polar aprotic solvents is essential for the transformation, reactions conducted in THF, DCE, or
water resulted in recovery of unlabeled 1. The addition of 18-crown-6 (18-C-6) results in an approximate
two-fold rate enhancement of carboxylate exchange (see S| Fig S2)."® The free acid undergoes
carboxylate exchange when 1.5 equivalents of K,CO; and 18-C-6 are added (>90% yield and "°C
incorporation in 19 h). Collectively, these observations suggest that the generation of a solvent-separated
ion pair leads to enhanced decarboxylative reactivity. Reversible decarboxylation occurs for an
array of carboxylate containing molecules, including valuable synthetic precursors, drug molecules, and
amino acid derivatives (Fig 3 and 4). The incorporation of *CO, and product recovery remains high
(>80%) across several substrate classes. The degree of incorporation is largely a function of the amount
of *CO; supplied, >95% enrichment can be obtained when a significant excess is provided (see Sl Fig
S3). Regardless of electronic properties, aryl acetates undergo '*CO, incorporation by conducting
reactions at suitable temperatures. (Hetero)aryl acetates with anion stabilizing groups exchange at

moderate temperatures (1-4, 9, 10, 11-15 at 20—-80 °C), while aryl acetates with strongly electron-donating



OMe or NMe; groups require higher temperatures (17-20 at 100—130 °C) and benefit from the addition of
18-C-6. The simplicity of the process enables broad functional group compatibility, including tolerance to
boronic esters (6), aryl halides (I, Br, Cl, F; 4, 7, 8, 10), ketones (11), aldehydes (12) esters (14), amides
(13), sulfonyls (15), and potentially reactive heterocycles (chromenone 25, NH-indole 26, pyridines 27,
29, pyrimidines 28, isoxazole 30, thiophene 31). Alkyl and aryl substitution adjacent to the carboxylate is
tolerated, including examples of trisubstituted, non-enolizable aryl acetates (21-24). Other classes of
potassium carboxylates that undergo productive CO, exchange include malonate half-esters (32-35), -
keto acids (36), p-carboxysulfonyls (37, 38), cyanoacetates (39), and carboxylactams (40). Alkene and
terminal alkyne functional groups do not interfere with the process (34, 35). Potassium malonates undergo
exchange at higher temperature (135 °C) to give a mixture of mono- and bis-labelled product along with
'3C-enriched monoacid (41 and 42).

Carboxylate exchange can be used to directly prepare isotopically labelled drug molecules,
including aryl acetate and propionate NSAIDs of varying complexity (Fig 4 43-52). Pharmaceuticals
featuring amide or ester groups are obtained via derivatization of the acid group (Zolpidem 53, Aprophen
55) or can be prepared according to established literature protocols (Propiverine 54, Netupitant 56,
Repaglinide 57). Consistent with ionization to generate a carbanion, racemization of enantiopure
Naproxen (46) is observed (see S| Fig S4). Reversible decarboxylation may explain reports of aryl
propionate racemization required for kinetic resolution manufacturing processes.'” Unsubstituted alkyl
carboxylic acids do not undergo CO, exchange, however isotopically labelled products of this class can
be readily obtained by carboxylate exchange/desulfonylation reactions of sulfonyl acids or
exchange/decarboxylation sequences of malonic acids in three step processes (58-60). The facile
generation of "*C-diphenylmethylidene glycine at room temperature (61 93% incorporation, 76% yield)

serves as a starting point for the synthesis of other labelled amino acids.
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Fig 3. Carboxylate exchange substrate scope. Unless noted yields are of isolated material. [a] calibrated
'H NMR spectroscopy yield; [b] 18-C-6 added; [c] % '>C incorporation and yield determined by analysis of
the corresponding ester obtained by reaction with Mel or BnBr. See Sl for complete details.
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Fig 4. Application of carboxylate exchange, see Fig 3 for experimental details [a] yield determined by 'H

NMR spectroscopy; [b] DMSO instead of DMF; [c] 1.0 equiv 18-C-6 added.

A mechanism for the reversible CO, exchange supported by control experiments and structure-
reactivity studies involves the direct ionization of the potassium carboxylate to generate a carbanion. The
reaction rates and required temperatures for ?CO,/*CO, interconversion correlate with the substrate’s
ability to stabilize negative charge and not with oxidation potential (compare 1, 14, 16, and 17). The

addition of radical inhibitors (TEMPO, BHT) has no impact on the decarboxylative reactivity of 1 and

cyclization of the pendant olefin in 34 is not detected.
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Fig 5. Carbanion trapping studies and mechanistic control experiments. Ar = (4-CN)CgH,.

Exchange of CO, via a carbanion without competing quenching by other electrophiles (ketones,
aldehydes, weak Brgnsted acids), stems in part from the relatively high solubility of CO, in DMF and the
slow kinetics of CO, dissolution into the reactor headspace. For example, a 0.25 M solution of CO; in
DMF retains a concentration of 0.2 M under a headspace of N, over one day. For substrate 1 the rate of
CO, exchange at 70 °C is ~10-fold faster than for reaction with benzaldehyde. Counterintuitively, the rate
of protodecarboxylation by weak Brgnsted acids is inversely related to acidity (Fig 5a; piperidine, aniline,
methanol, phenol see the S| Fig S5 for details). This observation could be attributed to the relative ability
of these species to act as nucleophiles to trap the liberated CO,, rather than directly protonate a
carbanion. At 20 °C <10% trapping with these additives is observed after 8 hours. At 70 °C under N, 1
undergoes net carboxylate/proton metathesis to generate a half equivalent of the protodecarboxylated
product 62 and a half equivalent of the CO,-trapped malonate 63 (Fig 5b). Product 62 likely arises from
deprotonation of a second equivalent of aryl acetate to generate a dienolate nucleophile. The dienolate
can be carboxylated by CO, released by the initial decarboxylation event. This observation demonstrates
the striking efficiency of CO, capture by carbon nucleophiles under suitable conditions. Alkyl arene
generated by protodecarboxylation does not convert back to carboxylate under the conditions where

carboxylate exchange is observed (Fig 5¢). Carbonic anhydride intermediates are likely generated under
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the reaction conditions on the basis of the observed increase in a-carboxyl H/D exchange rates with 1-H;
and 1-D, under CO, (Fig 5d, see Sl Fig S7 for details). The generation of a dienolate from the more acidic
potassium carbonic anhydride may explain these reactivity differences. Direct detection of anhydride
intermediates was not achieved. The ability of non-enolizable carboxylates, such as 23 and 24, to undergo
reversible decarboxylation indicate that a dienolate intermediate is not essential for carboxylate
exchange.

The observation that chemically stable carboxylates undergo rapid and reversible
decarboxylation/carboxylation processes enable a simple protocol to prepare isotopically labelled small
molecules with enriched CO,. This phenomenon should be taken into consideration when designing and

executing decarboxylative functionalization processes.
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