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Abstract

Conical intersections (CIs) play an important role in photochemistry be-
cause they sometimes govern the non-radiative decay process. However, ac-
curate characterizations of CIs are not always straightforward. In this study,
analytic gradients and interstate coupling vectors for the quasidegenerate
partially and strongly contracted n-electron valence state second-order per-
turbation theory (QD-PC-NEVPT2 and QD-SC-NEVPT2) were developed
and applied to locating CIs of benzene. The pilot application demonstrates
that the results of both the methods are similar to the extended multistate
complete active space second-order perturbation theory (XMS-CASPT2),
while the lack of dynamic electron correlation resulted in a deviation of 0.7
eV.

Keywords: multireference perturbation theory, n-electron valence state
second-order perturbation theory (NEVPT2), conical intersections, analytic
derivatives

1. Introduction

Crossings between potential energy surfaces of different states play im-
portant roles in photochemistry [1, 2, 3]. Those between same spin states
and spatial symmetries are usually referred to as conical intersections (CIs)
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and are responsible for non-radiative transitions between states. In partic-
ular, minimum energy CIs (MECIs) serve as an efficient “funnel” around
the CI region, and the higher state efficiently and non-radiatively decays to
the lower state. Many studies have used the mean-field approach, i.e., mul-
ticonfiguration self-consistent field (MCSCF) and its complete active space
variant (CASSCF) [4]; however, the lack of dynamic electron correlation is a
major issue.

Dynamic electron correlation can be adequately described with the mul-
tireference coupled-cluster (MRCC) [5], configuration interaction (MRCI)
[6], or perturbation theories (MRPTs). MRCC and MRCI are usually the
preferred methodologies used to describe ground and excited states very ac-
curately; however, the drawback of these methods is the expensive compu-
tational cost. Considering the required balance between computational cost
and accuracy, MRPT methods are possible solutions. Recent studies [7] on
complete active space second-order perturbation theory (CASPT2) [8, 9, 10]
has made it possible to explore CI regions using analytic derivative coupling
vectors [11] at the extended multistate (XMS) extension [12, 13] of CASPT2
(XMS-CASPT2). Non-adiabatic molecular dynamics simulations can also
be performed at the XMS-CASPT2 level of theory [14]. The second-order
generalized Van Vleck perturbation theory (GVVPT2) [15] was also used
to exploring CIs, and a formulation for non-adiabatic coupling matrix ele-
ments (NACMEs) exists [16]; however, actual implementation has not been
achieved.

In 2001, Angeli et al. proposed another variant of MRPT methods, n-
electron valence state second-order perturbation theory (NEVPT2) [17, 18,
19], using uncontracted and two internal contraction schemes. Recently, an-
alytic derivatives of the partially (PC) [20, 21] and strongly contracted (SC)
[21] NEVPT2 method have been realized, and both pilot calculations pre-
sented promising results. There are two known advantages of NEVPT2 over
CASPT2: exact size consistency and the lack of an intruder state problem.
Although the former is trivial because the internally contracted CASPT2
is nearly size-consistent, the latter is an appealing feature because NEVPT2
does not require any a posteriori parameters. A previous study demonstrated
relative energies could be rather sensitive to the choice of the real shift param-
eter in XMS-CASPT2 [22]. Additionally, no large linear equations have been
solved for the standard NEVPT2; thus, it is computationally advantageous.

Recently, Park developed [23] analytic gradients and derivative coupling
vectors for the quasidegenerate extension of the PC-NEVPT2 method, namely
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QD-PC-NEVPT2 (missing the QD-SC-NEVPT2 development). In this Let-
ter, analytic gradients and interstate coupling vectors of the QD-SC-NEVPT2
as well as the QD-PC-NEVPT2 methods [24] were developed, and the method-
ologies have been applied to locating CIs in benzene. The results have been
compared with CASSCF, XMS-CASPT2, and spin-flip time-dependent den-
sity functional theory (SF-TD-DFT) [25, 26] calculations.

2. Methodology

2.1. Overview of the QD-NEVPT2 method

The single-state or state-specific (SS) NEVPT2 energy may be expressed
as a sum of the CASSCF and the second-order perturbation energy:

ESS-NEVPT2
S = ECAS

S + EPT2
S , (1)

where the second-order perturbation correction is given by

EPT2
S = E

(0)
S + E

(−1)
S + E

(+1)
S + E

(−2)
S + E

(+2)
S + E

(0)′

S + E
(−1)′

S + E
(+1)′

S , (2)

consisting of eight terms which correspond to eight unique excitation classes
defined in Ref. [19]. Each term is computed independently because the cou-
pling between different excitation classes is neglected in NEVPT2. This kind
of internally contracted SS-MRPT methods cannot correctly describe the
avoided crossing region of the ionic and neutral states of LiF [24, 27, 28] and
results in a (wrong) double crossing. As a solution to this problem, several
internal states (usually the states averaged in the reference CASSCF calcu-
lation) are allowed to couple at the second-order through an effective Hamil-
tonian in the quasidegenerate approach. A similar quasidegenerate approach
has been employed in the multiconfiguration quasidegenerate second-order
perturbation theory (MCQDPT2) [29].

QD-NEVPT2 [24] is a multistate extension of SS-NEVPT2, as in the case
of MS-CASPT2. In QD-NEVPT2, the effective Hamiltonian matrix is first
constructed:

H
eff

ST = δSTE
CAS
S +

1

2
(HST + HTS) (3)

where
HST = ⟨Ψ(0)

S |Ĥ|Ψ(1)
T ⟩ , (4)
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where Ψ
(0)
S and Ψ

(1)
S are the zeroth-order and first-order correction to wave-

functions of the state S, respectively. The diagonal elements of the effec-
tive Hamiltonian correspond to the SS-NEVPT2 energies [Eq. (1)]. Diag-

onalization of the symmetrized effective Hamiltonian, H
eff

ST , leads to the
QD-NEVPT2 energy. Note that the effective Hamiltonian matrix is sym-
metrized in this study, whereas the original formulation [24] employed the
non-Hermitian form. This is not only due to technical issues relevant to the
difficulty of diagonalizing non-Hermitian matrices. Symmetrization of the
effective Hamiltonian is necessary to produce the correct 3Natom − 8 dimen-
sional intersection space [30].

There are two canonicalization schemes for MRPT methods using SA-
MCSCF or SA-CASSCF references: SS- and SA-Fock operators [31]. The
two schemes differ in the definition of the orbital energy of the doubly occu-
pied and virtual orbitals. The SS canonicalization employs SS density ma-
trix to obtain the orbital energy, whereas the SA one employs a SA density
matrix, which is the usual choice when SA-MCSCF or SA-CASSCF wave-
functions are obtained. Although the former definition may be employed
in the initial QD-NEVPT2 development [24] and is sometimes thought to
be more accurate, the latter definition was adopted in this study as in the
previous study [20] as well as in the work by Park [23] for simplicity. The
difference between the two canonicalization schemes is not significant [31].
Apart from the choice of the canonicalization, both the QD-PC-NEVPT2
and QD-SC-NEVPT2 methods are still not fully invariant [12, 32] in the
first-order interacting space, but the expected degradation is rather small
compared with MS-CASPT2. Indeed, QD-PC-NEVPT2 can correctly de-
scribe CI points [23, 30] as can XMS-CASPT2 and the extended MCQDPT2
(XMCQDPT2) by Nakano and Granovsky [12, 29].

2.2. Analytic derivatives of QD-NEVPT2

The QD-NEVPT2 energy may be written as

EQD-NEVPT2
S =

∑
TU∈Ω

CTSCUSH
eff

TU (5)

where CST is a unitary matrix that diagonalizes the effective Hamiltonian:∑
T∈Ω

H
eff

STCTU = CSUEQD-NEVPT2
U , (6)
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where Ω represents the set of internal states.
The first-order derivative of the QD-NEVPT2 energy with respect to the

derivative parameter, α, is

dEQD-NEVPT2
S

dα
=

∑
TU∈Ω

CTSCUS
dH

eff

TU

dα
. (7)

At the first-order derivative, the derivative of CST disappears because it is
unitary: ∑

S∈Ω

(
dCTS

dα
CUS + CTS

dCUS

dα

)
= 0 (8)

Thus, the present implementation is applicable only to the symmetric effec-
tive Hamiltonian [Eq. (3)].

The derivative of H
eff

ST can be computed as in previous studies [20, 21,
23]. In particular, the diagonal elements are equivalent to the SS-NEVPT2
energy. The off-diagonal elements are also similar; however, an additional
computation is required: the evaluation of the derivatives of the transition
reduced density matrices (TRDMs) for up to three particles∑

IJ

cSI c
T
J ⟨I|a†aa

†
ba

†
cafaead|J⟩ , (9)

where cSI is the configuration coefficient for state S. The partial derivatives
of the TRDMs, which are relevant to Eqs. (12) and (13), are evaluated using
the resolution of the identity technique [33].

Eventually, as in the previous study [20], the derivative of the QD-NEVPT2
energy may be written as

dEQD-NEVPT2
S

dα
=

∑
µν

dSµν
dhµν

dα
−
∑
µν

XS
µν

dSµν

dα
+

∑
µνρσ

DS
µνρσ

d(µν|ρσ)

dα

+

indep∑
pq

Lo
pqŨ

α
pq +

Ω∑
T

N∑
I

Lc
TIV

α
TI +

∑
T<U∈Ω

Ls
TUW

α
TU , (10)

where dSµν , XS
µν , and DS

µνρσ are unrelaxed one-body, energy-weighted, and
two-body density matrices in the atomic orbital basis, respectively. The last
three terms are relevant to the derivative of the wavefunction parameters
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(molecular orbital and configuration coefficients), and they are written as
partial derivatives of the total energy:

Lo
pq = (1 − τ̂pq)

∑
µ

Cµp
∂EQD-NEVPT2

∂Cµq

, (11)

Lc
SI =

∑
J

MIJ
∂EQD-NEVPT2

∂cSJ
, (12)

and

Ls
ST = (1 − τ̂ST )

∑
I

∂EQD-NEVPT2

∂cSI
cTI . (13)

Operator τ̂pq commutes indices p and q, Cµi is the molecular orbital coeffi-
cient, and projection MIJ was defined in an earlier study [34]. Once trans-
formed above, the Z-vector equation based on the MCSCF wavefunction can
be solved, and the solution is contracted to obtain the final analytic gradient.
More details on SS-NEVPT2 are presented in Refs. [20] and [21], and those
for QD-PC-NEVPT2 are in Ref. [23].

2.3. Interstate Coupling Vectors

At the CI region, the degeneracies of the two adiabatic states are lifted
along the gradient difference and interstate coupling vectors, which then de-
fine the branching plane. Although it is currently possible to locate CIs with-
out interstate coupling vectors by branching plane updating [35] or penalty
function [36, 37] methods, they should aid a smoother convergence if the two
vectors are available. The gradient difference vector for states S and T is
simply obtained by

gSTα =
dEQD-NEVPT2

T

dα
− dEQD-NEVPT2

S

dα
; (14)

Thus, it can be computed using the method in the previous subsection. In-
terstate coupling vectors can also be computed as the first-order derivative of
off-diagonal elements of the diagonalized effective Hamiltonian matrix. Thus,
they are expressed by

hST
α =

���������������
1

EQD-NEVPT2
T − EQD-NEVPT2

S

∑
UV ∈Ω

CUSCV T
dH

eff

UV

dα
, (15)
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and this is very similar to the first-order derivative expression of the QD-
NEVPT2 energy [Eq. (7)]; therefore, it can be computed using a similar
algorithm for the derivative of the QD-NEVPT2 energy presented in the
previous subsection. Note that this definition is common in other MRPT
methods [11, 16] including the QD-PC-NEVPT2 method [23], whereas the
(symmetrized) effective Hamiltonian is differently defined in these methods.
The extension to full derivative coupling vectors or NACMEs should be
straightforward, but it was not developed in this study because the inter-
state coupling was sufficient to locate the CIs.

3. Computational details

All CASSCF, QD-PC-NEVPT2, QD-SC-NEVPT2, and SF-TD-DFT cal-
culations were performed using a locally modified version of GAMESS-US
[38], whereas the (fully internally contracted) XMS-CASPT2 calculations
were performed using BAGEL [39, 40]. The frozen core approximation was
applied to all post-CASSCF calculations. No symmetry constraints were
applied.

CASSCF, QD-PC-NEVPT2, QD-SC-NEVPT2, XMS-CASPT2, and SF-
TD-DFT calculations were performed for benzene using the cc-pVTZ basis
set. The active space consisted of six electrons in six orbitals (6e, 6o), and two
states were averaged with equal weight. In the SF-TD-DFT [41] calculation,
restricted open-shell triplet wavefunctions were employed as a reference, and
the BHHLYP functional [42, 43] was employed as in Ref. [44]. An imaginary
level shift [22] of 0.2i and density fitting were applied in the XMS-CASPT2
calculations.

The CI search was performed using the gradient projection method [45].
Some preliminary calculations indicated that the MECIs located by the
branching plane updating method by Maeda et al. [35] agree with those
located using the gradient projection method using analytic interstate cou-
pling vectors. All the optimized coordinates are provided in the Supporting
Information.

4. Results and discussion

In this section, QD-PC-NEVPT2, QD-SC-NEVPT2, and XMS-CASPT2
are simply written as PC-NEVPT2, SC-NEVPT2, and CASPT2, respec-
tively, for simplicity. NEVPT2 without the prefix collectively stands for
PC-NEVPT2 and SC-NEVPT2.
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1: 0.00 eV 2: −0.14 eV 3: 0.17 eV 4: 0.55 eV

5: 2.24 eV 6: 0.10 eV 7: 1.39 eV 8: 1.52 eV

Figure 1: Optimized structures of the eight MECIs of benzene located using PC-NEVPT2
in this study. The energies are relative to 1 at PC-NEVPT2.

4.1. CIs of benzene

As a pilot application of QD-NEVPT2, CIs located by Harabuchi et
al. at the SF-TD-DFT/6-31G(d) level of theory [44] were relocated using the
CASSCF, PC-NEVPT2, SC-NEVPT2, CASPT2, and SF-TD-DFT methods
using the cc-pVTZ basis set. In Table 1, the energies of eight MECIs relative
to the lowest MECI 1 at SF-TD-DFT are summarized, and the optimized
structures with PC-NEVPT2 are shown in Figure 1. The relative energies
are graphically shown in Figure S1 (Supporting Information) too. The num-
bering is consistent with that in Ref. [44]. The computed excitation energies
for the global minimum (D6h) structure were 4.98, 5.35, 4.87, and 5.33 eV
according to the CASSCF, PC-NEVPT2, CASPT2, and SF-TD-DFT levels
of theory, respectively. The experimental excitation energy was 4.9 eV [46];
thus, the one predicted with CASPT2 agreed quite well with the experimental
result, whereas the PC-NEVPT2 and SF-TD-DFT overestimated the result.
The global minimum could not be located using the SC-NEVPT2 method be-
cause of the numerical instability observed previously with SS-SC-NEVPT2
[21]. This instability is due to the non-invariance of the perturbation en-
ergy under rotations within doubly occupied and virtual orbitals, and this
character necessitates division by the difference in orbital energies, which be-
comes trivial for highly symmetric molecules, to obtain an unrelaxed density
matrix. No such instability was detected during the CI search.

Compared with CASSCF and the three MRPT methods (PC-NEVPT2,
SC-NEVPT2, and CASPT2), clearly, the difference can be more than 0.7 eV,
which was found for 2. Surprisingly, the performance of SF-TD-DFT was
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Table 1: Energies relative to the lowest MECI 1 at SF-TD-DFT (unit in eV).

CASSCF PC-NEVPT2 SC-NEVPT2 CASPT2 SF-TD-DFT
S0 at D6h −5.57 −5.30 —b −4.95 −5.64
S1 at D6h −0.57 0.06 —b −0.09 −0.31
1 0.00 0.00 0.00 0.00 0.00
2 0.79 −0.14 −0.12 0.06 0.09
3 0.35 0.17 0.17 0.17 0.11
4 0.28 0.55 0.54 0.50 0.67
5 2.46a 2.24a 2.27a 2.23 2.14
6 0.52 0.10 0.11 0.19 0.24
7 0.77 1.39 1.37 1.39 0.96
8 0.89 1.52 1.49 1.53 1.04

a Saddle point optimizations were performed. b SC-NEVPT2 could not locate
the D6h structure.

found to be overall better than CASSCF. Previous studies [26, 41] demon-
strated a good agreement of SF-TD-DFT results for CIs with electron cor-
relation methods too. Although SF-TD-DFT also gave a somewhat large
difference of 0.4–0.5 eV in the relative energy for 7 and 8, it predicted a sim-
ilar energy to NEVPT2 and CASPT2 for the other MECIs. The difference
between NEVPT2 and CASPT2 was overall small, and that for 3 to 8 was
less than 0.1 eV.

Interestingly, PC-NEVPT2 and SC-NEVPT2 predicted that 2 was the
most stable CI among the eight CIs, whereas the other three methods showed
that 1 was the most stable. To verify the relative energy between 1 and 2,
single-point calculations were performed for the 1 and 2 structures obtained
with PC-NEVPT2 at the fully internally contracted MRCI with the size-
consistency correction (FIC-MRCI+Q) [47], as implemented in ORCA [48]
Version 4.2.1, although this method is not well suited for describing CI re-
gions [30, 47]. The FIC-MRCI+Q result indicated that 2 was 0.06 eV less
stable, and this supports the CASPT2 and SF-TD-DFT result. Although
the difference between NEVPT2 and CASPT2 is especially significant for 2,
it was less than 0.2 eV, which is the expected accuracy of MRPT methods.
In addition, considering that the relative energy of 2 is significantly lowered
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after perturbative corrections, the quality of the zeroth-order wavefunction
may be somewhat poor.

Locating the highest energy CI 5 was not straightforward with GAMESS-
US even at the CASSCF level. This was because 5 was not a minimum in
the intersection space; in this study, this was verified via vibrational fre-
quency analysis using Hessian obtained by numerical differentiation of the
intersection gradient:

gIS = Pgmean , (16)

where gmean is the average of the gradients at the two states and P is the
projection matrix

P = 1− g′g′T − h′h′T , (17)

where g′ and h′ are the orthonormalized gradient difference and interstate
coupling vectors, respectively, and the superscript of T stands for the trans-
pose of the vector. The gradient difference and interstate coupling vectors
were further projected out from the Hessian. Indeed, the vibrational fre-
quency analysis using this approximate Hessian after geometry optimization
revealed that it is a saddle point whose imaginary mode has a frequency of
−523 cm−1 at PC-NEVPT2. Geometry optimizations using displaced ge-
ometries along the imaginary mode indicated that the saddle point should
connect mirror isomers of 6. Locating 5 at CASPT2 with BAGEL and SF-
TD-DFT with GAMESS-US did not exhibit this difficulty. For quantitative
discussions, intersection Hessian and intrinsic reaction coordinate [49] calcu-
lations must be performed.

A comparison of the geometries is summarized in Table 2. First, the
root-mean-square differences (RMSDs) for each structure were computed for
all possible combinations (see Tables S1–S8 in the Supporting Information).
Then, the RMSDs thus obtained were further calculated and are summarized
in Table 2. The RMSD between PC-NEVPT2 and SC-NEVPT2 was only
0.004 Å; the difference in the structures was also trivial as in the case of
the relative energy. The largest difference of 0.010 Å was found for 8 (Table
S8 in the Supporting Information). One hydrogen atom was rather floppy,
and the movement of the hydrogen atom formed a shallow potential energy
surface. The same applies to SF-TD-DFT, and the RMSDs against the
MRPT methods were somewhat large (∼0.14 Å). Notably, the RMSDs for the
CASSCF–MRPTs (PC-NEVPT2, SC-NEVPT2, and CASPT2) were greater
than 0.1 Å, whereas that for NEVPT2–CASPT2 was approximately four
times smaller (∼0.025 Å). The largest difference between CASSCF and the
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Table 2: RMSDs (in Å) of RMSDs for the eight CIs.

CASSCF PC-NEVPT2 SC-NEVPT2 CASPT2 SF-TD-DFT
CASSCF —
PC-NEVPT2 0.117 —
SC-NEVPT2 0.117 0.004 —
CASPT2 0.103 0.025 0.024 —
SF-TD-DFT 0.111 0.060 0.059 0.063 —

H12

C1

C3
C7

Figure 2: Superposed structures of 4 optimized at the CASSCF (in blue) and PC-NEVPT2
(in red) levels of theory.

MRPTs was found for 4. A comparison of the optimized structures for
CASSCF and PC-NEVPT2 is presented in Figure 2 in which the planar part
is maximally superposed to clarify the difference. Clearly, the orientations
of C1 and H12 were significantly different. To quantify, the dihedral angle
of H12–C1–C3–C7 as defined herein was −78.2◦ and −35.0◦ for CASSCF
and PC-NEVPT2, respectively. This difference in geometry is reflected in
the relative energy of 4, which was only 0.28 eV above 1 for CASSCF,
whereas it was ∼0.50 eV for the MRPT methods. These results highlight
the importance of adding dynamic electron correlation for obtaining better
structural parameters.

Considering that the relative energies obtained with SF-TD-DFT are
closer to those of NEVPT2 and CASPT2 than to that of CASSCF, SF-
TD-DFT is a reasonable method to screen MECI candidates and even for
practical calculations. In addition to the relative energy, the RMSDs of the
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Table 3: ⟨S2⟩ values for the SF-TD-DFT results; “S0” and “S1” are denoted only formally
based on the absolute energy and do not reflect the excitation character and formal ⟨S2⟩.

S0 S1

D6h 0.011 1.001
1 0.418 0.437
2 0.618 0.362
3 0.942 0.218
4 0.758 0.571
5 0.088 0.500
6 0.684 0.186
7 0.013 0.013
8 0.093 0.010

geometries for MRPTs–SF-TD-DFT (Table 2) are smaller than CASSCF:
approximately half of those with CASSCF and twice of those with MRPT
comparisons. As long as the electronic structure obtained with SF-TD-DFT
is valid, SF-TD-DFT is a reasonable choice for locating MECIs. Here, the
⟨S2⟩ values at the two states are summarized in Table 3. These values are
similar to those at the SF-TD-DFT/6-31G(d) level of theory obtained by
Harabuchi [44]. The highest ⟨S2⟩ value found in this study was greater than
one (for S1 at the global minimum structure). It is clearly too large to iden-
tify as the singlet state. Despite the better agreement of the SF-TD-DFT
energy and geometry with MRPT methods than with CASSCF, as presented
in this study, electronic structures at the SF-TD-DFT level should be care-
fully assessed, for instance, by checking ⟨S2⟩ values. For analyzing them in
detail, the analysis presented in, for instance, Ref. [50] may be helpful.

5. Conclusions

In this study, analytic derivatives of QD-PC-NEVPT2 and QD-SC-NEVPT2
methods were developed and implemented in a local version of GAMESS-US.
The methodology was applied to locating CIs in a typical system: benzene.
The results from QD-PC-NEVPT2 and QD-SC-NEVPT2 were quite simi-
lar to each other, and the result from QD-NEVPT2 was overall similar to
that of XMS-CASPT2. The results presented in this Letter also highlight
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the importance of adding dynamical electron correlation. SF-TD-DFT over-
all demonstrated better performance than CASSCF for relative energies and
optimized structures, but the spin contaminations were significant. Addition-
ally, the character of the stationary point in the intersection space should be
verified by performing vibrational frequency analysis.
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