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ABSTRACT: The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated 

COVID-19 disease cause serious or even fatal respiratory tract infection and yet no FDA-approved 

therapeutics or effective treatment is currently available to effectively combat the outbreak. This 

urgent situation is pressing the world to respond with the development of novel vaccine or a small 

molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main 

protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts 

to develop novel drug candidates. 
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In recent month, our group has developed a novel deep learning platform – Deep Docking (DD) 

which enables very fast docking of billions of molecular structures and provides up to 6,000X 

enrichment on the top-predicted ligands compared to conventional docking workflow (without 

notable loss of information on potential hits). In the current work we applied DD to entire 1.3 

billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 

Mpro. The compounds are made publicly available for further characterization and development 

by scientific community.  
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INTRODUCTION 

Coronaviruses (CoVs) are enveloped viruses containing a single positive-stranded RNA, and 

causing a wide array of respiratory, gastrointestinal, and neurological diseases in human hosts1,2. 

It has been established that strains of CoVs were at the source of the 2002 severe acute respiratory 

syndrome (SARS) and 2012 middle east respiratory syndrome (MERS) epidemics3. In late 

December 2019, a novel CoV of SARS-COV-2 was identified to be the cause of atypical 

pneumonia outbreak in Wuhan, China, named COVID-194. The rapidly increasing number of 

infected patients worldwide prompted the World Health Organization to declare a state of global 

health emergency to coordinate scientific and medical efforts to rapidly develop a cure for 

patients5. While drug repurposing may be a short-term and non-specific solution to treat COVID-

19 patients6, development of more targeted inhibitors is highly desirable. 

CoVs main target proteins 

Previous research efforts to develop anti-viral agents against members of Coronaviridae family 

demonstrated that the Angiotensin-converting enzyme II (ACE2) entry receptor, the RNA-

dependent RNA polymerase (RdRp) and the main protease (Mpro) proteins may represent suitable 

drug targets7. Although initially promising, inhibitors targeting ACE2 (hence aiming to block 

critical coronavirus-host interactions) did not advance clinically due to significant side effects8. 

Identified RdRp inhibitors appeared to be not very specific and demonstrated overall lower 

potency, that also translated into common side-effects in patients1,9. Concurrently, CoV infected 

patients administered with protease inhibitors have shown improved outcome1,10, demonstrating 

the potential of the main protease (Mpro) as the most promising drug target in CoVs11,12. Hence, a 

recently published X-ray crystal structure of the SARS-COV-2 Mpro provides an excellent ground 

for structure-based drug discovery efforts13.  
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Known CoV main protease inhibitors  

Earlier efforts to target SARS-CoV resulted in identification of several covalent Mpro inhibitors 

targeting the catalytic dyad of the protein defined by His41 and Cys14514 residues. However, 

covalent inhibitors are often marked by adverse drug responses, off-target side effects, toxicity and 

lower potency15–19. Therefore, noncovalent protease inhibitors may have advantages for the 

treatment of SARS-COV-2 infection. Still, the majority of approved drugs administered as anti-

SARS were designed for other viral strains (Table S1). Notably, no CoV-protease specific inhibitor 

has yet successfully completed a clinical development program to date16,20.  

Deep Docking  

The impact of current COVID-19 outbreak and the likelihood of future CoV epidemics strongly 

advocate for rapid development of new treatments and fast intervention protocols. Few research 

groups have already suggested potential repurposing strategies for clinically approved drugs21–23 

or proposed de novo agents24 as therapeutic solutions for SARS-COV-2. However, previously 

reported docking (virtual screening) campaigns with Mpro targets were able to process only few 

millions or even thousands compounds6,25–27 The main reason for that is that conventional docking 

is too computationally expensive and slow, while the libraries of available chemicals are growing 

exponentially28.  

To address this general challenge, we have recently developed a novel deep learning-based 

approach for accelerated screening of large chemical libraries, consisting of billions of entities. 

This Deep Docking (DD) platform utilizes quantitative structure-activity relationship (QSAR) 

models trained on docking scores of database subsets to approximate in an iterative manner the 

docking outcome of the remaining entries. More details can be found in our recent preprint29. 



 5 

Herein we have used DD for large-scale virtual screening against the SARS-COV-2 Mpro active 

site. 

MATERIALS AND METHODS 

We used DD to virtually screen all ZINC15 (1.36 billion compounds)30 against the SARS-COV-2 

Mpro. The model was initialized by randomly sampling 3 million molecules and dividing them 

evenly into training, validation and test set. Most probable tautomer and ionization states at pH 7.4 

were calculated with OpenEye QUACPAC package31 and starting 3D conformations were 

generated using Omega pose routine32. The structure PDB 6LU7 (resolution 2.16 Å)33 of the 

SARS-COV-2 Mpro bound to a covalent N3 inhibitor was obtained from the Protein Data Bank34, 

and prepared for docking using Protein Preparation Wizard35. Docking was performed using Glide 

SP module36, and computed scores were used for DNN initialization. We then ran 3 iterations, 

adding each time 1 million of docked molecules sampled from previous predictions to the training 

set and setting the recall of top scoring compounds to 0.75. The top 1 million molecules predicted 

to have favorable scores were then docked to the protease site. The set of protease inhibitors (7,800 

compounds) from the BindingDB repository was also docked to the same site37. Our computational 

setup consisted of 13 Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz (a total of 390 cores) for 

docking, and 40 Nvidia Tesla V100 GPUs with 32GB memory for deep learning. 

 

RESULTS AND DICUSSION 

The use of DD platform enabled us to dock 1.3B compounds from ZINC15 database30 into SARS-

COV-2 main protease active site using standard Glide SP protocol36 in a week.  

The predicted interaction between the top four hits, selected by Glie SP docking score are presented 

on Figure 1. The data demonstrate that common ligand anchoring interactions correspond to 
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hydrogen bonds with Cys145 and Leu141 residues. Encouragingly, it appears that our top 

predicted inhibitor ZINC000541677852 shares a number of features with two known protease 

inhibitors, which are also likely to bind to the SARS-COV-2 Mpro (Also shown on Figure 1). One 

of them - Lopinavir is a clinically approved HIV protease inhibitor, which is being evaluated in 

combination with ritonavir in a randomized controlled trial for SARS-COV-2 infection in China, 

based on its activity in past CoV epidemics38. The drug is a large peptide-like molecule that docked 

well in the binding site having many contacts with the binding residues due to its size. The second 

drug molecule termed “Compound 80” is a non-peptide small molecule inhibitor of SARS Mpro, 

with a reported IC50 of  0.95 μM20,39,40. Compound 80 and ZINC000541677852 share one hydrogen 

bond with Cys145; additionally, the two phenyl rings of compound 80 share the two hydrophobic 

sites of the diazole and 2‐ethyl‐6‐oxopiperidin‐4‐yl moieties of ZINC000541677852. Also, the 

trifluoromethyl-phenyl moiety of ZINC000541677852 overlays well with the 1,3‐xylene moiety 

of lopinavir. Thus, our top identified molecule appears to have binding features with the site that 

are proper of protease inhibitors. Nevertheless, all our compounds featured on Figure 1 

demonstrate significantly better docking scores than the two protease inhibitors.  

We have also analyzed the origin of top 1,000 ZINC hits (selected by LE), and observed that 99% 

of them are not present in the commonly used ZINC15 in-stock library (~11 millions of molecules), 

commonly used in routine docking campaigns, demonstrating that the DD methodology can access 

complete and diverse chemical space beyond classical docking. The Glide SP scores of the top 

1,000 candidates we selected were significantly better than top 1,000 molecules from a 1 million 

random sample of ZINC15 entries, and even better than top candidates from BindingDB protease 

inhibitor library, which were docked to the same site (Figure 2).  
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We also evaluated the chemical diversity of the newly identified set of inhibitors compared to the 

protease library. Calculation of Murcko frameworks41 for hits from such library and DD hits 

revealed a similar number of frameworks present in the two sets (603 and 587 scaffolds, 

respectively). Encouragingly, we observed just two common frameworks, clearly indicating that 

screening 1.36 billion enables identification of new chemical classes that can potentially inhibit 

SARS-COV-2 Mpro. Thus, DD allowed us to rapidly narrow down ZINC15 to a smaller dataset 

enriched with high scoring compounds, which consists of novel molecules with highly favourable 

docking scores as well as significantly different than known protease inhibitors. 

Collectively, our results strongly support the use of docking beyond libraries of few millions 

compounds. In a recent article, Lyu et al.28 have showed that such strategy leads to identifying new 

scaffolds as well as chemicals of unprecedented potency, that cannot be retrieved from small 

chemical libraries (i.e. few millions of molecules). Likewise, our DD screening identified 585 new 

scaffolds for SARS-COV-2 which are not shared with known protease inhibitors, although they 

can establish all the critical interactions with the protease active site, thus providing a completely 

new set of chemicals for testing and optimization.  

 

CONCLUSIONS 

The use of DD methodology in conjunction with Glide allowed rapid docking of 1.3 chemical 

structures into an active site of novel SARS-COV-2 Mpro. The candidate inhibitors in the top-

1,000 hit list are chemically diverse, exhibit superior docking scores compared to known protease 

inhibitors, and can be readily sourced from established vendors. The structures of the identified 

compounds are made publicly available and should facilitate international efforts in rapid 

development of suitable drug candidates against COVID-19. 
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FIGURES AND TABLES 
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Figure 1. Interaction diagrams of two protease inhibitors, lopinavir and compound 80, and the 

top four compounds identified by DD screening. Common interactions between these four 

compounds and the SARS-COV-2 Mpro binding site are the two hydrogen-bonding interactions 

with Cys145 and Leu141. These molecules also showed similar interaction patterns of two 

protease inhibitors docked at the same site, and significantly better Glide scores (GS). 

 

 

 

 

 

Figure 2. Score probability of top 1,000 ranked compounds extracted from docking of a set of 

protease inhibitors (7,800 compounds), a random sample of ZINC15 (1 million molecules) and top 

1 million molecules from DD. 


