
 

Combining Cloud-Based Free Energy Calculations, Synthetically Aware Enumerations and 

Goal-Directed Generative Machine Learning for Rapid Large-Scale Chemical Exploration 

and Optimization 

 

Phani Ghanakota‡, Pieter H. Bos‡, Kyle D. Konze, Joshua Staker, Gabriel Marques, Kyle 

Marshall, Karl Leswing, Robert Abel, Sathesh Bhat* 

‡These authors contributed equally to this work  

*satesh.bhat@schrodinger.com 

 

Schrödinger Inc, 120 West 45th St, 17th floor, New York, New York, 10036 

 

Abstract 

 
The hit identification process usually involves the profiling of millions to more recently billions of 

compounds either via traditional experimental high throughput screens (HTS) or computational 

virtual high throughput screens (vHTS). We have previously demonstrated that by coupling 

reaction-based enumeration, active learning and free energy calculations, a similarly large-scale 

exploration of chemical space can be extended to the hit-to-lead process. In this work, we 

augment that approach by coupling large scale enumeration and cloud-based FEP profiling with 

goal-directed generative machine learning, which results in a higher enrichment of potent ideas 

compared to large scale enumeration alone, while simultaneously staying within the bounds of a 

predefined drug-like property space. We are able to achieve this by building the molecular 

distribution for generative machine learning from the PathFinder rules-based enumeration and 

optimizing for a weighted sum QSAR based multi-parameter optimization function. We examine 

the utility of this combined approach by designing potent inhibitors of cyclin-dependent kinase 2 

(CDK2) and demonstrate a coupled workflow that can: (1) provide a 6.4 fold enrichment 



 

improvement in identifying < 10nM compounds over random selection, and a 1.5 fold enrichment 

in identifying < 10nM compounds over our previous method (2) rapidly explore relevant chemical 

space outside the bounds of commercial reagents, (3) use generative ML approaches to “learn” 

the SAR from large scale in silico enumerations and generate novel idea molecules for a flexible 

receptor site that are both potent and within relevant physicochemical space and (4) produce over 

3,000,000 idea molecules and run 2153 FEP simulations, identifying 69 ideas with a predicted 

IC50 < 10nM and 358 ideas with a predicted IC50 <100 nM. The reported data suggest combining 

both reaction-based and generative machine learning for ideation results in a higher enrichment 

of potent compounds over previously described approaches, and can rapidly accelerate the 

discovery of novel chemical matter within a predefined potency and property space. 

 

Introduction 

 

Computational chemistry and molecular modeling have recently seen a resurgence in preclinical 

drug discovery. This is likely due to the increased computational power of modern CPUs and 

GPUs, and advances in computational methods. For example, virtual screening and 

pharmacophore modeling are regularly used as hit finding strategies,1–4 and physics-based 

methods like free energy perturbations (FEP) for small molecule potency prediction are heavily 

used in the hit-to-lead and lead optimization phases of drug discovery.5–10 During a typical virtual 

screen, millions of compounds are profiled in silico for the target of interest. However, as a hit is 

progressed into a lead, and subsequently lead optimization, the number of compounds 

considered is significantly smaller in scale than was profiled in the virtual screen.11 The lead 

optimization phase of drug discovery tasks medicinal chemists with the job of designing and 

synthesizing analogs of a lead compound to alter the physicochemical properties which affect 

multiple endpoints of interest. These include, but are far from limited to: maintaining or increasing 

on-target potency, reducing off-target potency, increasing solubility, increasing metabolic stability, 



 

increasing permeability, and reducing clearance. Oftentimes, this is accomplished by modulating 

common physicochemical properties such as tPSA, logP and MW. For example, a compound that 

has high lipophilicity may have aqueous solubility issues, so the chemist may look for 

opportunities to incorporate polarity by replacing a phenyl with a more polar heterocycle or 

replacing a methyl group with a methoxy group. Sometimes the modifications are less obvious, 

like incorporating a bicyclopentane to replace a phenyl for the purpose of increasing solubility.12 

It is up to the medicinal chemists to use their intuition, past expertise, and known SAR data to 

design the next series of analogs. This process, which drives the design cycle, is limited by human 

capability; one cannot expect a chemist to remember every chemical modification that was 

previously utilized, nor have a full recollection of the plethora of past transformations described in 

the literature. On the computational front, due to the limit on how many compounds can be 

synthesized and assayed within a traditional lead optimization timeframe there can often be 

insufficient data available to appropriately train generative machine learning models, which in 

literature have required hundreds of thousands to millions of relevant exemplar compounds 13,14. 

 

Historically, three main factors have contributed to the smaller scale of exploration during the lead 

optimization phase: (1) a lack of computational tools accessible to the computational or medicinal 

chemist to easily create large sets of drug-like and synthetically tractable idea molecules, (2) a 

lack of accurate methods to prospectively optimize multiple parameters simultaneously, and (3) 

a lack of computational power to perform the necessary calculations on a timescale that can 

impact the design cycle of a drug discovery program. Further, more than half of the costs of 

preclinical drug discovery are incurred during the lead optimization phase, highlighting the need 

for more sophisticated approaches to support this phase of drug discovery.15 We believe that 

providing the necessary computational tools to quickly explore a large portion of chemical space 

will allow drug discovery programs to find better compounds more efficiently, and will reduce the 



 

number of compounds needed to be synthesized and assayed before entering the clinic; saving 

both time and money in the process. 

Currently, there is significant interest in utilizing computational methods for the de novo design of 

compounds in drug discovery.16–19 Some examples include: (1) generating ligands from known 

building blocks using simulated organic steps, (2) generative machine learning design utilizing 

reaction vectors,20 (3) fragment replacement using rule-based fragmentation in combination with 

a pharmacophore,21 (4) using Reaction-MQL encoded reactions,22 and (5) generative machine 

learning approaches.13,23–27 A number of tools exist to aid synthetic route design as well: (1) 

LHASA, pioneered by EJ Corey in the 1960s,15,28 (2) network algorithms that mine the literature 

for applicable reactions,20 (3) automated retrosynthetic rule generation based on pattern 

recognition,21 and (4) neural-symbolic approaches to retrosynthesis and reaction planning.21,22 

Previously, we described PathFinder,29 a reaction-based enumeration tool that enables rapid, 

facile generation of synthetically tractable drug-like ligands from commercially available building 

blocks using practical chemical reactions. To illustrate the impact this technology can have on 

drug discovery, we combined PathFinder, multi-parameter optimization, docking, machine 

learning, and cloud-based FEP simulations to design and predict the potency of CDK2 inhibitors.29 

The PathFinder workflow allows for the rapid exploration of a large portion of chemical space, but 

there are several limitations: (1) the large number of ligands generated are nevertheless bounded 

by commercially available reagents and represent only a small fraction of total chemical space,29,30 

(2) the ligands are generated using building blocks containing specific functional groups 

compatible with the synthetic chemistry encoded in PathFinder. Consequently, on-target potency 

and other properties are not explicitly considered during ligand generation, and (3) as we have 

previously demonstrated29 an enumeration workflow can generate upwards of thousands of virtual 

SAR data points per week. These virtual datasets quickly become prohibitively difficult for a 

medicinal chemistry team to analyze in order to tease out SAR trends for the next round of 

ideation, which could increase the number of design-test cycles to arrive at optimal compounds. 



 

To address the aforementioned shortcomings, we aim to couple PathFinder with cloud-based 

FEP and generative machine learning methods to increase the relevant chemical space explored 

during lead optimization. Particularly, we show the superior performance of this coupled workflow 

in enriching for more potent compounds that fit a predefined drug-like space (Table 1). 

 

Methods 

 

PathFinder R-group enumeration 

 

For the R-group enumeration we performed a retrosynthetic analysis of the starting ligand 1a 

(Figure 1) using PathFinder, followed by enumeration of all possible reaction routes while keeping 

the core of the molecule constant. In each route the reagent that contains the immutable region 

is kept fixed and the other reagent is systematically varied. After the exhaustive enumeration of 

all possible synthetic routes the output was combined and duplicate products were removed 

resulting in a total of 1.36 million compounds. This set of ligands was filtered using a proprietary 

set of ~600 SMARTS patterns to remove known and potential chemical liabilities and PAINS 

offenders. This step reduced the number of compounds from 1.36 million to 607,357. Next, we 

removed all ligands that would be considered outside reasonable drug-like space using a 

physicochemical property filter criteria based on the “rule of five”31: molecular weight ≤ 500, a 

polar surface area between 50 - 130 Å2, LogP between -1 and 4, maximum of 5 hydrogen bond 

donors (HBD), maximum of 10 hydrogen bond acceptors (HBA), maximum of 6 rotatable bonds, 

maximum of 5 aromatic rings, and no chiral centers. After filtering based on these 

physicochemical properties, the library size was reduced to 253,372 compounds. The set of 

ligands was prepared for docking using LigPrep32 and only neutral ligands with a total and 

absolute charge equal to zero were retained. The resulting library of 196,290 structures was 

docked in the CDK2 receptor (PDB: 1H1S) using Glide SP,33,34 while employing both a hinge 



 

constraint and a core constraint (RMSD of 0.1 Å compared to the reference ligand (Figure 1, 1b, 

R1 = H). All ligands that fit in the binding pocket and satisfied the constraints were retained and 

resulting ligands were filtered once more by their physicochemical properties as the 2D to 3D 

conversion stage introduced certain stereocenters or tautomeric variants outside of the desired 

property space. The final set of ligands from the R-group enumeration that passed the filtering 

protocol detailed above contained 52,932 unique ligands. A random subset of 935 ligands was 

selected for FEP calculations to train the ML-FEP model (QSARFEP). 

 

 
 
Figure 1. PathFinder Generative ML workflow: PathFinder R-group enumeration followed by ML-
FEP and Generative ML. 
 

Free Energy Perturbation Calculations 

 

Relative binding free energy calculations were performed using the FEP+ implementation within 

the Schrodinger 2019-3 software release.35 The CDK2 protein system was part of the original set 

of test systems validated with the FEP+ methodology.5 Further validation was also reported in our 



 

recent work using CDK2.29 The ligand forcefield torsions were parameterized with the approach 

described in the earlier cited work using OPLS3e forcefield.36 In order to run FEP, the core of 

ligand was predefined using a SMARTS pattern based on the reference ligand 1b (see Table 2) 

and the input pose for FEP was obtained from GLIDE docking described previously. The FEP 

simulations were run using a single edge from the reference for 1 nanosecond (ns) on cloud 

computing GPU resources. The perturbations were run using the default 12 λ windows. 

Representative snapshots from the FEP simulations were auto-generated for each FEP edge 

from clustering the λ=0 window trajectory frames. The clustering was done based on the protein-

ligand interactions and the centroid of the largest cluster is referred to as the representative frame 

in this work. The representative frames from all the FEP simulations were used to highlight the 

interactions of the ligands with the protein and for further analysis including SiteMap37,38 

calculations. 

  

Goal-Directed Generative Machine Learning  

 

Generative methods have been shown to work when optimizing in general chemical space39 but 

in an early lead optimization effort, a drug discovery team is usually modifying only a single 

substituent at a time while holding the remainder of the molecule constant, primarily in order to 

elucidate SAR. To augment that design process computationally, here we describe a protocol for 

applying REINVENT14 in order to generate millions of unique compounds at a single R-group 

location on a single core. 

 

The REINVENT algorithm is a two-stage process -- first training a prior network on a population 

of chemical matter, and second shifting the distribution to also perform well on a utility function. 

In the original work the REINVENT algorithm was initially trained on a population of molecules 

selected from the ChEMBL database. In this work we trained REINVENT on the PathFinder 



 

generated molecules. Because of this, 96% of valid molecules generated by our agent networks 

had the correct core and relevant R-group location for lead optimization in this study, without 

explicitly putting a term for this substructure in our utility function. 

 

In order to run REINVENT we need a utility function whose gradient trends with interesting 

molecular matter for a drug discovery project. We estimate that for it to run in a reasonable amount 

of time to impact a standard drug discovery project, this utility function has to be evaluated on the 

order of milliseconds per molecule. In this study we explicitly optimized molecules for two QSAR 

models trained with AUTOQSAR/DC.40,41 The first QSAR model, a regression model, QSARFEP, 

was trained on FEP results from a random 935 molecules selected from a PathFinder 

enumeration. The second QSAR model, a classification model, QSARproperty, was trained on 

property and substructure filters from the PathFinder workflow. To get the compounds used to 

train QSARproperty we ran a round of QSARFEP generative machine learning optimization. We then 

down-sampled the generated molecules to balance the QSARproperty training dataset between 

compounds that pass the property and substructure filters and compounds that fail the property 

or substructure filters. 

 

To combine these two QSAR models into a single utility function we used EQ 2. EQ 2 is a weighted 

sum of a linear transformation of the QSAR models. We sample over possible weightings to 

approximate the Pareto optimal frontier. The goal of the linear transform equation is to normalize 

the dynamic range of an arbitrary function between negative infinity and one. y_min and y_max 

are the minimum and maximum value of the QSAR model’s training data, target is the goal value 

of the QSAR model for optimization. This transformation will scale linearly as the distance from 

the target in this newly normalized space. For this study we set the target to -0.2, 20% of the 

dynamic range lower than the tightest binding molecule in the training set. We set the property 



 

model target to 0, that is the model reports a 0% chance the molecule would fail our property or 

SMARTS filters. 

 
EQ 1. 
 

 
 
EQ 2. 𝞢wj = 1, w1 ∈{0.0, 0.05, 0.09, 0.17, 0.23} 
 

After the second round of MPO driven optimization we took the top 100,000 compounds 

generated with the lowest predicted FEP value and ran PathFinder structure and property filters 

resulting in 500 unique molecules being prioritized.  

 

Alongside the Generative ML design protocol we repeated the “Round 1 Protocol” from our 

previous work with CDK229 where ligands that passed docking were reprioritized based on the 

same AutoQSAR/DC model used for generative machine learning design (QSARFEP). 

 

Matched Molecular Pairs Analysis 

 

Matched molecular pairs (MMP) were generated by fragmentation of the molecules from the 

combined dataset of the PathFinder ML Rescore and Generative ML molecules using a max 

heavy atom difference of 8 atoms and a maximum of 2 cuts.42 Matched molecular pairs were 

grouped by their MMP constant structure and each group was internally sorted to maximize 

disparity of FEP score between PathFinder ML Rescore and Generative ML populations. Groups 



 

were then ranked by their internal FEP disparity score in order to analyze the change in predicted 

potency between similar PathFinder and Generative ML designs.  

Physicochemical Descriptors, Chemical Diversity, and Clustering 

 

All physicochemical descriptors were calculated using RDKit43 other than LogP which was 

computed using Canvas44. Lipophilic ligand efficiency (LLE)45–47 was calculated as pIC50 - LogP. 

 

To gain further insights into the diversity and similarity of all the ideas profiled using FEP from 

each of the three subsets of ligands, we initially carried out a principal component analysis (PCA), 

which revealed the top two components only accounted for 10% of the variance in the data. Thus 

to provide a more accurate description of the diversity of the dataset we turned to a t-distributed 

stochastic neighbor embedding (tSNE) analysis that would account for a greater proportion of the 

variance in the data.48 The top 50 PCA components were selected to reduce the dimensionality 

of the dataset followed by a tSNE analysis.  

 

SiteMap Analysis 

 

SiteMap is a binding site druggability analysis tool that takes into account the 

hydrophobic/hydrophilic character along with the curvature of binding sites.37,38 The fast and 

accurate nature of these calculations allowed us to profile representative frames from each of the 

FEP calculations run and analyze the dynamics of the binding pocket in the presence of chemical 

matter. SiteMap descriptors were calculated for the binding pocket within 6Å of the ligand.  

 

 

 

 



 

Results and Discussion 

 

The rate-limiting step in most large scale in silico workflows is generally the most expensive 

calculation, both from a cost and timescale perspective. In this case the FEP calculations 

represent the most computationally expensive step, so in real-world drug discovery applications, 

we would ideally prefer to advance only those compounds to FEP that have the highest probability 

of having good predicted activity while simultaneously not violating a predefined property space. 

We examine the performance of three workflows to accomplish this task: (1) selecting a random 

selection of ideas from the PathFinder enumeration for FEP (PathFinder Random), (2) using a 

ML model trained on FEP data to prioritize compounds from the PathFinder enumeration for FEP 

(PathFinder Rescore) (3) prioritize compounds from Generative ML for FEP (Generative ML) and 

(4) prioritize an equal amount of the top compounds from PathFinder Rescore and the Generative 

ML for FEP calculations (PathFinder Generative ML). 

 
Figure 2. a) Cumulative Compounds Identified < 10nM Given A Number Of FEP Calculations 
By Prioritization Method b) Cumulative Compounds Identified < 100nM Given A Number Of FEP 
Calculations By Prioritization Method. 
 
 
 



 

Table1. Cumulative Predicted potencies of Pathfinder Random, Pathfinder Rescore, Generative 
ML and Pathfinder Generative ML Designs. 

Prioritization Approach Number of Ideas 
Profiled by FEP <10nM <100nM <1µM >1µM 

PathFinder Random 935 9 (1.0%) 56 (5.9%) 205 (22%) 730 (77%) 

PathFinder Rescore 500 21 (4.2%) 120 (24%) 322 (64%) 178 (36%) 

Generative ML 500 31 (6.2%) 139 (28%) 314 (63%) 186 (37%) 

PathFinder Generative ML 500 32 (6.4%) 145 (29%) 341 (68%) 159 (32%) 

 
As outlined in Table 1, the random ideas selected from the PathFinder enumeration mainly consist 

of relatively weak binding compounds that would be of little interest to most lead optimization 

projects (77% > 1µM), suggesting that random selection would be a non-optimal approach since 

a majority of the FEP budget would be allocated to compounds with a low probability of meeting 

the desired potency criteria. The PathFinder Rescore approach is able to rapidly prioritize 

enumerated compounds that are predicted to be more potent (24% < 100nM) and many fewer 

weak binders (36% > 1uM), which agrees with previous results that demonstrated this approach 

is superior to random selection29. Picking only compounds from the Generative ML set 

outperforms PathFinder Rescore identifying 19 more compounds < 100nM (+16%) and 10 more 

compounds < 10 nM (+47%). PathFinder Generative ML slightly improves these results further 

by identifying one more compound < 10nM (+1%), and six more compounds < 100nM (+4%). The 

mixed strategy of PathFinder Generative ML is conceptually robust because we are replacing 

compounds that are stack ranked lower from one method, with compounds that are stack ranked 

higher from the other. If both prioritized pools of compounds have approximately the same hit rate 

distribution and the distribution skews towards enrichment over random the mixed strategy will 

have better results. While Table 1 discusses results given a budget of an additional 500 FEP 

calculations we can identify tight binders with far fewer FEP calculations. Using the PathFinder 



 

Generative ML strategy, we can identify 5 compounds < 10nM and 17 compounds < 100nM given 

50 additional FEP calculations. Figure 2 depicts how many compounds can be identified at 

different potency thresholds for increasing numbers of additional FEP calculations.  

 

This suggests that the generative machine learning method is an effective approach to utilize data 

from large-scale in silico FEP enumerations to rapidly generate additional novel, potent chemical 

matter. While potency is an important driver in drug discovery programs, it is also of interest to 

examine how diverse the chemical matter is from the three approaches. This is shown in the tSNE 

plots in Figure 2. From examining the number of clusters, there is a drop in diversity going from 

the PathFinder Random set (Figure 2b) to the Pathfinder ML Rescore set (Figure 2c). This is 

expected since the PathFinder Rescore will select for ligands based solely on potency, which 

here results in focusing on specific clusters of chemical space. Interestingly, there is an additional 

drop in diversity in the Generative ML set (Figure 2c) suggesting that the Generative ML set is 

further focusing on specific areas of chemical space that meet both the property space and 

potency requirements (Figure 2a).  

 

Comparing the property space of the PathFinder Rescore and PathFinder Generative ML 

datasets show that both sets of ideas generally occupy similar property space over the majority 

of molecular descriptors (see Supplementary Figure S1). This suggests that the Generative ML 

approach is able to produce novel ideas that fit within a predefined multi-dimensional property 

space, while at the same time maintaining or improving potency, which is often a key objective in 

drug discovery campaigns. In Figure 4a we focus on three common descriptors of interest to drug 

discovery projects, molecular weight (MW), the logarithm of the octanol/water partition coefficient 

(LogP) and total polar surface area (TPSA). On average the following trends were observed for 

the Generative ML ligands: 1) Reduction in LogP; 2) Increase in TPSA; 3) Slight increase in MW. 

This is in-line with the observed SAR of the majority of Generative ML ideas: functional groups 



 

are added that are able to form additional polar interactions with the p-loop while simultaneously 

staying within the bounds of the other property space descriptors (Figure 4a, and 7). 

 

 
 
Figure 3. tSNE plots of various ligand datasets generated from the PathFinder and Generative 
ML sets. a) tSNE of all chemical space of all R-groups (from PathFinder Random, PathFinder 
Rescore and Generative ML); b) tSNE of R-groups from the PathFinder Random set; c) tSNE of 
R-groups from the PathFinder Rescore set; d) tSNE of R-groups from the Generative ML set. 
 

 
Figure 4a. Smoothed histogram of selected property space (MW, LogP and TPSA) for Generative 
ML and Pathfinder Rescore ideas. 
 



 

 
Figure 4b. Smoothed histogram comparing the FEP potencies for the four different selection 
schemes. 

 
 
Figure 4c. Smoothed histogram comparing FEP Lipophilic Ligand Efficiency (LLE) for the four 
different selection schemes. 

 
 
 
 



 

Looking at the overall potency distributions (Figure 4b), we observe that the Generative ML 

approach shows a shift towards more potent compounds relative to both the PathFinder Random 

and PathFinder Rescore approaches. The PathFinder Generative ML approach shows a further 

shift towards more potent compounds, although not as pronounced as the previous comparison. 

Additionally, the PathFinder Generative ML set contains fewer weak binders than the other 

approaches. The PathFinder Rescore, Generative ML and PathFinder Generative ML set show 

similar distributions in LLE (Figure 4c). A predicted LLE > 6 is considered of high quality in a drug 

discovery project.47,49,50 Compared to the PathFinder Random set, we see an improved 

distribution in LLE for all three approaches, indicating that the compounds are occupying a more 

desirable druglike space. While not trained on LLE explicitly, it is encouraging to observe that the 

Generative ML model is able to produce compounds within the same LLE space as the top 

compounds from the other approaches.  

 

Figure 5 plots the change in FEP predicted potency (pIC50) vs change in LLE for all matched 

molecular pairs between the PathFinder Rescore and Generative ML enumeration. The purpose 

of generating this data was to examine if the Generative ML approach was improving potency 

simply by adding lipophilicity to existing ideas, which is generally not an ideal design approach in 

most drug discovery campaigns 47. It is encouraging to observe that potency increases (delta 

pIC50 > 0) are for the most part accompanied by an improvement in LLE (45% of ideas fit these 

criteria), particularly for the most potent ideas. This suggests that the generative machine learning 

approach, when integrated with free energy calculation and conventional enumeration 

technologies, is able to generate ideas with improved potency without sacrificing key 

physicochemical properties, which is a desirable paradigm in lead optimization efforts. 

 



 

 
 

Figure 5. Change in LLE vs change in predicted pIC50 potency for all matched molecular pairs 
between PathFinder Rescore ideas and Generative ML ideas. 
 

 

 

 

 

 

 



 

SAR Analysis of PathFinder and Generative ML Designed Compounds 

 

A representative set of potent R-groups that were identified by the PathFinder Rescore approach 

is shown in Table 2a. All of the potent R-groups displayed in Table 2a contain a phenyl ring 

coupled to the central purine core, are substituted at the meta position, and contain at least one 

hydrogen bond donor and/or acceptor. In some cases the phenyl ring was part of a fused ring 

system (3). Four of the R-group examples shown in Table 2a contain an amide linker (2, 3, 4, and 

8), and four examples have a hydroxyl group (4, 5, 7, and 8). 

 

Table 2b illustrates a representative selection of potent ligands designed using Generative ML. 

Similar to the PathFinder Rescore ligands, the examples shown contain a 6-membered ring 

attached to the purine core. The main difference is that a number of compounds contain aryl 

replacements such as a pyridine (10, 13, and 14) or a pyridin-2(1H)-one (12). In line with the 

examples from Table 2a, all compounds highlighted are substituted at the meta position and 

contain at least one hydrogen bond donor and/or acceptor. As illustrated earlier, the LLE of both 

the Generative ML and the ML Rescore set are comparable and a number of potent compounds 

are quite attractive based on their lipophilic ligand efficiency relative to the starting ligand (LLE ≈ 

6).  

Previous experimental studies described the necessity of adding a primary sulfonamide at the 4-

position of the aniline in order to improve potency to pIC50 ≈ 7-8.51 Both the PathFinder Rescore 

and Generative ML were able to identify a number of compounds with a potency in that desired 

range without the need for additional r-groups at the aniline position. By increasing the potency 

in the absence of the sulfonamide, we avoid the need to carry the potential physicochemical 

complications (high TPSA, high MW, etc) which can sometimes lead to poor properties for 

sulfonamide containing compounds (low permeability, lower cellular potency, etc.). This also 

underscores the design flexibility this workflow affords during the lead optimization process, 



 

allowing for the rapid replacement of potentially problematic functional groups without sacrifices 

to potency or physicochemical properties. 

Table 2a. Selection of Potent R-Groups Identified by PathFinder ML Rescore 

 
aExperimental values in parentheses, see Coxon et al.51 
 
Table 2b. Selection of Potent R-Groups Identified by Generative ML 

 
aExperimental values in parentheses, see Coxon et al.51 



 

 
 
Figure 6a. Overlay of representative snapshots from high scoring ligands. The crystal structure 
of CDK2 used to run FEP is show in green, snapshots in grey (PDB ID: 1H1S) 



 

 
Figure 6b. Smoothed histograms of various descriptive properties from SiteMap calculations on 
FEP representative frames across all idea sets.  
 
 

 
Figure 6c. A top down view of SiteMap results with the kinase hinge binding motif positioned to 
the left for compound 16 (pIC50 = 9.58) and compound 12 (pIC50 = 7.89). The SiteMap points used 
to define the volume are in white spheres. The hydrophobic component of the binding site is 
colored yellow, hydrogen bond donor region colored blue and the hydrogen bond acceptor region 
color red. 
 



 

Figure 6a is an overlay of representative CDK2 receptor FEP snapshots from high scoring 

compounds. Interestingly, we observe significant movement of the kinase P-loop away from the 

starting static crystallographic conformation. The p-loop appears to adopt a variety of distinct 

conformations depending on the R-group interacting with that region. This suggests that designing 

ligand functional groups interacting with this region via traditional structure-based drug design 

(SBDD) could be non-trivial since the conformation of the loop could be directly affected by the 

functional group introduced. This is further substantiated by Figure 6b, which shows four 

histograms of the distribution of different SiteMap metrics across those representative FEP+ 

snapshots. In particular the SiteMap Balance and SiteMap Volume plots suggest significant 

variability in the polarity and shape of the site. This is further substantiated by Figure 6c which 

illustrates the high variability of the binding pocket depending on the nature of the R-group, with 

the more potent ligand resulting in a receptor conformation that exposes many more polar 

residues and hydrophobic volume. By incorporating a large number of system-specific FEP 

simulation predictions into QSARFEP, we are implicitly including this information in the generative 

machine learning process. This can help circumvent the difficult nature of manually designing 

potent ligands against a flexible pocket while maintaining a favorable property space. 

 
 
 



 

 
Figure 7. Selected matched molecular pairs highlighting R-group modifications designed by 
Generative ML. a) Pyrazole incorporation; b) Replacement of aryl hydroxyl; c) Substitution of 
chlorine for dichloromethane; d) Altering pyrazole regioisomer to increase potency. (*Reported 
pIC50 values are from FEP predictions) 
 
It is of further interest to examine the modifications Generative ML makes to commercially 

available reagents to improve potency while maintaining favorable drug-like properties. Figure 7 

highlights some examples of matched molecular pairs that were generated by Generative ML 

from PathFinder enumerated ligands. Interestingly, we observe small to relatively large alterations 

to portions of the parent ligand. For example, Compound 15 is a weakly potent inhibitor of CDK2 

based on the FEP predicted potency (Figure 7a; FEP+ pIC50 = 5.50). With the goal of increasing 

potency in mind, a common technique employed a medicinal chemist may be to grow off the 

amide, because it is a synthetically feasible modification that can be installed with simple 

chemistry.52 Generative ML created a similar ligand by growing a pyrazole from the amide via a 

methylene linker (16), and this modification is predicted to increase the potency significantly (>3 

pIC50 in FEP+; Figure 7a). Aryl-hydroxy containing compounds are often avoided during lead 

optimization due to potential ADME issues53. Figure 7b shows that Generative ML designed away 

from the 3-hydroxy-pyrid-2-one of 17 and replaced it with a 3-pyrazolo-pyrid-2-one in 12, which 



 

maintains the hydrogen-bonding character of the hydroxyl group, and is predicted to be 

significantly more potent than 17 (>3 pIC50 in FEP+; Figure 7b). Another common technique in 

lead optimization is to move a methyl (“methyl walk”) or halogen around a ring with the goal of 

determining the best position to substitute for on-target potency.53,54 An example of this effort is 

displayed in Figure 7c, where Generative ML designed a difluoromethyl containing compound 

(19) from the halogen (Cl) containing parent (18). Further, the CF2 group was installed at the 6-

position of the pyridazinone ring for potency, rather than the 5-position like the chloro; FEP+ 

predicted a significant boost in potency of (~1.5 pIC50; Figure 7c). Lastly, Generative ML 

demonstrated the ability to make very minor modifications to the parent chemical matter that are 

predicted to significantly increase the potency in FEP simulations. For example, Figure 7d shows 

that simply changing the regioisomer of the 5-difluoromethyl-pyrazole of 20 to the 4-

difluoromethyl-pyrazole of 21 is predicted to significantly increase the potency (~1.5 pIC50). Figure 

8 highlights the additional hydrogen bonding interactions made by the Generative ML ideas with 

the CDK2 receptor. Collectively, the modifications in Figure 7 and Figure 8 demonstrate that 

Generative ML is able to “learn” the FEP SAR and produce ligands similar to those we would 

expect to be designed by medicinal chemists. 

 



 

 
Figure 8. Examples of new ligand-receptor interactions formed by Generative ML designed 
compounds with improved potency. The PathFinder Rescore ligand is shown on the left and the 
corresponding Generative ML MMP with increased potency on the right. The ligands are all 
oriented to show the interactions of the hinge binding motif to the left. A portion of the P-loop is 
rendered as a thin pink wire, to better display the hinge binding interactions of the core. a) MMP 
of compound 15 (left) and compound 16 (right) showing increased potency with the pyrazole able 
to interact with Asp86. b) MMP of compound 17 (left) and compound 12 (right) in which addition 
of the pyrazole results in a gain in potency through a different hydrogen bond interaction with the 
Glu12 residue in the P-loop. c) MMP of compound 20 (left) and compound 21 (right) in which the 
Generative ML designed compound forms a hydrogen bond interaction with the backbone of 
Gln131. 
 
 
 



 

 
Figure 9. Drug-like fragments generated by the Generative ML approach. a) Fragment of 22 
identified in Chlorzoxazone. b) Fragment of 8 identified in Cobimetinib. c) Fragment of 23 
identified in Vadadustat. d) The identical structure of the fragment of 24 is CHEMBL445420, a 
very weak inhibitor of CDK2. 
 

To further examine if the generative machine learning approach creates drug-like ligands, we 

queried ChEMBL55 against a variety of the R-groups generated by the Generative ML design 

process. It is important to note that the Generative ML approach has not been trained on the 

ChEMBL dataset. Interestingly, a number of the fragments from the Generative ML approach are 

present in marketed drugs (Figure 9). The 2-benzoxazolinone of 22 is present with a chlorine at 

the 5-position of the benzoxazolinone ring in the marketed muscle relaxant Chlorzoxazone (Figure 

9a). Compound 8 contains a 3-hydroxy-azetidine amide at the meta position of the phenyl ring, 

and a similar group is found in Cobimetinib, an approved MEK inhibitor used to treat some 

melanomas (Figure 9b). Compound 23 contains a 2-formamide-3-hydroxy-pyridine, which is very 

similar to a portion of Vadadustat, a HIF prolyl-hydroxylase inhibitor that is currently in phase 3 

clinical trials for the treatment of anemia and chronic kidney disease (Figure 9c). Finally, the 

ChEMBL search also identified a fragment that was previously screened against CDK2 (Figure 

9d). CHEMBL445420 is a very weak inhibitor of CDK2 (IC50 = 97 µM) and is the exact structure 

of the fragment designed by Generative ML in compound 24. Many other fragments from the 

ligands in the Generative ML set were also found in a variety of compounds that were progressed 



 

into the clinic on drug discovery programs across a wide variety of targets such as VEGFR2, 

COX-1, COX-2, c-Met, Factor Xa, c-Kit, CDK5, ABL, BRCA1, and DPP4 (not shown), which 

further demonstrates that the ideation approach outlined here is of general interest to lead 

optimization drug discovery projects. 

 

Conclusion 

 

We have previously shown how combining cloud-based FEP calculations with reaction-based 

enumeration and active learning can rapidly generate novel potent compounds.29 In this work, we 

augment that approach by coupling the workflow with goal-directed machine learning generative 

design (PathFinder Generative ML). This new workflow provides a 6.4 fold improvement in 

identifying <10nM compounds over random selection, and a 1.5 fold enrichment in identifying 

<10nM compounds over our previous method. We also demonstrate how this approach can 

rapidly explore relevant chemical space outside the bounds of commercial reagents, which was 

a limitation of our previous workflow. Upon examination of FEP simulation snapshots of the CDK2 

receptor and sitemap analysis, we observe significant mobility in the binding pocket suggesting 

that this a non-trivial SBDD problem. We were able to generate 3,000,000 idea molecules and 

run 2153 FEP simulations, identifying 69 ideas predicted IC50 <10nM and 358 ideas with a 

predicted IC50 <100 nM. The Generative ML approach is able to “learn” the SAR from large scale 

in silico enumerations and generate novel idea molecules that are potent and within relevant 

physicochemical space. In particular, we observe that the Generative ML ideas are able to 

improve potency while improving the LLE which is a desirable strategy in a lead optimization 

campaign. Upon examination of the MMPs between the original PathFinder ideas and their 

Generative ML counterparts, we observe that the generative machine learning algorithm is able 

to generate modifications similar to those found in traditional medicinal chemistry, and that several 

of the Generative ML R-groups can be found in market drugs. This study compares PathFinder 



 

Rescore with PathFinder Generative ML for a single round of prioritization, future work can be 

done showing the effects of multiple rounds of prioritization. We expect that coupling FEP 

calculations with both reaction-based and generative machine learning approaches for 

enumeration will have significant utility in accelerating the drug discovery process. 

 

Supporting Information 
 
All ligands from the PathFinder and Generative ML calculations with FEP and QSAR predictions 
and all ligands from PathFinder that passed the docking stage are available in supplementary 
material in SMILES format. 
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