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Abstract

Accurate ranking of compounds with regards to their binding affinity to a protein

using computational methods has long been of great interest to pharmaceutical re-

search. Physics-based free energy calculations are regarded as the most rigorous way to

estimate binding affinity. In recent years, many retrospective studies carried out both

in academia and industry have demonstrated its potential. Here, we present the results

of large-scale prospective application of the FEP+ method in active drug discovery

projects in an industrial setting at Merck KGaA, Darmstadt, Germany. We compare

these prospective data to results obtained on a new diverse benchmark of pharmaceu-

tically relevant targets. Our results offer insights into the challenges faced when using

free energy calculations in real-life drug discovery projects and identify limitations that

could be tackled by future method development.

Introduction

Identifying ligands that bind with high affinity to a target protein, while balancing other

ligand properties relevant to safety and biological efficacy, is the goal of small-molecule drug

discovery projects. To support this challenging enterprise, accurate prediction of protein-

ligand binding free energies has long been a goal of computer-aided drug design (CADD).

Molecular dynamics based free energy calculations are considered the most rigorous approach

to this problem. Yet, until recently, wide-spread usage was hindered by high computational

costs, limitations of sampling algorithms and limitations in (small molecule) force fields.

In addition, from an industry perspective, using free energy calculations was considered

challenging due to the limited automation, throughput and robustness of the protocols.

Over the last 10 years, however, there has been tremendous progress in sampling,1–5

force field development,6–15 throughput16–24 and automation.5,11,25–28 As a result, many phar-

maceutical companies have adopted relative free energy calculations and in particular the

Schrödinger FEP+ workflow5 as a new computational tool to support their drug discov-
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ery efforts. In 2016, we started a large initiative at Merck KGaA, Darmstadt, Germany

to thoroughly assess the prediction accuracy and identify the best use cases of free energy

calculations. In this initiative, we aimed to apply FEP+ in all suitable in-house active drug

discovery projects prospectively. There were three main reasons for this particular setup

of testing a new method in a real-life prospective application. First, since a large initial

assessment of the FEP+ method in 2015,5 many features had been added to the method,

e.g., calculating free energies for transformations involving ring openings and net charge

changes.29,30 These challenging types of transformations are often used in drug discovery

projects but were not present in the previous benchmark. Second, blind assessment of com-

putational tools – as in the form of community wide prediction challenges such as CASP,31

CAPRI,32 SAMPL33 and D3R Grand Challenges34 – has been demonstrated to provide a

more realistic picture of the accuracy and limitations of a given method. Therefore, in this

initiative we focused on applying FEP+ prospectively; i.e., in a blind manner. Third, it was

unclear how much time constraints, limitations on resources and information gaps that are

prevalent in real-life drug discovery projects affect the performance of the method relative

to what was reported previously in the literature.5,14,29,30

Here, we present retrospective and prospective data collected in 17 in-house drug discov-

ery projects over three years. We describe the general workflow we established for using free

energy calculations in projects and report the performance of the FEP+ method on in-house

targets. We further present data collected from a new diverse benchmark and discuss key

learnings for domain of applicability, project impact and limitations of the method.

Results and discussion

Free energy calculations have emerged as an accurate binding affinity prediction method

that could potentially accelerate hit-to-candidate optimization. However, it is not clear how

accurate this method is when applied under the constraints of an industry setting and how
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it can best contribute to compound design and the related multi-parameter optimization

process. Therefore, in 2016, a large initiative was launched at Merck KGaA, Darmstadt,

Germany to thoroughly evaluate and prospectively benchmark the FEP+ technology in

active projects. From 2016 to 2019, we applied FEP+ prospectively to 12 targets and

23 chemical series performing over 35,000 individual perturbation calculations. We finally

obtained valid predictions for over 6,000 chemical entities. More than 400 blindly predicted

and novel molecules were synthesized and tested. This yielded a large set of prospective data

providing a realistic assessment of the method’s accuracy in a typical small molecule drug

discovery working environment. In addition to benchmarking, this initiative also enabled us

to define best practices and explore optimal use cases.

Free energy calculation workflow in projects

Throughout the last three years, we established a workflow for deploying free energy cal-

culations in projects. The process is shown schematically in Figure 1. First, we assess the

general feasibility of using FEP for a given target and chemical series of interest by collecting

available structural data and experimentally determined binding affinities. At this stage, we

typically require at least one well-resolved co-crystal structure with one representative of

the series of interest. This strict requirement is based on our experiences in three projects

where we tried to use homology models in the absence of an X-ray structure. In contrast

to previous successful applications of FEP with homology models,35–37 we obtained unsatis-

factory prediction accuracy retrospectively in all three cases. In two of the three projects,

we later had access to a co-crystal structure and were then able to successfully complete the

validation phase (see below). Once we have sufficient structural data available, we collect

a data set of congeneric ligands with experimental binding affinities (at least 10 ligands,

preferably 20) and all available information on the biochemical and biophysical assays (e.g.,

protein construct, buffer conditions, presence of co-factors etc.). If the ligand data set is

large, it can be split according to the R-groups of the molecule that are modified to identify
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potentially different accuracy for predictions in different parts of the binding site. Then

based on these data sets, retrospective free energy calculations are performed in order to

compare predicted to experimentally determined binding affinities. We typically refer to

these retrospective computational experiments as validation studies. The accuracy of the

free energy calculations is assessed by calculating the root-mean-square error (RMSE) be-

tween relative predicted affinities ∆∆Gpred and relative experimental affinities ∆∆Gexp for

all ligand pairs in the set. If available, predicted affinities are compared to experimental

results from different assays. Typically, during the validation phase, different input struc-

tures and settings such as sampling time are evaluated in order to find the best setup for

later prospective calculations. In practice, time constraints often limit this phase to eval-

uating typically 3 possible model systems. In case of large outliers (|∆Gpred − ∆Gexp| > 2

kcal/mol), detailed analysis is done in order to understand the underlying causes. We usually

consider a validation study as successful if we achieve an RMSE smaller than 1.3 kcal/mol

and if we are able to sufficiently explain large outliers if present. If the dynamic range of

the data set is suitable, FEP predictions should also yield good ranking. In reality, however,

we frequently encountered the situation that only a data set with a limited dynamic range

was available at the time of the validation study, which made model evaluation challeng-

ing.38 After successfully completing validation stage, the FEP project moves into production

mode and prospective calculations are performed for compound ideas. These ideas have

to be sufficiently similar to the validated chemical series. In case of a new chemical series

and new available structural information, a new validation study has to be performed. We

closely monitor the prospective accuracy of the predictions throughout the project and track

which predicted compounds have been synthesized. All predicted affinities and structures

are stored in a database. Using an automated workflow, we periodically check our in-house

database to detect whether predicted compounds have been synthesized and tested in the

meantime. Structure matching is done either based on exact structure matches, matching

tautomers or matching without considering stereochemistry to maximize the number of data
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collected. In our experience, this constant monitoring is necessary to initially build trust

in the project team and later detect when the chemical matter has moved outside of the

domain of applicability of the model.

• Protein structure
(resolution < 2 Å)

• Known binding mode

• IC50 data for 10 − 20 ligands
with 3 log unit range

Prerequisites

• Predict ligands of known activity

• RMSE < 1.3 kcal/mol?

• Does FEP work for my target?

Target validation

• Ranking of new ideas

• Large FEP library screens

Production

Figure 1 Deploying free energy calculations in drug discovery projects at Merck KGaA, Darmstadt, Ger-
many.
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FEP feasibility and validation results in in-house drug discovery

projects

Over the course of three years, we evaluated 28 targets for general FEP feasibility (Figure 2

A). We performed validation studies for 17 targets and 44 chemical series and progressed 12

targets and 23 chemical series to prospective calculations (as mentioned before, initially our

criteria for considering a validation as successful were more lenient). The major reason for

not being able to perform a validation study for a given target was the lack of relevant struc-

tural data (10 targets). For two targets, all validation studies were considered unsuccessful

and for another two targets, the projects were stopped shortly after an initial FEP feasi-

bility evaluation was done (portfolio category). Some chemical series were not progressed

to production mode despite good validation results, as they had been deprioritized in the

meantime by the project team for other reasons (however, other series from the same project

entered production mode in contrast to the two FEP projects in the portfolio category, see

above). Overall, we observed a relatively low attrition rate for potential FEP targets, once

enough structural and binding affinity data became available to perform a validation study.

The RMSEs achieved in the validation study for 17 targets are shown in Figure 2 (B). In

total, we were able to obtain high accuracy (RMSE < 1 kcal/mol) and acceptable accuracy

(RMSE < 1.3 kcal/mol) predictions for 13 targets and 20 chemical series. At earlier stages in

the initiative, we also accepted validation studies with an RMSE larger than 1.3 kcal/mol as

successful and therefore progressed these series to production mode. During the course of our

evaluation, we raised the requirements for a successful validation study, since lower accuracy

(RMSE between 1.3 and 1.6 kcal/mol) in validation studies consistently led to even lower

accuracy in a prospective setting. Prediction accuracy varied not only between different

targets but also between different chemical series for the same target protein. Most notably,

for one target, we obtained results for multiple chemical series covering the whole range

from high accuracy (RMSE < 1 kcal/mol) to low accuracy predictions (RMSE > 2 kcal/mol)

(Figure 2 (B), light pink color). Furthermore, when using FEP in active projects, we regularly
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Figure 2 FEP feasibility, validation results and challenges in in-house projects. (A) Outcome of FEP
evaluation on 25 targets. The main reason for not being able to use FEP in projects was the lack of
structural data. (B) Results for validation studies using FEP+. Different colors represent different target
receptors. For many targets, several chemical series were evaluated. The RMSE varies greatly depending not
only on the target but also on the chemical series of interest. (C) Possible challenges for prediction accuracy
are encountered in all projects.
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faced challenges that might affect the accuracy of the method. A qualitative assessment of

these challenges is shown in Figure 2 (C). Almost all projects had at least one aspect that

might be problematic for applying free energy calculations (Figure 2 (C)): unsurprisingly,

real-life drug discovery projects are not ideal case scenarios. The most common challenges

we encountered in the projects where we attempted a validation study were uncertainties

in the binding mode of at least a subset of the ligands and uncertainties in the protein

structure due to suspected protein conformational change (71% and 47% respectively). In

five projects, we found that the source of experimental data had an influence on the success

of the validation study. In one case, we initially compared the predicted affinities to the

output of a functional assay and found large deviations. However, when comparing the same

predicted affinities to biophysical SPR data, we found good agreement and therefore decided

to progress the series to production mode (Figure S1). On the one hand, it is expected that

FEP results should in general correspond best to biophysical binding data and could display

larger errors when compared to other types of assays. On the other hand, to have strong

impact in projects, FEP predicted affinities should correlate well to the main assay that is

used to drive compound optimization. Also, in many projects, there is only a limited amount

of biophysical data available compared to data from biochemical or functional assays.

Note that here we listed potential aspects that may affect the accuracy of the predictions.

However, we were not generally able to pinpoint the probability of success for a validation

study to a specific feature. For example, we analyzed whether the resolution of the X-ray

structure had an influence on the RMSE achieved in the validation study but found no

correlation (data not shown).

Prospective FEP+ results for in-house projects

For 12 targets and 19 chemical series, it was possible to obtain a prospective data set consist-

ing of at least five data points. The results for each target and series are shown in Figure 3

(see also Table S1). Compared to the results from the validation study, we observed a lower
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accuracy in prospective applications as indicated by higher RMSE values. Note that here we

measured accuracy comparing predicted free energy ∆Gpred to experimental affinity ∆Gexp

instead of calculating RMSE on relative free energies ∆∆G as in the validation study, since

the ligands did not originate from a single FEP map. For three (albeit small) data sets, we

obtained high accuracy predictions (RMSE < 1 kcal/mol), for four sets, medium accuracy

(RMSE < 1.5 kcal/mol; this is the accuracy we expect to see for a series that showed RMSE

< 1.3 kcal/mol in the validation study) and for another eight sets, acceptable accuracy pre-

dictions (RMSE < 2 kcal/mol). Binding affinity prediction methods with moderate accuracy

of RMSE < 2 kcal/mol are considered useful for scoring larger libraries.39 We were able to

achieve this moderate accuracy level in 17 out of 19 chemical series from our prospective

applications. For 13 out of the 19 sets, we either found good correlation (Kendall τ > 0.5)

or low error (RMSE < 1.5 kcal/mol). In Figure 3, the targets are ordered chronologically.

This data therefore also displays our “FEP learning curve”. Indeed, the RMSE for the first

five series is markedly higher than the RMSE calculated for the most recent five data sets

(RMSE= 1.661.92
1.38 kcal/mol for 175 ligands and RMSE = 1.351.72

0.97 kcal/mol for 118 ligands

respectively).

We investigated the reasons for the largest outliers in the data set. For the analysis, we

reset the predicted affinities of all compounds that were predicted to be above the top or

below the bottom of the assay to these values and then evaluated the resulting deviation

from the experimental value. Based on this analysis, we still identified 23 compounds where

the predicted affinity deviated by more than 3 kcal/mol from the experimental affinity. For

four of these 23 outliers that originated from target 1/series 1, the validation study had

previously shown larger errors for modifications in this part of the molecule. Based on the

stricter criteria established later in the FEP initiative, we would not have progressed this

project to prospective phase. Another four compounds from target 1/series 2 and target

1/series 3 displayed changes in aromatic heterocycles relative to the reference compound.

These heterocycles might have not been well represented by the force field (the affinity of
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these compounds was underestimated, see Figure S2 for examples). For three compounds

from target 2/series 1 and target 5/series 1, we suspect that the changes relative to the

molecule that was co-crystallized could have invoked protein conformational changes that

were not captured in the simulations (the changes were made in a part of the binding site

that displayed flexibility in the available crystal structures). For a group of five outliers from

target 5/series 1, we suspect that an additional domain that was not part of the crystallization

construct might have caused the sudden drop in potency when making modifications to the

solvent-exposed side of the molecule (the five molecules were found to be inactive in the

assay despite having relatively small modifications compared to highly active molecules).

All of these molecules were over-predicted with FEP by more than 5 kcal/mol, contributing

significantly to the overall RMSE of 2.162.64
1.63 kcal/mol observed for this data set. When

excluding these five molecules, the RMSE calculated over the remaining 83 compounds was

reduced to 1.381.66
1.12 kcal/mol. Finally, two of the outliers that originated from target 8 and

target 9 had modifications to a sulfone or a sulfonamide. When we initially performed the

FEP+ calculations for these moecules, we noticed that many modifications were predicted

to be favorable when replacing the sulfone or the sulfonamide group (which already seemed

“suspicious” at the time). Indeed, when we synthesized the best predicted compounds in

these two projects, we found that the affinity was over-predicted by more than 4 kcal/mol.

These examples might hint at a general problem of small molecule force fields in describing

the properties of sulfones in relatively hydrophobic binding pockets.

In general, there are several reasons that could account for the larger errors in the prospec-

tive data sets compared to the validation studies. First, throughout the course of a project,

new ideas tend to be decreasingly similar to the chemical space that was used in the vali-

dation study and decreasingly similar to the representative of the chemical series that was

captured in the crystal structure. This naturally results in higher uncertainties in e.g., bind-

ing mode and protonation state of the ligands. In many cases, we tried to simulate either

multiple binding modes, tautomers or charge states in the map when ranking the full set of
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Figure 3 Prospective FEP+ results from 12 targets and 19 chemical series. Experimental affinities were
converted to ∆G values using the equation ∆Gexp ≈ kBT log IC50. FEP+ accuracy varies between different
targets and chemical series. Predictions within 1 kcal/mol and 2 kcal/mol of the experimental affinity are
highlighted by dark and light gray area respectively.
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compounds. Alternatively, we first tried to predict the relevant state with FEP+ (binding

pose FEP) and then ranked the whole set based on the predicted optimal state for each

compound. Recently, there has been a possibility to include multiple protonation states in

FEP+.40 However, cases in which the protein changes its protonation state upon binding or

cases where the ligand has a different pKa in the binding site than in the protein41–43 still

cannot be treated properly. Recently, there has been progress in the field of constant pH

simulations,44–48 yet at the moment, these methods appear too computationally demanding

for an industry context. Second, we found that the diverse chemical matter in our in-house

compound collection remained a challenge for small molecule force fields. For almost every

new chemical series, we had to reparametrize some of the torsion potentials, even when using

the new OPLS3e force field that includes a very high number of torsion potentials.14 New

concepts like the SmirnoFF force field developed by the Open Force Field Consortium49

appear promising in helping to overcome the limitations of atom typing in current small

molecule force fields. We anticipate that small molecule force fields will continue to im-

prove and better capture the properties of different chemical groups in the future. This in

turn will hopefully reduce errors in free energy calculations. Third, when using free energy

calculations prospectively, we tend to focus on extreme predictions (e.g., the top-ranked

compounds) that might be inherently more error-prone. This bias in focussing on extreme

predictions can be softened by e.g. applying a selection bias correction.50 However, in our

hands this did not affect the largest outliers much. Finally, many transformations that were

of high interest to the project teams were innately challenging for the method (e.g., from

aromatic ring systems to aliphatic chains, charge changes, addition of new groups via flexible

linkers). Especially, the addition of a new functional group with a flexible linker is difficult

in terms of sampling, but it frequently occurs in the context of early hit optimization and in

fragment optimization.

When comparing ranking by FEP+ to ranking obtained from Glide docking and Prime

MMGB-SA scoring (see Experimental for details), we found that overall FEP+ performed
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better than these standard SBDD methods (Table S1). Cohen’s d for Kendall τ was 0.85

for comparison to Glide and 0.49 for Prime, indicating a medium and small effect size

respectively.51 Note that for comparison with Prime, Target 6/series 1 was not considered

for calculating effect size and also that for technical reasons it was not possible to rank all

ligands with the two other methods (e.g., some ligands failed to dock into the protein due to

clashes or gave positives scores in Prime MM-GBSA and were therefore excluded from the

analysis).

In four cases (target 1/series 4, target 4/series 1, target 5/series 3 and target 12/series

1), Prime MM-GBSA gave ranking with similar or slightly higher correlations than that of

FEP+ based ranking. However, no quantitative agreement in terms of predicting absolute or

relative free energies was found. Still, this highlights the opportunity to use simpler scoring

methods for certain cases and focus with a computationally expensive method like FEP+

on those cases where other methods fail to rank the ligands.

We also compared FEP+ performance on our prospective in-house data sets to ranking

with simple descriptors like molecular weight and log P (correlation statistics are shown in

Table S2). FEP+ also outperformed these “null models” as indicated by a large and medium

effect size (Cohen’s d for Kendall τ d = 1.03 and 0.64 for comparing FEP+ with ranking by

molecular weight and log P).51 Glide docking performed no better than ranking by molecular

weight and only showed a very small effect size with respect to ranking by log P (Cohen’s

d for R2 = −0.13 and 0.07 respectively). Prime MM-GBSA scoring showed very small and

small effect size (Cohen’s d for R2 = 0.13 and 0.33 when compared to ranking by molecular

weight and log P respectively).52

Benchmark results

Based on our extensive experience with free energy calculations, we decided to construct a

new benchmark consisting of eight challenging, recently published data sets with pharma-

ceutically relevant targets.53–62 The benchmark comprises 264 ligands in total. It illustrates
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many of the challenges we faced when using FEP+ in projects and reflects the typical type

and size of chemical transformations during hit-to-lead and lead optimization. In contrast

to a previously published benchmark,5 the transformation include changes in the net charge

and the charge distribution of the molecules as well as ring openings and core hopping (exam-

ples are shown in Figure 4). The ligand sets display a slightly increased range of structural

diversity compared to the previous benchmark (average maximal mean pairwise Tanimoto

similarity 0.790.87
0.68 vs. 0.840.92

0.76 using RDKit Daylight fingerprint with default settings). The

FEP+ results are summarized in Table 1 (detailed plots for each set can be found in Fig-

ure 5). Overall, we achieve good correlation for these data sets (average R2 = 0.430.64
0.25,

average Kendall τ = 0.490.64
0.33). The root-mean-square error for the relative affinities ∆∆G

calculated over all ligand pairs in the map RMSEpair ranges between 1.2 and 2.1 kcal/mol.

Given the challenges that are included in this data set, this is a remarkable achievement.

However, compared to the accuracies reported earlier on a large benchmark set5 and for

internal drug discovery projects at Schrödinger (RMSE = 1.1 kcal/mol, Lingle Wang, per-

sonal communication), we see considerably lower accuracy. This lower accuracy is in line

with the prospective accuracy found in our in-house projects (average RMSEpair = 1.681.76
1.60

kcal/mol and average RMSE = 1.641.97
1.26 kcal/mol respectively). When analyzing the error

for the different types of transformations (Figure S3), we found that transformations involv-

ing changes of the net charge or the charge location or changes to the core/scaffold of the

molecule, showed lower accuracy. These transformations are already considered as inherently

more difficult by the FEP+ software and special settings for sampling are used.29,30 Still,

these transformations display larger errors. Interestingly, for the remaining transformations,

we could not observe a strong dependency of the error on the size of the transformation; i.e.,

the number of heavy atoms that are changed.

It is interesting and quite sobering to note that based on our guidelines for a successful

validation study (good correlation and RMSEpw < 1.3 kcal/mol), we would have only been

able to progress one out of the eight chemical series in the benchmark to production mode
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based on the data obtained for the default setting of 5 ns smapling time. Increasing the

simulation time from 5 ns to 20 ns per λ window decreased the RMSE for seven out of eight

targets by more than 0.5 kcal/mol and decreased the average RMSEpw by 0.13 kcal/mol

(average RMSE = 1.511.74
1.44 kcal/mol, see Table S3). This increase in quantitative agreement

between predicted and experimental affinities had however no effect on ranking/correlation

(average Kendall τ = 0.490.64
0.32). Nevertheless, based on the 20 ns data, we would have been

able to progress three out of the eight targets to production mode.

∆∆Gexp =−2.16 kcal/mol

∆∆Gpred=−2.36 kcal/mol

∆∆Gexp =−0.93 kcal/mol

∆∆Gpred=−1.37 kcal/mol

∆∆Gexp =−3.33 kcal/mol

∆∆Gpred=−2.84 kcal/mol

Figure 4 Examples of different types of transformations in the new benchmark set. (A) Addition of flexible
chain in Eg5 leads to increased binding affinity. (B) Ring closure transformation in HIF-2α. FEP correctly
predicts an increase in potency, likely due to the reduced ligand flexibility . (C) Shift of charged amine in
SHP-2.

We discuss the c-Met FEP+ results as one example in more detail. The accuracy on

this data set was moderate (RMSEpw = 1.431.51
1.34 kcal/mol), but the predicted ∆G values

show good correlation and ranking when compared to the experimental affinities (Figure 6
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Figure 5 FEP+ results on literature curated benchmark. For each dataset, experimental and predicted
∆G values are shown. Calculations were run for 5 ns per window. Experimental affinities were converted to
∆G values using the equation ∆Gexp ≈ kBT log IC50. Predictions within 1 kcal/mol and 2 kcal/mol of the
experimental affinity are highlighted by dark and light gray area respectively.
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Table 1 Results for ranking by FEP+, Glide and Prime MM-GBSA on literature curated benchmark
set. Calculations were run for 5 ns per window (default sampling time). Pairwise RMSE was calculated
for predicted and experimental ∆∆G values of all ligand pairs. Averages were calculated weighted by the
number of the ligands in the respective data set. Pairwise RSME for Prime is shown for reference only
(Prime scores typically range between -60 and -80). For each performance metric, confidence intervals were
estimated via bootstrap sampling.

FEP+ Glide Prime
Protein N PDB ID R2 ρ τ RMSEpw R2 ρ τ RMSEpw R2 ρ τ RMSEpw

CDK8 33 5HNB 0.380.67
0.18 0.740.86

0.56 0.570.72
0.41 2.092.19

1.98 0.00.14
0.0 0.130.44

−0.19 0.10.33
−0.13 2.492.64

2.33 0.60.76
0.47 0.820.91

0.66 0.640.77
0.5 7.037.45

6.6

c-Met 24 4R1Y 0.810.89
0.7 0.880.94

0.74 0.730.84
0.59 1.431.51

1.34 0.00.18
0.0 0.130.48

−0.25 0.10.38
−0.2 3.013.19

2.82 0.360.63
0.14 0.640.83

0.34 0.470.67
0.24 5.966.38

5.53

Eg5 28 3L9H 0.50.69
0.33 0.720.84

0.52 0.540.68
0.39 1.231.31

1.15 0.00.15
0.0 −0.080.28

−0.4 −0.030.24
−0.28 1.92.0

1.79 0.020.12
0.0 0.10.38

−0.21 0.060.26
−0.14 10.0910.65

9.54

HIF-2α 42 5TBM 0.370.65
0.1 0.590.77

0.36 0.450.61
0.27 1.61.69

1.52 0.160.36
0.04 0.420.61

0.18 0.280.44
0.12 1.511.57

1.45 0.290.51
0.09 0.480.65

0.27 0.340.48
0.2 11.6912.17

11.21

PFKFB3 40 6HVI 0.630.75
0.5 0.790.86

0.67 0.60.69
0.49 1.781.84

1.72 0.220.46
0.08 0.510.71

0.25 0.380.56
0.2 1.571.65

1.49 0.250.44
0.1 0.540.7

0.33 0.370.51
0.22 6.997.29

6.68

SHP-2 26 5EHR 0.50.69
0.32 0.780.88

0.59 0.610.74
0.45 1.391.47

1.3 0.190.4
0.04 0.440.66

0.14 0.270.46
0.07 1.521.62

1.42 0.360.6
0.09 0.50.76

0.16 0.380.61
0.13 8.769.37

8.14

SYK 44 4PV0 0.240.47
0.03 0.370.59

0.12 0.250.42
0.08 1.631.69

1.57 0.010.1
0.0 −0.170.1

−0.41 −0.120.07
−0.31 1.691.76

1.62 0.020.1
0.0 0.040.28

−0.2 0.010.17
−0.15 10.1710.51

9.82

TNKS2 27 4UI5 0.160.41
0.01 0.410.66

0.07 0.290.51
0.05 2.22.32

2.08 0.140.37
0.01 0.320.6

−0.02 0.220.45
−0.03 1.351.43

1.27 0.070.22
0.0 0.220.52

−0.14 0.140.37
−0.1 7.98.41

7.4

Total 264 0.430.64
0.25 0.640.79

0.44 0.490.64
0.33 1.681.76

1.60 0.090.27
0.02 0.210.48

−0.08 0.150.36
−0.06 1.831.93

1.73 0.240.41
0.11 0.410.61

0.15 0.290.46
0.11 8.789.22

8.33

(A)). Errors in ∆∆G appear to follow a Gaussian distribution (Figure 6 (B)). The data sets

contains 12 neutral compounds and 12 positively charged compounds that carry a solvent-

exposed basic group. The FEP map contained six perturbations that involved a change

in net charge. For five of these transformations, the predicted ∆∆Gpred was within 1.1

kcal/mol of the experimental value (examples are shown in Figure 6 (C)). The remaining

charge-changing transformation involved molecule CHEMBL3402762 that had a measured

affinity IC50 < 1nM (top of the assay, this was set to 1 nM in order to include the compound

in the comparison). This compound was predicted to be more potent than CHEMBL3402761

which has a reported IC50 = 1 nM. Overall, the perturbations in the c-Met data set demon-

strate that transformations involving changes in net charge can be handled reliably by the

FEP+ method. Still, the benchmark cases also illustrates the challenges that are involved

in predicting charge changes. In the TNKS2 set, the relative affinities within ligands of the

same net charge were accurately predicted. The relative affinities between ligands of different

net charge, however, displayed larger errors.

For the c-Met case, FEP+ predictions also reproduced the SAR for changing from a

carbamate unit to various aromatic heterocycles (Figure 6 (D)). It correctly ranked pyrimi-

dine as more potent than two thiazole variants, imidazole, oxadiazole and pyridazine. It did

however not reproduce the increase in potency when going from a pyridine to a pyrimidine
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(these two compounds that have binding affinity of IC50 = 200 nM and IC50 = 40 nM re-

spectively are predicted as 49 nM and 60 nM respectively). This change is still within the

typical error limit of the method (1 kcal/mol). We hypothesized that the protonation state

of the pyridine may affect the affinity and might explain the difference in potency. But pKa

calculations with Jaguar63 yielded a pKa of 4.5 for the pyridine compound which makes the

presence of the charged species highly unlikely.

Comparing FEP+ results on the benchmark with results for Glide docking and Prime

MM-GBSA calculations, we found that FEP+ showed significantly better correlation to

experimental data and lower or equivalent RMSE for seven of the eight cases (Table 1 and

Figure 7). On this benchmark, FEP+ clearly outperformed both simpler methods (Cohen’s d

for Kendall τ was 1.94 and 1.40 when compared with Glide and Prime respectively indicating

a very large effect size51,52). In addition, it also clearly outperformed two “null models”

(Figure 7 and Table S4; Cohen’s d for Kendall τ was 2.25 and 1.94 for comparison with

ranking by molecular weight and calculated log P respectively, indicating a huge and very

large effect size51,52). This result is in qualitative agreement with the data obtained from

our in-house projects.

It is important to point out that the benchmark results presented in this study set were

obtained in an industry context without extensive optimization following our standard proto-

col. It may very well be possible to obtain even higher accuracy results with more thorough

model optimization. Indeed, for the Eg5 data set, we found that the protein structure–

specifically one loop in the vicinity of the ligand–had a large effect on the accuracy of the

prediction. We could clearly link this structural change to a set of outliers involving a phe-

nol group that was in contact with this loop (see Figure S4). However, in the context of

drug discovery projects, there is usually only limited time for validation and model opti-

mization (typically 2 weeks). In our opinion, the performance reported here gives a realistic

view what accuracy can be expected when using FEP+ in an industry setting. We hope

this set will be useful to drive further method development in the field. The input struc-
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Figure 6 FEP+ results for c-Met benchmark case. (A) Predicted affinities ∆Gpred correlate well with ex-
perimental affinities ∆Gexp. (B) Histogram of the errors for pairwise relative affinities |∆∆Gpred−∆∆Gexp|.
The solid line shows a Gaussian curve with standard deviation 1.43 kcal/mol. (C) Perturbations involving net
charge changes in the data set. FEP+ shows good accuracy in predicting these challenging transformations.
(D) FEP correctly predicts ranks a series of different aromatic heterocycles substitutions.
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Figure 7 Comparison of Kendall τ for FEP+, Glide, Prime, MW and log P ranking on the eight benchmark
cases. Confidence intervals were estimated via bootstrap sampling.

tures for the eight benchmark cases and FEP+ results for 5 ns and 20 ns are available on

www.github.com/MCompChem/fep-benchmark.

Impact of FEP+ on projects and operational challenges

Despite these overall encouraging prospective FEP+ results and the clear advantage over

simpler SBDD methods, throughout the initiative it became clear to us that the usefulness

of the prediction and the required level of accuracy to achieve meaningful ranking heavily

depend on the the chemical series and the observed dynamic range/affinity distribution in

the optimization phase. For example, for target 2/series 1 and target 2/series 3, we found

good ranking with FEP+, although the reported RMSE was larger than 1.5 kcal/mol (Table

S1 and Figure 3). This was helpful in prioritizing compounds for synthesis and was regarded

as valuable by the project chemists. On the other hand, in target 1/series 1-3, we did not

obtain any predictive ranking despite having similar accuracy in terms of RMSE. In our

experience, lower accuracy can be tolerated in projects that display a larger variation in the
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underlying potency distribution of the chemical series. Once optimization has hit an affinity

“canyon” in chemical space where small variations do not have a large effect on potency,

applying free energy calculations has only limited value for the project (as was the case in

target 1/series 1-3 and target 5/series 1). Interestingly, we found that such a situation was

often present in (late stage) lead optimization projects. At the start of the initiative, we

assumed that lead optimization should be the primary use case for FEP, since the small scale

chemical transformations that are typically carried out at this stage are best suited for the

method. Yet in contrast to our initial expectation, we noticed that we had better impact on

hit-to-lead optimization or on fragment optimization when chemical space was more broadly

explored and potency was still a major optimization parameter. Furthermore, at this point,

chemistry resources were usually more limited and chemists still faced synthetic challenges

that limited the number of molecules that could be synthesized and tested experimentally.

In such a situation, prioritizing ideas to focus on the most promising ones was perceived as

very valuable and performing these computationally expensive calculations was not regarded

as a bottleneck. Additionally, guiding design teams towards compounds that should be

made generates a higher impact than advising them which compounds should not be made.

Assessing the impact on the optimization retrospectively for the latter is not easily done. In

terms of domain of applicability, one has to keep in mind that predictivity can be limited in

early hit optimization phase, since the chemical transformations encountered in these early

stages are typically more challenging for the method.

Strong communication was also crucial for successfully implementing free energy calcu-

lations in projects. We experienced how important it is to have a good understanding of the

capabilities and limitations of the method in the project team. This helped in selecting com-

pounds for prioritization with FEP+ that were within the domain of applicability. Initially,

we faced challenges in using FEP+ in projects because ideas submitted for calculations were

outside of the scope of the method. In later stages of the initiative, we focused on ranking

custom-built libraries that were by design more amenable for the calculations. A disadvan-
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tage of this approach was that in some cases the results of such a library scan were taken

up by the project team and used in the design of new molecules, however, this information

was combined with other ideas. In this way, it was hard to assess the impact of the method

since the exact molecules as predicted by FEP were not synthesized. To avoid this issue, we

aimed to predict such molecules later with FEP+ in order to be able to assess the quality

of the predictions with our automatic workflow (see above). In general, we found that the

acceptance of FEP predictions by chemists was higher when the results could be interpreted

or rationalized; e.g., by analyzing interactions or ligand flexibility. We therefore recommend

to deliver FEP predictions accompanied by such an analysis, especially focusing on those

compounds that were predicted to be the best and the worst binders.

In summary, to make best use of free energy calculations in projects, prediction accuracy,

domain of applicability, key optimization challenges, synthetic accessibility of the chemical

series of interest and timing in project have to be carefully balanced. We found that screening

large custom-built libraries – ideally designed with non-potency optimization parameters in

mind – to be an effective way of providing added value. For these libraries, we screen at

least 50-100 ideas. We aim to screen 5-10 times more ideas than the maximum number of

compounds that can be selected for synthesis (this is in line with a recent publication64).

Conclusion

Free energy calculations are more and more frequently used in pharmaceutical industry and

have become a powerful addition in the computational chemist’s toolbox. Here, we present

data from using FEP+ prospectively in a large number of in-house drug discovery projects.

We obtained good accuracy for a large variety of targets and chemical series. Yet, the number

of targets where we were able to obtain high accuracy predictions (RMSE < 1 kcal/mol)

was limited. These results were in line with those obtained on a new, public benchmark set.

In real world drug design projects, structural information and availability of ligand series
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with large affinity spread is not always given. In addition to the accuracy of the prediction,

we identified multiple important operational factors that affect the impact of the method in

projects. In the near future, we envision FEP+ as an expert tool to support FEP-enabled

projects with large-scale library calculations.

Experimental

Protein structure preparation

Protein structures were downloaded from the PDB (www.rcsb.org) or from our in-house

database and imported into Maestro.65 If multiple chains were present and there was no

indication that the multimer was the biologically relevant form, structures were split and

each chain was processed separately. Prime Homology modeling66,67 was used to remove

mutations introduced in the crystallization constructs (if any), build missing side-chains and

missing loops. If loops had been added, these were subsequently refined with the Prime

Loop Refinement protocol. Sequence alignment was performed with ClustalW and adapted

manually if necessary. The homology model was built using the knowledge-based approach

and taking the inhibitor into account. For loop refinement, recommended settings depending

on the length of the loop were used. If larger domains (more than 20 residues) were missing,

these parts of the structure were not added. In case of multiple structures for a given

target, loop structure were also modeled based on alternative structures. The structures

were then processed with the Protein Preparation Wizard in Maestro.65,68 Hydrogens were

added, all crystal waters were retained and the termini were capped. Co-crystal ligand

protonation states were evaluated with Epik.69 Protein protonation states were determined

with PropKa70,71 and hydrogen bonds were optimized. The structures were finally minimized

with an RMSD cutoff of 0.3 Å (default settings).
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Ligand structure preparation

Corina was used to generate 3D coordinates based on the 2D representation. Structures were

then processed with LigPrep enumerating possible stereoisomers and assigning protonation

states with Epik.69,72 For positioning the ligands into the binding site, we either used the

Flexible Ligand Alignment tool or Glide core-constrained docking73 based on a reference

structure (in most cases, the X-ray ligand). The core was defined by maximum common

substructure or by a custom SMARTS pattern for molecules involving core changes. We ran

Glide core-constrained docking using standard precision settings. Structures were analyzed

with the Force Field Builder to detect missing torsion parameters. If necessary, new custom

parameters were generated by the Force Field Builder protocol.

Prospective free energy calculations in in-house projects

Prospective free energy calculations were performed using the Schrödinger FEP+ method5

with Schrödinger suite versions 2016-4 to 2018-3. Up to version 2018-1, the OPLS3 force

field12 was used with custom parameters generated by the Force Field Builder. For cal-

culations performed with version 2018-2 and higher, the OPLS3e force field14 with custom

parameters was used. Prospective calculations were run with optimal settings as determined

by the validation study. In most cases, these corresponded to the default settings, in some

cases, the sampling was extended beyond 5 ns per window. Calculations were analyzed us-

ing the FEP+ GUI.65 If convergence issues were found, simulations were extended if time

and computing resources allowed. In all cases, unconverged edges and edges with high hys-

teresis values were removed from the final map. Finally, all predicted ∆G values > −5.81

kcal/mol were set to −5.81 kcal/mol to allow better comparison to experiment (typical value

for bottom of the assay).
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In-house in vitro assays

For all targets except target 8 and target 2, biochemical enzyme activity assays were used

to determine the binding affinity of the molecules. For target 8, a mixture of functional and

ITC measurements was used for comparison with FEP+ results (molecules that showed no

activitiy in the functional assay were not profiled with ITC). For target 2, affinities were

determined using a cellular phenotypic assay.

Free energy calculations on benchmark data set

The full data set is summarized in Table 1. Protein co-crystal structures were downloaded

from the Protein Data Bank (www.rcsb.org). Ligand structures and affinities (IC50) were

extracted manually from papers and/or patents.53–62 IC50 values were converted into free

energy values using the equation ∆G ≈ kBT log IC50. Protein structures and ligand struc-

tures were prepared for free energy calculations as described above. For the benchmark,

free energy calculations with FEP+ were run using Schrodinger suite version 2018-3 with

the OPLS3e force field.14 Prepared structures were loaded into the FEP+ panel and affinity

data were added. Maps were generated with default settings (optimal topology). No further

modifications were made to the map. FEP+ jobs were run for 5 ns and 20 ns sampling time

per λ-window. The output was analyzed with the FEP+ panel in Maestro. In contrast to

the prospective calculations, we did not modify the final map – e.g., remove edges with high

hysteresis – to allow for better reproducibility of the results.

Comparison to other methods

For comparison, we docked ligands into their respective protein structure using the Glide

standard precision ligand docking workflow73 in Schrödinger suite 2018-3 with default set-

tings. As receptor, the protein structure used for the free energy calculations was used (all

water molecules were deleted). The ligands were ranked according to Glide gscore and this
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score was compared to experimental affinities. MM-GBSA calculations were performed with

the Prime MM-GBSA module in Schrödinger suite 2018-3 using default settings. The pro-

tein structure without water molecules was used as receptor and the ligand poses were taken

from the FEP+ input. The ligands were ranked according to "MMGBSA dG Bind" score.

Molecular weight and logP were calculated for the neutral ligands using Maestro.65

Analysis

Convergence, hysteresis and interaction analysis were performed using the FEP+ GUI in

Maestro. Correlations statistics and errors were evaluated using Python numpy, scipy74 and

bootstrapped libraries. 90% symmetric confidence intervals (90% CI) for all performance

metrics were calculated using bootstrap by resampling all data sets with replacement, with

10000 resampling events. CIs were estimated for all performance metrics and reported as

x
xhigh
xlow where x is the mean statistic calculated from the complete data set (e.g., RMSE), and

xlow and xhigh are the values of the statistic at the 5th and 95th percentiles of the value-

sorted list of the bootstrap samples. Data curation and extraction of experimental data for

prospective FEP calculations from our in-house database were carried out using in-house

custom scripts. IC50 or Kd values were converted to free energies using the equations

∆Gexp ≈ kBT log IC50

∆Gexp = kBT logKd.
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