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Tuning the energies of molecular excited states is a central research theme in modern chemistry
with high relevance for optoelectronic applications and chemical synthesis. Whereas frontier or-
bitals have proven to be an intuitive and simple model in many cases, they can only provide a
very rough approximation of the underlying wavefunctions. The purpose of this Perspective is
to explore how our qualitative understanding of electronic excitation processes can be promoted
beyond the molecular orbital picture by exploiting methods and insights from modern quantum
chemistry. For this purpose, the physics of a correlated electron-hole pair is analysed in detail
to show the origin of exchange repulsion and a dynamic Coulomb attraction, which determine
its energy aside from the orbital energies. Furthermore, we identify and discuss the two addi-
tional effects of secondary orbital relaxation and de-excitations. Rules for reconstructing these
four contributions from general excited-state computations are presented and their use is exem-
plified in three case studies concerned with the relative ordering of the singlet and triplet ππ∗ and
nπ∗ states of uracil, the large energetic differences between the first singlet and triplet states of
the polyacenes, and the assignment of plasmonic states in octatetraene. Finally, we lay out some
general ideas for how the knowledge gained could ultimately lead to new design principles for tun-
ing molecular excitation energies as well as for diagnosing possible shortcomings of commonly
used electronic structure methods.

1 Introduction

The design of molecular systems with specific absorption and
emission properties is a major theme in modern chemistry with
relevance to lighting,1–3 photovoltaics,4 chemical synthesis,5,6
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and to more specific uses such as photoinitiators,7 fluorescent
probes,8,9 and sensors.10,11 Most commonly new chromophores
are designed based on the energies and shapes of their fron-
tier orbitals, which have proven to be an intuitive and power-
ful concept for understanding electronic structure despite their
purely quantum mechanical nature. Using simple rules, e.g.
that electron-withdrawing groups lower orbital energies while
electron-donating groups increase them, it is indeed possible to
modify the energies and characters of excited states in organic
chromophores9,12–14 and transition metal complexes.15,16 On the
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one hand, this success of the frontier orbital picture is an impres-
sive account of the influence that abstract quantum mechanical
concepts can have on practising chemists and has ultimately lead
to a Nobel Prize in Chemistry.17,18 On the other hand, it is sur-
prising that an intermediate quantity in an approximate theory
should gain such prominence. Indeed, one is often hard-pressed
in explaining to people outside the community why chemists as-
cribe almost prophetic power to pictures showing coloured blobs
of various shapes and sizes, and the unscrupulous application of
orbital energies is regularly criticised by theorists.19–21

Limitations of the molecular orbital (MO) picture are encoun-
tered in a variety of molecular systems used for different applica-
tions. These limitations become particularly apparent when com-
paring the energies of singlet and triplet states that, aside from
spin coupling, are reached via the same orbital transitions. In the
zero-order MO description such states would have the same en-
ergy but molecules in practical use range from almost vanishing
gaps between the first singlet and triplet excited states capable
of delayed fluorescence2,22 to cases where the singlet is twice
the triplet energy to be used for singlet fission.23–25 Some rules
exist, e.g. minimising the spatial overlap between the highest
occupied MO (HOMO) and the lowest unoccupied MO (LUMO)
for delayed fluorescence1,22 and to exploit diradical character in
the ground state26 or aromaticity in the triplet state27 for singlet
fission but a more comprehensive theoretical framework is not
available and unwanted side-effects are hard to exclude.28 More
specific cases of the breakdown of the MO picture are concerned
with exciton correlation in conjugated polymers.29–31 A further
long known,32,33 but often neglected, problem is the differenti-
ation between ionic and covalent states in hydrocarbons, which
emerges in a valence-bond description but is hard to do within
the MO picture.34–36 But the limitations of the MO picture also
surface in day-to-day work, e.g. when pondering why the HOMO-
LUMO transition does not always give rise to the lowest excited
state of a molecule.

A deeper understanding of excited-state energies could also
have huge implications on the application and design of new
computational excited-state methods. It is striking that al-
ready simple HOMO-LUMO transitions in conjugated hydrocar-
bons can be detrimental to, both, time-dependent density func-
tional theory37–40 and multi-reference based wavefunction de-
scriptions.41–45 More problems come into play for charge-transfer
states,46 correlated excitons,47,48 and states with enhanced or-
bital relaxation.49 Furthermore, striking differences are found
between the descriptions of singlet and triplet states within
TDDFT50,51 and the Bethe-Salpeter equation (BSE).52 In all these
cases it is difficult to understand the problem from the orbitals
alone. It is common to use the blanket term “electron correla-
tion” for everything that does not fit the picture but that hardly
provides constructive insight.

A number of wavefunction analysis techniques have been de-
veloped for categorising excited states in a rigorous way and for
automating the analysis process. Aside from basic visualisation
techniques,53–55 a significant effort has been spent in designing
quantitative descriptors measuring a variety of properties such
as charge-transfer,56–60 double excitation character,55,61,62 and

Fig. 1 Molecules investigated in this work: (a) uracil, (b) polyacenes
(n=2,...,5), and (c) octatetraene. For uracil, the IUPAC numbering
scheme as well as the fragmentation scheme used in the wavefunction
analysis are shown.

entanglement.63–66 A particular effort has been devoted to the
task of visualising excited-state correlations using either corre-
lation plots67–72 or a newly developed technique for visualising
correlation effects in real space.36 The availability of the tools dis-
cussed above can have a substantial impact on applied studies not
only through quantifying excited-state character9,73,74 but also
through providing new insight into intricate wavefunction prop-
erties that would otherwise be hard to come by.31,75 However,
so far wavefunction analysis is usually restricted to characterising
excited states within pre-existing models based mostly on the MO
picture. It is the purpose of this Perspective to investigate whether
we can use the same approach, a detailed and quantitative anal-
ysis of electronic wavefunctions, to derive new qualitative insight
into excitation energies. Can we derive design principles for tun-
ing molecular excitation energies that truly go beyond the MO
picture?

The strategy employed here is to, first, obtain a comprehensive
understanding of the physics governing the energy of a correlated
electron-hole pair using the language of and insights from mod-
ern quantum chemistry. Doing so, we identify two main inter-
action terms, the exchange repulsion and dynamic Coulomb at-
traction while also discussing two additional terms encountered
in practical computations, secondary orbital relaxation and de-
excitations. It is discussed in detail under what circumstances
these terms are expected to play a role and which experimentally
observed phenomena are based on them. Subsequently, we show
how to reconstruct these contributions from realistic excited-state
computations using a variety of quantum chemistry methods.

The article is structured as follows. In Sec. 2 we to discuss the
theory describing the physics of a correlated electron-hole pair in
some detail to show how one can move from a general energy
expression in second quantisation to a quite intuitive and mem-
orable form for the different terms. The computational details
are collected in Sec. 3. In Sec. 4 the theory is applied to three
distinct molecular systems as shown in Fig. 1; we discuss the rel-
ative ordering of the singlet and triplet ππ∗ and nπ∗ states of
uracil, exchange splitting in polyacenes of increasing length, and
the emergence of plasmonic states in octatetraene.

2 Theory
The aim of this work is to develop an intuitive but also rigorous
approach for understanding electronic excitation energies. A sim-
ple discussion of orbital energies can be seen as a zeroth order
description of the excitation energy and we want to move to the
first order here. To do so, we analyse the configuration inter-
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action singles (CIS) model. CIS is chosen, not because it is an
accurate method by itself, but because it is the formal starting
point for most excited-state methods used, i.e. the CIS energies
are equivalent to the lowest order coupled cluster (CCS) and al-
gebraic diagrammatic construction (ADC(1)) energies76,77 and
CIS possesses the same formal structure as TDDFT and BSE in
the Tamm-Dancoff approximation.78,79 Therefore, we argue that
CIS captures the main physics of a singly excited state or, in other
words, of a correlated electron-hole pair.

The purpose of this section is to provide a self-contained deriva-
tion of the CIS excitation energy and subsequently reinterpret the
terms occurring as interaction terms of a correlated electron-hole
pair. In this process we will make extended use of Wick’s theo-
rem80 recognizing its recent use in a related context.81 In a sub-
sequent step, we will use a diagrammatic representation82 of the
relevant terms. Finally, we interpret the terms using various den-
sity matrices and recast the terms occurring into pictorial form.
Sec. 2.1 introduces the notation used. In Sec. 2.2, we show how
the CIS energy can be brought into a more memorable form, and
the main results are reviewed in Sec. 2.3. We proceed by dis-
cussing simplifications relevant for a two-orbital model (Sec. 2.4)
and conclude by discussing how to assess the validity of the model
in realistic excited-state computations (Sec. 2.5).

2.1 General Notation

In this work we will denote the ground state wavefunction as
|Ψ0〉 and the excited state wavefunction as |ΨI〉. The excited state
energy is given as

EI = 〈ΨI | Ĥ |ΨI〉 (1)

where the Hamiltonian operator in second quantization is defined
as83

Ĥ = ∑
pq

hpqâ†
pâq + ∑

pqrs
(pq|rs)â†

pâ†
r âsâq (2)

Here, hpq represents a matrix element of the core Hamiltonian,
i.e. the kinetic energy and the electron-nucleus attraction, and â†

p

and âq refer to the creation and annihilation operators pertaining
to molecular orbitals (MOs) φp and φq. The two-electron repul-
sion integrals, written in “charge-cloud” notation, are defined as

(pq|rs) =
∫∫

φp(r1)φq(r1)φr(r2)φs(r2)

r12
dr1dr2. (3)

To characterise the excited state wavefunction, we will make
use of the one-electron transition density matrix (1TDM), which
is given as

γ0I(rh,re) = ∑
pq

γ
0I
pqφp(rh)φq(re) (4)

γ
0I
pq = 〈Ψ0| â†

pâq |ΨI〉 (5)

where the coordinates rh and re are interpreted as the positions
of the excitation hole and the excited electron, respectively.55,57

Note, that we use the symbol γ0I for the 1TDM in real space and
γ0I

pq for its matrix elements with respect to an orthonormal MO
basis. After applying a singular value decomposition, the 1TDM
can be represented in a more compact diagonal form called the

natural transition orbital (NTO)54,71 representation

γ0I(rh,re) = ∑
t

√
λtψ

h
t (rh)ψ

e
t (re). (6)

Here, ψh
t and ψe

t are the NTOs representing the hole and electron
and λt is the amplitude of the transition. Aside from providing
rigorous and compact pictorial representations, the NTO decom-
position provides a natural measure of the multiconfigurational
character of the excited state independently of the orbital repre-
sentation. In the case, of a monoconfigurational state that can
be completely described by a transition between two orbitals, we
have

λ1 = 1 λ2 = λ3 = . . .= 0 (7)

and the 1TDM factorises into a simple product

γ0I(rh,re) = ψ
h(rh)ψ

e(re) (8)

of two, possibly non-orthogonal, orbitals. Conversely, if several
NTO amplitudes are non-vanishing, then the 1TDM will encode
non-trivial correlation and interference effects between the dif-
ferent orbitals. Therefore, the number of non-vanishing NTO am-
plitudes can be seen as a fundamental property of an excited
state65,71,84 giving information about the multiconfigurational
character. We have previously suggested based on heuristic rea-
soning to count the number of configurations via the NTO partic-
ipation ratio71

PRNTO =

[
tr
(
γ0Iγ

T
0I
)]2

tr
(
γ0Iγ

T
0I
)2 =

[∑t λt ]
2

∑t λ 2
t

(9)

which is equivalent65 to the collectivity number defined by
Luzanov and co-workers.84 More formally speaking, we can inter-
pret the multiconfigurational character in terms of entanglement
of the electron and hole quasiparticles, and compute a number of
entangled states

ZHE = 2−∑t λt log2 λt (10)

via the von Neumann entropy.65 Both measures are exactly 1 if
Eq. (7) holds and they are higher for multiconfigurational states.
In the following, we will use PRNTO, considering that this has al-
ready found various applications in the literature75,85–87 despite
its ad hoc nature.

The transition density is defined as the diagonal part of the
1TDM

ρ0I(r) = γ0I(r,r) (11)

It is the function obtained by multiplying the occupied and virtual
orbitals forming the individual excitation contributions. In the
electron-hole picture it corresponds to cases where the electron
and hole are at the same point in space. In addition, we define
the density matrices for the hole and electron as55

γh(rh,r
′
h) =

∫
γ0I(rh,re)γ0I(r′h,re)dre (12)

γe(re,r′e) =
∫

γ0I(rh,re)γ0I(rh,r
′
e)drh (13)
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And their associated densities ρh/e are defined in analogy to
Eq. (11). The hole and electron densities have the intuitive inter-
pretations as the areas in space where the excited electron comes
from and where it goes to. The transition density has no such
simple interpretation but has, nonetheless, crucial implications
on the energetics of an excited state as explored below. In addi-
tion, the transition density is the decisive quantity for determin-
ing how strongly an electronic transition interacts with light, as
determined via its dipole moment, the so-called transition dipole
moment defined as

~µ0I = 〈Ψ0|~x |ΨI〉=
∫

ρ0I(r)~xdr (14)

where ~x is the position operator. Consequently, it affects the re-
lated oscillator strength, given in atomic units as

f =
2∆E

3
|~µ0I |2 (15)

where ∆E = EI−E0 is the excitation energy. Finally, we define the
ground-state density matrix γ0 in analogy to Eq. (5) but setting
I = 0.

In many cases, it is of interest to analyse the two-body function
γ0I(rh,re) in more detail to obtain information about correlations
between the electron and hole quasiparticles. Initially, we have
suggested following others69,84 to do so by computing the charge
transfer numbers

∫

A

∫

B
|γ0I(rh,re)|2dredrh (16)

which measure the mutual probability that the hole is on a frag-
ment A and the electron on fragment B.55 As a more intuitive
route one of us has recently suggested the computation of con-
ditional electron densities.36 For this purpose, the hole is con-
strained to a specific fragment A and the associated conditional
electron density is computed as

ρ
A
e (re) =

∫

A
|γ0I(rh,re)|2drh . (17)

Computing conditional densities for varying fragments allows a
real space representation of correlations betweem the electron
and hole.36

Below, we will show that the CIS energy can be brought into
a memorable and quite intuitive form if it is expressed in terms
of various types of density matrices. For this purpose, we need
to define some more pieces of notation. We use the common
notation

tr(γAM) = ∑
pq

γ
A
pqMpq (18)

to denote the contraction of a one-electron operator represented
by the matrix M with a density matrix γA. In addition, we shall
define a matrix element of an arbitrary operator Ô evaluated with
respect to two density matrices as

〈γA| Ô |γB〉=
∫∫

γA(r,r′)ÔγB(r,r′)drdr′. (19)

In particular, we will encounter matrix elements of the electron

repulsion operator, which are given by

〈γA|r−1
12 |γB〉= ∑

pq
γ

A
pq ∑

rs
γ

B
rs(pr|qs) (20)

In the case of the 1TDM, we use the additional shorthand notation

〈
Ô
〉

ex =
〈γ0I | Ô |γ0I〉

Ω
, (21)

which is interpreted as an expectation value of the effective ex-
citon wavefunction γ0I .57 Here, the denominator is the squared
norm of the exciton wavefunction Ω, evaluated as

Ω = 〈γ0I |γ0I〉= tr
(

γ0Iγ
T
0I

)
= ∑

pq

∣∣∣γ0I
pq

∣∣∣
2
. (22)

Below, we will also encounter expressions of the form∫∫
ρA(r1)r−1

12 ρB(r2)dr1dr2 representing the electrostatic repulsion
between the charge distributions ρA and ρB, which cannot be di-
rectly written using the above notation. Therefore, we rearrange
these terms in the following form

∫∫
ρA(r1)ρB(r2)

r12
dr1dr2 =

∫
ρA(r1)

(∫
ρB(r2)

r12
dr2

)
dr1 =

∫
ρA(r1)V̂ρB(r1)dr1 = 〈ρA| V̂ |ρB〉 . (23)

where V̂ρB(r1) is the electrostatic potential (ESP) induced by
ρB.88 Within this interpretation, the two-body electron-repulsion
integral can be visualised as an overlap between the density of ρA

and the ESP induced by ρB, or vice versa.

2.2 Derivation and representation of the CIS energy

In view of the discussion to follow, we present a self-contained
derivation of the CIS excitation energies, here, and spend some
effort into recasting the results into a memorable and intuitive
form. The main conclusions and their physical implications will
be laid out in Sec. 2.3. Within CIS, the excited-state wavefunction
of state I is given as

|ΨI〉= ∑
ia

Ciaâ†
aâi |Φ0〉 (24)

where |Φ0〉 is the ground state Slater determinant, â†
a and âi

are the creation and annihilation operators, and Cia is the CI-
coefficient. To keep the notation simple, we restrict the CI-
coefficients and orbitals to be real. We use the convention that
indices a,b correspond to the excited electron, i, j to the excitation
hole, k, l to any occupied orbitals, and that p,q,r,s are arbitrary
orbital indices.

Within CIS, the ground state density matrix and the 1TDM are
given as

γ0(r,r′) =
occ

∑
k

φk(r)φk(r
′) (25)

γ0I(rh,re) =
occ

∑
i

virt

∑
a

Ciaφi(rh)φa(re). (26)
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The density matrices for the hole and electron are given as

γ
h
i j =

virt

∑
a

CiaC ja (27)

γ
e
ab =

occ

∑
i

CiaCib (28)

In addition, we will encounter the Fock matrix, whose matrix el-
ements are defined83 in a spin-orbital basis of Hartree-Fock MOs
as

Fpq = hpq +
occ

∑
k
[(pq|kk)− (pk|kq)] (29)

For canonical MOs, the Fock matrix is diagonal with elements

Fpq = εpδpq (30)

where εp is the energy of the MO φp.

Using these basic expressions we now proceed by evaluating
the excitation energy by inserting Eqs (2) and (24) into Eq. (1).

EI = ∑
ia jb

CiaC jb ∑
pq

hpq 〈Φ0| â†
i âaâ†

pâqâ†
bâ j |Φ0〉+

∑
ia jb

CiaC jb ∑
pqrs

(pq|rs)〈Φ0| â†
i âaâ†

pâ†
r âsâqâ†

bâ j |Φ0〉 (31)

At a first glance this equation looks quite daunting contain-
ing up to eightfold summations. However, by applying cre-
ation/annihilation operator algebra and re-expressing the results
in terms of density matrices the equation can be brought into a
memorable and physically intuitive form. When viewing Eq. (31),
we first realise that it is not possible to obtain a non-vanishing re-
sult unless all the creation and annihilation operators are paired
considering that they have to map the ground state determi-
nant onto itself. This observation can be formalised via Wick’s
theorem80 and the task of pairing up the operators can be un-
derstood as finding the non-zero contractions between them.82

These contractions are given in Fig. 2 showing that there are three
1-electron terms and fourteen 2-electron terms to consider.

Fig. 2 shows the non-vanishing terms in a compact fashion but
it is hard to argue that this representation is much more intuitive
than the initial equation (39). Therefore, we suggest proceeding
via a diagrammatic82 formalism. To do so, we first define symbols
for the four components of Eq. (31) as shown in Fig. 3, the bra
state (a), the ket state (b), the one-electron (c) and two-electron
(d) parts of the Hamiltonian. In Fig. 3 (d), the left node corre-
sponds to the first electron and the right node to the second, and
if the electrons are written in charge-cloud notation according to
Eq. (3), then we can directly insert the indices from the two nodes
into the two sides of the two-electron integral. Having defined the
diagrammatic representation, the task of finding all non-zero con-
tractions corresponds to connecting all the arrows of the building
blocks in Fig. 3. From these diagrams, we will subsequently be
able to evaluate Eq. (39) by multiplying the relevant coefficients
and matrix elements before summing over all the indices. In ad-
dition, the sign of the term is determined by the question whether

1-Electron 2-Electron

(a) (b) (c)

â†i âaâ
†
pâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj

(d) (e) (f)

â†i âaâ
†
pâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj

â†i âaâ
†
pâ

†
râsâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj

(g) (h) (i)

â†i âaâ
†
pâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj

â†i âaâ
†
pâ

†
râsâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj

(j) (k)

â†i âaâ
†
pâ

†
râsâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj

â†i âaâ
†
pâ

†
râsâq â

†
bâj â†i âaâ

†
pâ

†
râsâq â

†
bâj

Fig. 2 Non-vanishing contractions of creation and annihilation operators
giving rise to the CIS energy. The excitation hole and excited electron are
marked in red and blue, respectively. The rows show the contributions of
(a-c) the ground state, (d-f) the excitation hole, (g-i) the excited electron,
and (j-k) the dynamical interactions between hole and electron.
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the sum of the number of hole lines and loops is an even or odd
number.82

(a) (b) (c) (d)

a i

jb ×
q

p

q

p

s

r

Cia 〈Φ0| â†i âa Cjbâ
†
bâj |Φ0〉 hpq â†pâq

1
2 (pq|rs)â†pâ†râsâq

Fig. 3 Building blocks used to represent Eq. (31) in a diagrammatic
form; (a) the bra state, (b) ket state, (c) the one-electron and (d) the two-
electron contributions. The excitation hole is marked in red, the excited
electron in blue, and the Coulomb interaction in green.

In Fig. 2 (a-c), we have generally matched the â†
i and â j as well

as the âa and â†
b indices. The analogous diagrams are constructed

in Fig. 4 (a-c) by connecting the bra and ket building blocks given
in Fig. 3 (a) and (b) via the red and blue lines. This generally
leads to a term ∑ia |Cia|2 = 1, which cancels out for normalised
wavefunctions. Thus, in Fig. 4 (a) only the one-electron Hamilto-
nian remains and we are left with the term

∑
ia
|Cia|2

occ

∑
k

hkk = tr(γ0h) (32)

which we have rewritten as the trace of the the ground-state den-
sity matrix γ0 with the one-electron Hamiltonian h according to
Eqs (18) and (25). The next term (b) is evaluated as

1
2 ∑

kl
(kk|ll) = 1

2
〈ρ0| V̂ |ρ0〉 (33)

where we have used Eq (23). The ground state density ρ0 enters
according to Eq. (25) considering that the indices k and l are both
only on their respective side. There are three loops and three hole
lines (i,k, l), which adds up to an even number meaning82 that
the term enters with a positive sign. Term (b) has a clear physi-
cal interpretation – it is the electrostatic repulsion of the ground
state density with respect to itself, the so-called Hartree term. In
line with Eq. (23), we visualise it by plotting the density along
with the ESP realising that the value of 〈ρ0| V̂ |ρ0〉 is given as the
overlap between the two charge distributions.89 Fig. 4 (c) is an
exchange contribution given as

− 1
2 ∑

kl
(kl|lk) =−1

2
〈γ0|r−1

12 |γ0〉 . (34)

This term possesses a negative sign considering that the diagram
contains two loops and three hole lines. Unlike term (b), this term
has no intuitive interpretation. It is a non-local interaction involv-
ing the density matrices. Nonetheless, we can appreciate that the
terms (b) and (c) both contain integrals of the form (kk|kk) with
opposite signs and that these are therefore cancelled between
them. These terms would require a spin-orbital φk to be doubly
occupied and are thus in violation of the Pauli exclusion principle.
Thus, we can see that a major role of the exchange term (c) is the
cancellation of the exclusion-principle violating (EPV) terms.82 In
other words, the non-local exchange term in Hartree-Fock theory
naturally cancels out the self-interaction error. Conversely, it is
one of the major challenges in density functional theory to do so

with only local information.90

The combination of terms (a-c) yields the Hartree-Fock ground
state energy

E0 = tr(γ0h)+
1
2
〈ρ0| V̂ |ρ0〉−

1
2
〈γ0|r−1

12 |γ0〉 . (35)

To summarise, the ground state energy is composed of a one-
electron term representing the kinetic energy and the electron-
nuclear attraction, the Hartree term, which is the self-repulsion
of the density, and a non-local exchange term.

Next, we consider the terms (d-f). These are obtained by con-
tracting the âa and â†

b operators in Fig. 2 (d-f) and, accordingly,
by connecting the electron lines (blue) of the bra and ket states
in Fig. 4 (d-f). All five possible terms are shown in Fig. 2 (d-
f) while only the three diagrams that are unique with respect to
an interchange of the electrons are shown in in Fig. 4 (d-f). In
the diagrams, we see that the lines pertaining to the excitation
hole (red) interact with the operator, and algebraically this is rep-
resented by the term ∑a CiaC ja, which we identify with the hole
density matrix γh according to Eq. (27). Furthermore, we find that
the second row in Fig. 4 has exactly the same form as the first row
with the exception of a replacement γ0 → γh or ρ0 → ρh. These
terms are interpreted as the one-electron energy of the hole (d),
its Coulomb repulsion with respect to the ground state density
(e), and its exchange energy with the ground state (f). Note that
these terms have opposite signs with respect to Fig. 4 (a-c), i.e.
it is energetically favourable if the hole has a large one-electron
energy and strong repulsion with the ground state. The Coulomb
attraction between ρh and ρ0 is represented in Fig. 4 (e) via the
hole density and the ground-state ESP. It is favourable to form the
hole in an area of negative (blue) rather than positive (red) ESP.
Panel (f) represents a non-local exchange term that cannot be
immediately put into a pictorial representation. However, it can
be appreciated that the hole is generally part of the ground-state
density. Therefore, we can assume that the dominant term is the
self-interaction of the hole density 〈ρh| V̂ |ρh〉 unless non-trivial
correlation effects play a role and we use this term in the picto-
rial representation of Fig. 4 (f). In combination, the three terms
in (d-f) reflect the definition of the Fock matrix in Eq. (29) and
we can rewrite them in more compact form as − tr(γhF), which
according to Eq. (30) is also equivalent to a weighted sum over
orbital energies −∑ia |Cia|2εi.

The energy of the excited electron is shown in Fig. 4 (g-i).
There is a close analogy to the terms related to the hole with
the exception that the signs are reversed. The combination of
the terms (g-i) yields, again, a weighted sum of the orbital ener-
gies εi or equivalently a contraction of the Fock matrix Fi j with
the electron density matrix. However, the crucial difference be-
tween the hole and the electron is that that the electron interacts
with the full ground-state density as shown in Fig. 4 (h) whereas
the hole only interacts with n− 1 electrons considering that its
self-interaction is cancelled in term (f). Consequently, HOMO
and LUMO energies in Hartree-Fock theory are estimates of the
ionisation potential (IP) and electron affinity (EA) according to
Koopmans’ theorem. The HOMO-LUMO gap is a good guess for
the fundamental gap of the system but it is not a good guess of
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1-Electron Coulomb Exchange Combined
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Fig. 4 Diagrammatic representation of the CIS excitation energies. The columns show the one-electron, Coulomb and exchange contributions as well
as their combined interpretation. The rows show the contributions of (a-c) the ground state, (d-f) the excitation hole, (g-i) the excited electron, and
(j-k) the dynamical interactions between hole and electron. Each individual panel features diagrammatic and algebraic representations. Here, i and j
refer to the excitation hole, a and b to the excited electron, and k and l to arbitrary doubly occupied orbitals in the ground state. If possible, a pictorial
representation is given of a Coulomb interaction between two partial densities where the electrostatic potential (V̂ ) is shown for one of the densities.
Only approximate pictorial representations can be given for the exchange terms and it is discussed in the main text under which conditions they are
valid.

the excitation energy91 due to the importance of the electron-
hole Coulomb attraction, i.e. term (k) to be discussed below. Fi-
nally, we note that terms (g-i) are analogous to the first order
diagrammatic representation of the electron propagator within
Hartree-Fock theory (sometimes denoted the cross, tadpole and
oyster).92

In the final row of Fig. 4, marking the interactions between
electron and hole, there are no one-electron terms but two two-
electron terms are present deriving from the Coulomb (j) and ex-
change (k) potential of Hartree-Fock theory. Interestingly term
(j) has exchange-like properties while (k) is seen as a Coulomb

interaction,91 as explored in more detail below. It should also be
noted that the first-order diagrammatic description of the polari-
sation propagator92 is composed of two diagrams that are anal-
ogous to terms (j) and (k) illustrating the equivalence of ADC(1)
for the polarisation propagator and CIS.

Term (j), given as 〈ρ0I | V̂ |ρ0I〉, is a repulsive term and can be
represented graphically as the repulsion of the transition density
with respect to itself. This term vanishes for triplet states while it
generally raises the energy of singlet states. The final term (k) de-
rives from the Hartree-Fock exchange potential and can be identi-
fied with the Coulomb binding energy of the correlated electron-
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hole pair.48,93 The term is given as 〈γ0I |r−1
12 |γ0I〉 and assuming

that the wavefunction is normalised, we can rewrite it according
to Eq. (21) as an expectation value of the exciton wavefunction
with respect to the inverse electron hole distance

〈
r−1

12

〉
ex

. It is,

thus, closely related to two of our previously defined descriptors,
the linear and root-mean-square electron-hole separations94

dh→e = 〈r12〉ex (36)

dexc =
√〈

r2
12
〉

ex , (37)

and we will use those quantities to estimate the magnitude of the
Coulomb interaction. In addition, we have previously defined a
related dimensionless quantity, the electron-hole correlation coef-
ficient Rhe.94 Rhe takes values between -1 and 1, where a positive
value means that the electron and hole dynamically attract each
other while a negative value means dynamical avoidance. In the
present context, we can understand this value in the sense that
in the case of a positive Rhe value there is a dynamic enhance-
ment of the Coulomb attraction but also of exchange repulsion.
In large molecules, we can find positive correlation coefficients
well above 0.548,65 indicating that long-range Coulomb attrac-
tion dominates whereas in small molecules some slightly negative
Rhe values are encountered65,75 if exchange repulsion dominates.
It is also worth pointing out that the correlation coefficient Rhe

has to vanish if PRNTO is exactly 194 highlighting the connection
between spatial correlation and multiconfigurational character.

Coulomb Exchange

(a) (b)

i bj

Xia Yjb

a i j

Xia Yjb

ab∑

abij

XiaYjb(ai|bj) −
∑

abij

XiaYjb(bi|aj)

Fig. 5 Diagrammatic representation of the coupling of the excitation (Xia)
and de-excitation (Y jb) amplitudes in time-dependent Hartree-Fock theory
and hybrid TDDFT.

In light of the discussion to follow, we also want to briefly
sketch how to extend the CIS model to include de-excitations
via the time-dependent Hartree-Fock (TDHF) method.91 Within
TDHF the CI vector Cia is replaced by the excitation (Xia) and de-
excitation (Yia) vectors. On the diagonal blocks, excitations and
de-excitations experience the same contributions already shown
in Fig. 4. Two additional two-body terms come into play for cou-
pling excitations and de-excitations. A possible diagrammatic rep-
resentation of these terms, achieved by placing the Xia and Yia

both on the formal ket side of the diagram, is presented in Fig. 5.
We find that the first term, shown in Fig. 5 (a) possesses the same
structure as the transition density repulsion [Fig. 4 (j)] with the
exception that the Cia and C jb terms are replaced by Xia and Y jb.
However, the second term (b) does not resemble Fig. 4 (k) but
it is a new type of interaction where the excitation hole is con-
nected with the de-excited electron and vice versa. This term

originates from non-local exchange91 and occurs within TDDFT
only through hybrid functionals.

Given four orbital indices a,b, i, j, it is generally possible to
construct three different two-electron integrals as we have three
choices to pair any given index with another one. The first op-
tion, pairing the indices belonging to the bra and ket states, yields
the transition-density-type integral (ai|b j) found for the diagonal
terms [Fig. 4 (j)] as well as for the coupling [Fig. 5 (a)]. The
second option, pairing the holes and electrons, gives a Coulomb
integral (i j|ab) found only in the diagonal terms [Fig. 4 (k)].
The third option gives a mixed transition-density-type integral
(bi|a j) only contributing to the coupling. In summary, we con-
clude that the coupling between excitations and de-excitations
is mediated via transition-density-type integrals and we can as-
sume that there is a relation between the transition density self-
repulsion 〈ρ0I | V̂ |ρ0I〉 and the coupling between excitations and
de-excitations.

2.3 The energy of a correlated electron-hole pair

Having derived the individual terms contributing to the CIS en-
ergy, we can now proceed to use this information for a physical
interpretation. First, we can combine the three terms on the right
column of Fig. 4 with the terms (j) and (k) to write the CIS exci-
tation energy (∆E = EI−E0) in close analogy to the Hartree-Fock
ground state energy [Eq. (35)] as

∆E = tr((γe− γh)F)+ 〈ρ0I | V̂ |ρ0I〉−〈γ0I |r−1
12 |γ0I〉 . (38)

where γe − γh is the (unrelaxed) CIS difference density matrix.
Alternatively, the MO energies can be inserted

∆E = ∑
ia
|Cia|2(εa− εi)+ 〈ρ0I | V̂ |ρ0I〉−〈γ0I |r−1

12 |γ0I〉 . (39)

Thus, the final result is a sum of MO energies and two contri-
butions going beyond that, which can be seen as excited-state
versions of the Hartree and exchange energies.95

It is worth pointing out here that γh, γe, and ρ0I are all di-
rectly computed from the 1TDM γ0I . Thus, the 1TDM can be
seen as the fundamental quantity determining the energy of the
correlated electron-hole pair.96 By contrast, the difference den-
sity matrix only covers the first term in Eq. (38) rigorously and
gives no indication of exchange repulsion or any dynamic ef-
fects related to Coulomb attraction. From this discussion it also
follows that two states reached via the same orbital transitions
and, thus, also possessing the same excited-state densities may
well differ in their energies as long as at least one of the terms
〈ρ0I | V̂ |ρ0I〉 or 〈γ0I |r−1

12 |γ0I〉 is different among the states. In these
cases the relative signs of the different transitions carry the cru-
cial information as is the case, e.g., for the difference between
singlet and triplet states, between excitonic and charge-resonance
states,71,97 and between the ionic and covalent states of alternant
hydrocarbons.32–34,36

Both of the extra terms in Eq. (38) have clear physical inter-
pretations and important consequences on observed molecular
properties. The first term 〈ρ0I | V̂ |ρ0I〉 is the primary reason for
the "exchange splitting" between singlet and triplet excited states

8 | 1–22Journal Name, [year], [vol.],



and the main handle one has for tuning their relative energies. It
is generally large if there is a large spatial overlap between the
involved orbitals and it becomes small if the orbitals are sepa-
rated in space or if their overlap is minimised through a twisted
molecular geometry.2,22 It is affected by the interference between
different orbital excitations, and we shall explore below that this
term is also affected by the involvement of σ -orbitals. The tran-
sition density repulsion is also at the foundation of Förster cou-
pling,98 and the energy of plasmonic states depends strongly on
this term.99,100

It is interesting to note that the exchange splitting has a re-
lation to the transition moment defined in Eq. (14) considering
that both quantities depend on the transition density. It imme-
diately follows that both terms vanish if the transition density
vanishes, as is the case for triplet states and CT states between
chromophores that are completely separated in space. More gen-
erally, there is a correlation between these two terms as a charge
distribution with a strong dipole moment tends to also induce a
larger electrostatic potential. This leads to the general rule that
there is an energetic penalty for bright states, which holds in the
cases of singlet vs triplet states, ππ∗ vs nπ∗ states, and locally ex-
cited vs CT states, as we shall explore in some more detail below.

The final term 〈γ0I |r−1
12 |γ0I〉 is interpreted as the Coulomb bind-

ing energy of the electron-hole pair48,93 and is, in general, a non-
trivial correlated term. It is responsible for the difference between
the energies of Frenkel excitons and charge resonance states in
dimers71,97 as well as for the energies of different exciton bands
in conjugated polymers.31 The underlying correlations can be vi-
sualised with the help of pseudocolor plots of the 1TDM69,71 or
via conditional densities.36

Finally, we shall compare the energy of the electron-hole pair
as derived above with the related expressions obtained by TDDFT
and GW/BSE. Both, the TDDFT and GW/BSE methods include
the 〈ρ0I | V̂ |ρ0I〉 term in unaltered form.79,91,101 By contrast, the
〈γ0I |r−1

12 |γ0I〉 term is not included at all in typical linear-response
TDDFT computations with approximate local functionals. The
absence of this term is at the heart of the infamous charge-
transfer problem of TDDFT46 and its related problems for large
molecules37,38 and, specifically, conjugated polymers.47,48 To
overcome this problem, it is common practice to include Hartree-
Fock exchange in the computation via a hybrid functional. How-
ever, it is well-established that good results are generally not ob-
tained by including the full amount of “exact exchange” but only
a fraction cHF of it. Thus, the Coulomb interaction is replaced by
the term

− cHF 〈γ0I |
1

r12
|γ0I〉=−〈γ0I |

1
ε

1
r12
|γ0I〉 . (40)

On the left-hand-side the multiplication by cHF is shown explic-
itly while on the right-hand-side, this is interpreted as an effec-
tive dielectric constant of magnitude ε = 1/cHF uniformly screen-
ing the Coulomb interaction within the molecule. Improved re-
sults are obtained by attenuating the Coulomb interaction in a
non-uniform way102 within a range separated functional. For ex-
ample, the CAM-B3LYP functional,102 approximates the electron-

hole interaction as

−〈γ0I |
α +βerf(µr12)

r12
|γ0I〉 (41)

where α, β , and µ are parameters. In the GW/BSE method, a
somewhat different approach is used and the electron-hole inter-
action is described by the name-giving screened Coulomb inter-
action W .78 Various schemes for constructing W have been sug-
gested, e.g. the plasmon-pole103 or random phase approxima-
tions.104 Conversely, wavefunction based methods have to incor-
porate the same physics of a screened electron-hole interaction
via orbital relaxation49,105 or dynamic correlation effects.

2.4 Simplifications for a two-orbital model

The equations shown can be simplified in the case that only two
spatial orbital are involved, i.e. in the case of a two-orbital two-
electron model (TOTEM).95 This two-orbital case may be imme-
diately apparent when looking at the excitation vector in terms of
canonical orbitals, e.g. for a plain HOMO-LUMO transition. But,
we want to use the more general condition here that the 1TDM
can be decomposed into one single pair of NTOs ψh/ψe accord-
ing to Eq. (8). Using these orbitals, the spin-adapted singlet and
triplet states are constructed according to

∣∣∣ΨS/T

〉
=

1√
2

(
â†

eα âhα ± â†
eβ

âhβ

)
|Φ0〉 (42)

where the + refers to singlet and the – to triplet. â†
eα and âhα are

the creation and annihilation operators referring to the two NTOs
and acting on the respective spin-orbital. The equations for the
singlet and triplet excitation energies are readily constructed as95

∆ES = εe− εh +2(he|eh)− (hh|ee)

= εe− εh + 〈ρ0I | V̂ |ρ0I〉−〈ρh| V̂ |ρe〉
(43)

∆ET = εe− εh− (hh|ee) = εe− εh−〈ρh| V̂ |ρe〉 . (44)

Thus, in the case of a two-orbital model, the correlated interac-
tion term 〈γ0I |r−1

12 |γ0I〉 is replaced by the static Coulomb attraction
〈ρh| V̂ |ρe〉 between the electron and hole densities. This approxi-
mation is indicated pictorially in Fig. 4 (k).

It is interesting to discuss Eqs (43) and (44) in the context of
charge transfer states, i.e. states where the hole and electron are
separated in space. First, if the spatial overlap between ψh and
ψe is small, it follows that ρ0I becomes small everywhere in space
and as a consequence the term 〈ρ0I | V̂ |ρ0I〉 is small. As a con-
sequence the singlet and triplet energies become approximately
equal. Second, as discussed above, within Hartree-Fock, we can
identify the orbital energies with the EA and IP of the system ac-
cording to εe ≈ EA and −εh ≈ IP. Third, for well-separated charge
transfer states, we can approximate the hole and particle densities
as point charges separated by a distance d, and their interaction
becomes 〈ρh| V̂ |ρe〉≈ 1/d. Under these assumptions the excitation
energies can be written as91

∆ES ≈ ∆ET ≈ EA+ IP− 1
d
, (45)
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i.e. the sum of electron affinity and ionisation potential minus
a distance dependent exciton binding term. In practice, we can
use the values dh→e and dexc as defined in Eqs (36) and (37) to
estimate the distance d.57

Finally, a word on the performance of linear-response TDDFT
is in order. If local functionals are used, the equations become
even simpler because the (hh|ee) term disappears from Eqs (43)
and (44), and is replaced by an alternative term deriving from
the local exchange-correlation potential91 that is usually smaller.
At first sight this may appear like a gross negligence introducing
errors on the order of several eV in small molecules. However, it
is the magic of TDDFT that a similar term is incorporated into the
orbital energies, in particular through neglect of the (hh|hh) term
of Fig. 4 (f) and more generally, we can hope that the terms (f),
(i), and (k) cancel out approximately. Thus, we are left with the
situation that TDDFT with approximate local functionals when
applied to two-orbital valence excitations of small molecules does
not only provide good excitation energies but that already the or-
bital energy differences themselves are good approximations to
the excitation energies.91,106 Conversely, it has to be pointed out
that within DFT the HOMO energy is an approximation to the IP
only for the exact functional,107 but is usually grossly underes-
timated with standard functionals,106 and that within DFT the
LUMO energy is never an approximation to the EA. It is, there-
fore, important to stress the difference between the meaning of
orbital energies between Hartree-Fock and DFT. Within Hartree-
Fock, the orbital energies approximate the IP and EA but their
difference is usually a bad guess for the excitation energy. DFT
orbital energies, on the other hand, are a good approximation for
the optical gaps but should not be used to represent the IP and
EA.

2.5 Classification of excited states and validity of the models

In the above sections, we have spent some effort in trying to
present an intuitive and memorable model for the CIS excitation
energies. However, the objective was not to understand the CIS
model as such, but to provide general expressions determining
the energy of a correlated electron-hole pair. In this section, we
will therefore consider different descriptors applicable to high-
level quantum chemistry computations that indicate whether the
applied model is valid and whether the simplified two-orbital
model of Sec. 2.4 is even applicable. In addition, we will identify
two phenomena beyond the CIS model: secondary orbital relax-
ation and de-excitations. To this end, we use three previously de-
fined descriptors, the single-excitation character Ω,55,61 the nat-
ural transition orbital participation ratio PRNTO,65,71,84 and the
promotion number p.53,55 Finally, we introduce a new descriptor,
the expectation value Phe of the electron-hole permutation oper-
ator. These four descriptors rely entirely on the eigenvalues and
singular values of the density matrices and do not include any
information about shape or the spatial distribution.

The single-excitation character Ω has already been defined in
Eq. (22). The value of Ω is exactly 1 in the case of CIS and we
can, thus, assume that the approximate CIS picture holds when
Ω ≈ 1 in the sense that the excited state is generated as a linear

combination of single excitations from the ground state. Singly
excited states computed by correlated ab initio methods are typ-
ically described by Ω values above 0.8 and we can use this as
a threshold for the validity of the model. In principle, it is also
possible to obtain Ω values larger than 1 if a ground state with
several open shells is considered108 but this seems to be only a
curiosity.

To measure the multiconfigurational character of the excited
state, we use the PRNTO value defined in Eq. (9), which gives the
number of configurations involved in the excited state. Whereas,
the Ω value specifies whether the CIS model is applicable at all,
PRNTO specifies whether the simplified two-orbital model of Sec-
tion 2.4 is applicable.

To quantify the number of electrons moved during the exci-
tation process, we compute the promotion number p, which is
defined as the spatial integral over the attachment or detachment
density53,55 In the case of CIS, the value of p exactly 1 and for cor-
related calculations one usually obtains larger values.49,55,105,109

Finally, we want to suggest a new descriptor denoted Phe. It is
known that the 1TDM in the case of CIS is nilpotent,84 i.e. that

γ0Iγ0I = 0 (46)

where the equation is to be interpreted as a matrix multiplication.
We will, therefore, use the non-nilpotency of the 1TDM as an
additional measure for the deviations from CIS. This is analogous
to the widely used practice of considering the non-idempotency
(or non-duodempotency) of the ground state density matrix to
measure deviations from Hartree-Fock theory and, thus, unpaired
electrons.110–115 To put the equation into a memorable form, we
introduce the electron-hole permutation operator Phe, which by
acting on the 1TDM exchanges the coordinates of the hole and
electron, i.e.

Pheγ0I(rh,re) = γ0I(re,rh) = ∑
pq

γ
0I
pqφp(re)φq(rh). (47)

By inserting Eq. (47) into Eq. (21), we find that the expectation
value of the electron-hole permutation operator is

Phe = 〈Phe〉ex =
tr(γ0Iγ0I)

Ω
, (48)

which naturally measures deviations from nilpotency as defined
in Eq. (46). Note that Eq. (48) is closely related to the definition
of Ω via Eq. (22). By application of the Cauchy-Schwarz inequal-
ity, we find that

−1≤ Phe ≤ 1. (49)

The value of Phe is zero for CIS while it may deviate for any wave-
function method that employs a correlated ground state. It is
zero for TDDFT in the Tamm-Dancoff approximation. In case of
full TDDFT, the response vector is divided into an excitation part
Xia and a de-excitation part Yia,91 and the 1TDM can be written
as116

γ0I(rh,re) =
occ

∑
i

virt

∑
a
[Xiaφi(rh)φa(re)+Yiaφa(rh)φi(re)] (50)

This 1TDM will produce a non-vanishing expectation value with
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respect to Phe whenever there are excitations and de-excitations
involving the same pair of orbitals and the value of Phe in the case
of TDDFT is given as

Phe =
∑ia XiaYia

||X||2 + ||Y||2 (51)

We, therefore, propose Phe as a measure for the de-excitation char-
acter. Its value for TDDFT is given by Eq. (51) while it is well-
defined for any method that produces a 1TDM. We shall explore
below whether similar values are obtained for TDDFT and wave-
function based methods. To finish, we want to point out that
a similar measure of particle-hole parity was considered in Ref.
117 only that the interpretation was somewhat different due to
the explicit enforcement of particle-hole symmetry. We also want
to point the reader to a discussion of de-excitations in Ref. 118.

In summary, we can use the four descriptors Ω, PRNTO, p, and
Phe to classify excited states as shown in Table 1. If the Ω and
PRNTO values are close to one, then we have a simple orbital-to-
orbital transition according to Eq. (42) and the simplified rela-
tions in Section 2.4 are valid. This category usually encompasses
the nπ∗ states of organic molecules. It also applies to a certain
subset of ππ∗ states, most notably the La states119 of aromatic
systems and HOMO-LUMO transitions in push-pull aromatic sys-
tems. If Ω is still close to 1 but the PRNTO value is significantly
larger than one, then the CIS picture still holds but it is gener-
ally not possible to understand a state in a two-orbital picture. In
such a case non-trivial interference effects come into play, which
can be interpreted in terms of electron correlation,120 and it is
necessary to use the full model of Eq. (39). Larger PRNTO val-
ues are obtained for the Lb states of aromatic molecules and for
other states that are reached via quasi-degenerate orbital transi-
tions.65,75 PRNTO values larger than one are also found for cou-
pled chromophores71,121 where the relative signs of the configu-
rations allow to differentiate between excitonic and charge reso-
nance states,97 as well as for conjugated polymers showing long-
range excitonic correlation.31,65,94 A third class of excited states
are characterised by Ω values significantly below 1, and these are
identified as multiply excited states55,94,105 making the presented
model invalid. A fourth class is observed for cases where the Ω

value is still reasonably close to 1 but p is significantly larger.
These can still seen be as singly excited states only that secondary
orbitals are rearranged in the process.49,105,109 The model pre-
sented here should be valid only that the orbital relaxation could
be seen as a charge screening effect. Larger p values are often ob-
served for nπ∗ states105 and charge transfer states, particularly in
transition metal complexes.49 Methodologically speaking, states
with larger p values require additional flexibility in the wavefunc-
tion description but it might suffice to use an orbital-optimised
version of the CIS method122 rather than a truly dynamically
correlated method. The final class of states, identified by non-
vanishing Phe values, corresponds to states with significant de-
excitation character. We do not have experience regarding this
value but following Refs 50,51, we can posit that this quantity
is more important for triplet than for singlet states, and that it
depends on non-local exchange.

Table 1 Classification of excited states according to the single-excitation
character Ω, the NTO participation ratio PRNTO, the promotion number p,
and the expectation value of the electron-hole permutation operator Phe.

Condition Classification
Ω≈ 1, PRNTO ≈ 1 Simple orbital-to-orbital transition
Ω≈ 1, PRNTO > 1.2 Correlated singly excited state
Ω < 0.8 Multiply excited state
Ω≈ 1, p > 1.2 State with orbital relaxation
|Phe|> 0.2 State with de-excitations

3 Computational Details
The molecular geometries of uracil and the polyacenes were opti-
mised at the PBEh-3c level of theory.123 The geometry of octate-
traene was taken from Ref. 100. Excited state computations on
uracil were performed at the ADC(2)76,124 and TDDFT/PBE0125

levels of theory both using the def2-SV(P) basis set126 as well as
at the complete active space self-consistent field (CASSCF) level
of theory placing 10 electrons in 7 active orbitals (1×n,4×π,2×
π∗), individually averaging over 3 singlet and 3 triplet states, and
using the def2-SVP basis set. Computations on the polyacenes
used the ADC(2) method in connection with the aug-cc-pVDZ ba-
sis set127 following a previous study that highlighted the impor-
tance of diffuse basis functions in the description.109 The com-
putation of conditional densities for anthracene was performed
using only the def2-SV(P) basis set to avoid linear dependencies.
Excited states of octatetraene were computed at the CIS/aug-
cc-pVTZ level.127 ADC, TDDFT and CIS computations were per-
formed with a developmental version of Q-Chem 5.2128 while
CASSCF computations were done in OpenMolcas.129,130 Wave-
function analysis, as described in detail in the previous section,
was performed via the libwfa library131 using its interfaces to
Q-Chem55 as well as OpenMolcas.109 Molecular geometries and
input/output files of Q-Chem and OpenMolcas are provided via a
separate repository.132

The (transition) density matrices of the ADC calculations were
computed via correlated intermediate states.76,133 This proce-
dure automatically provides non-trivial values for the the de-
excitation character Phe and the promotion number p. In the case
of TDDFT, we used full TDDFT rather than the Tamm-Dancoff
approximation to obtain non-vanishing Phe values according to
Eq. (51). Non-trivial promotion numbers were obtained with
TDDFT after solving the Z-vector equation134 following related
previous work.58,135 The charge transfer measures dh→e and dexc

were computed using matrix operations employing the matrix
representations of the dipole and quadrupole operators.94 The
〈ρ0I | V̂ |ρ0I〉 values were computed in a semi-numerical fashion by
performing a numerical integration over the transition density ρ0I

multiplied with the analytically computed ESP V̂ρ0I . A fully an-
alytical evaluation of 〈ρ0I | V̂ |ρ0I〉 and 〈γ0I |r−1

12 |γ0I〉 is possible, in
principle, but out of the scope of this work. Densities and ESPs
were computed directly in Q-Chem with the exception of the con-
ditional densities, which were computed via TheoDORE136 and
orbkit137. Plotting of densities and ESPs was carried out using
PyMOL 1.8138 with the help of the external qc_pymol toolkit.139

The tikz-feynman package140 was used for plotting the diagrams
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presented and the the simplewick package141 was used for draw-
ing operator contractions.

4 Results and discussion
Having developed the theory, we will now endeavour to study
how it provides new insight into practical computations. First,
we study uracil [Fig. 1 (a)] as a typical small organic molecule
with various functional groups. Here, it will be of particular in-
terest to understand the ordering of the lowest singlet and triplet
ππ∗ and nπ∗ states. Second, to judge the transferability of the
results shown, we will proceed to the polyacenes [Fig. 1 (b)]
and study their HOMO-LUMO transitions with a particular fo-
cus on the relative energies between the corresponding singlet
and triplets states. We conclude by briefly studying octatetraene,
which has been studied due to its states of plasmonic nature.100

4.1 Uracil: Singlet and triplet nπ∗ and ππ∗ states

The excitation energies of the lowest singlet and triplet states
of uracil were computed using the correlated ab initio method
ADC(2). In Tab. 2 we present the excitation energies, the oscil-
lator strengths, the dominant configurations, the four descriptors
discussed in Sec. 2.5 as well as the value of the exchange repul-
sion 〈ρ0I | V̂ |ρ0I〉, the two charge-transfer measures dh→e and dexc,
and the correlation coefficient Rhe. Noting that the ADC(2) en-
ergies are in reasonable agreement with literature values142,143

we can proceed to an analysis of the involved wavefunctions.
The lowest excited state is a triplet ππ∗ state at 4.07 eV, which
is reached by the transition from the HOMO to the LUMO. This
is followed by a triplet nπ∗ state at 4.70 eV dominated by the
HOMO-2→LUMO transition. The corresponding singlet state
(1nπ∗) is only slightly higher in energy at 4.95 eV. Then an-
other triplet ππ∗ state is found before the first 1ππ∗ state, the
HOMO→LUMO transition located at 5.76 eV. At this point two
questions come to mind: Why does the HOMO→LUMO transition
not give rise to the lowest singlet state and why is the ordering
ππ∗ vs nπ∗ reversed between the singlet and triplet manifolds?
We shall endeavour to answer these questions below.

We start by examining the Ω and PRNTO values according to the
classification scheme shown in Tab. 1. The Ω value is above 0.85
for all states shown meaning that the general scheme developed
based on CIS is qualitatively correct. In addition, we find that in
all cases except for the 23ππ∗ state the PRNTO value is sufficiently
close to 1 for the simplified model of Sec. 2.4 to be valid. We
choose the 11nπ∗, the 11ππ∗, and the 13ππ∗ states for a more
detailed analysis and present the involved orbital pairs as well as
the relevant densities and ESPs in Fig. 6.

When the 11nπ∗ state is viewed in terms of canonical orbitals, it
appears that four orbitals (HOMO-3, HOMO-2, LUMO, LUMO+2)
contribute to this state in various combinations. However, once
the NTO transformation is applied one finds that 99% of the
1TDM can be covered with only a single orbital transition, which
is presented at the centre of Fig. 6 (a). Accordingly, the PRNTO

value is very close to 1. The involved orbitals are a non-bonding
orbital localised almost exclusively on oxygen atom O4 (see Fig. 1
for the numbering scheme) and a delocalised π∗ orbital. Compar-

ing these orbitals to the canonical orbitals (Fig. S1) shows that the
apparent multiconfigurational character only relates to a change
in shape of the orbitals. The hole and electron are both moved
more strongly toward the O4 atom when compared to the canon-
ical HOMO-2 and LUMO. This effect may be labelled as “primary
orbital relaxation” meaning that the orbitals relevant to the exci-
tation process are different from the Hartree-Fock frontier orbitals
representing ionisation and electron attachment. In any case we
note that the state is formed by a simple orbital-to-orbital tran-
sition in the NTO picture allowing us to proceed by interpreting
the last two terms of Eq. (43). First, we need to construct the
transition density, which is given as the product of the hole and
electron NTOs. If the hole is in a px orbital on oxygen and the
electron in a pz, then the product will be a dxz orbital on oxygen,
as shown in the lower part of Fig. 6 (a). It can be appreciated
that a d-orbital possesses no dipole moment (only a quadrupole
moment) and therefore makes no contribution to the transition
dipole moment. Thus, the transition dipole moments of nπ∗ states
are generally small. For symmetry reasons, the transition mo-
ment is perpendicular to the molecular plane. It is plotted as a
green arrow of length 2~µ0I/e, which just appears as a green dot
in Fig. 6 (a). At the lower right of Fig. 6 (a), we also present
the ESP induced by the transition density and map this quantity
onto the excited state density. The ESP is close to zero (white) in
the largest part and only possesses some slightly positive (yellow)
and slightly negative (cyan) areas. Thus, we can appreciate that
the self-repulsion of the transition density 〈ρ0I | V̂ |ρ0I〉 will only
be a minor term and indeed we find in Table 2 that its value is
only 0.41 eV, which is of similar magnitude as the splitting be-
tween the singlet and triplet nπ∗ states computed at the ADC(2)
level (0.25 eV). Above the NTOs, we plot the hole and electron
densities. These are constructed as the square of the NTOs and,
therefore, possess basically the same shape if the isovalues are
chosen accordingly. Their ESPs are shown at the very top. First,
it is noted that these ESPs clearly have larger values than the ESP
of the transition density meaning that they will give rise to terms
of larger magnitude. Second, these ESPs have a very uniform
shape showing that the electron-hole attraction will be of similar
magnitude for the different valence states.

The singlet and triplet ππ∗ states are both strongly dominated
by the HOMO-LUMO transition but we will find below that their
wavefunctions differ in some crucial respects. The primary NTO
pair of the 11ππ∗ state, giving rise to 94% of its 1TDM, is pre-
sented in the centre of Fig. 6 (b). Both NTOs are delocalised
over a large part of the molecule. Moving to the top of Fig. 6 (b)
we find the hole and electron density, which again possess very
similar shapes to the original NTOs. The induced ESPs are fairly
uniform extending over the whole molecule, similar to Fig. 6 (a)
showing that the electron-hole attraction will, again, yield a
strong but non-specific term. The transition density is constructed
as the product of the hole and electron NTOs. It is totally sym-
metric with respect to reflection at the molecular plane being con-
structed as a product of two antisymmetric orbitals. One finds
that the left part is mostly negative (red) and the right part mostly
positive (blue). The transition dipole moment, shown as a green
arrow, points from the blue parts to the red parts and one can ap-
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Table 2 Excitation energies (∆E, eV), oscillator strengths (f), leading configurations, single-excitation character (Ω), effective number of configurations
(PRNTO), promotion number (p), de-excitation character (Phe), exchange repulsion (〈ρ0I | V̂ |ρ0I〉, eV), linear (dh→e, Å) and root-mean-square (dexc, Å)
charge separation for the lowest lying singlet and triplet states of uracil computed at the ADC(2) level of theory.

State ∆E f Configurationsa Ω PRNTO p Phe 〈ρ0I | V̂ |ρ0I〉b dh→e dexc Rhe

13ππ∗ 4.07 - 0.95hl 0.92 1.07 1.15 0.19 6.42 0.15 2.31 0.13
13nπ∗ 4.70 - 0.85h2l +0.27h2l2 +0.23h3l 0.88 1.01 1.47 0.02 0.60 1.37 2.57 0.05
11nπ∗ 4.95 0.00 0.87h2l +0.23h2l2 +0.14h3l 0.87 1.01 1.50 −0.01 0.41 1.44 2.66 0.04
23ππ∗ 5.68 - 0.79h1l−0.41hl2−0.23h1l6 0.89 1.61 1.30 0.13 6.09 0.78 2.53 0.23
11ππ∗ 5.76 0.23 0.91hl−0.17h4l−0.14h1l2 0.87 1.13 1.27 −0.05 0.85 0.56 2.71 0.03

a Dominant configurations and coefficients; hxly refers to the HOMO-x→LUMO+y transition.
b Repulsion between the transition densities. This term only contributes to the energy of singlet states but is formerly evaluated here
also for the triplets.

(a) (b) (c)
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Fig. 6 Analysis of the energetic contributions to (a) the 11nπ∗ state, (b) the 11ππ∗ state, and (c) the 13ππ∗ state of uracil. The dominant pair of natural
transition orbitals and their contribution to the excitation (λ1/Ω) are shown in the centre of each panel. Above, the hole and electron densities as well
as the ESPs induced by them are shown. The Coulomb interaction between electron and hole is indicated as a dashed green line. Below, the transition
density and its ESP are shown. The transition dipole moment ~µ0I is shown as a green arrow of length 2~µ0I/e. Isovalues used: 0.06 for orbitals, 0.005
for densities, 0.05 for the ESP map. Color coding for the ESP maps is shown at the top.

preciate that the charge distribution of ρ0I is quite strongly dipo-
lar and, thus, the state bright. In line with the dipolar nature
of the transition density, we also find that its ESP is divided into
two areas positive (yellow) on the left and negative (blue) on the
right.

On closer inspection, we find that the transition density of the
11ππ∗ state possesses some σ contributions, which are seemingly
in contradiction to the overall ππ∗ nature of this state. To in-
vestigate this phenomenon in some more detail, the 13ππ∗ state
is discussed as well, see Fig. 6 (c). Its primary NTO pair pos-
sesses an almost indistinguishable shape and very similar ampli-
tude (96% vs 94%) to the 11ππ∗ state and one might be tempted
to conclude that the singlet and triplet wavefunctions are equiva-

lent aside from spin coupling. However, this assessment changes
once we compute the transition spin-density.144 As opposed to
Fig. 6 (b), the transition spin-density of the triplet state appears
much cleaner in the sense that there are no σ contributions.
This has two important consequences. First, the formal transi-
tion dipole moment of the triplet is increased to 7.1 D whereas
it is only 3.3 D for the singlet. Second, the ESP associated to
the transition density is much more intense. Indeed we find that
the 〈ρ0I | V̂ |ρ0I〉 term is only 0.85 eV for the singlet while it would
amount to 6.42 eV for the triplet. We can interpret this in the
following way: The pure HOMO-LUMO transition would give rise
to a transition density with a very large self-repulsion and a high
energetic penalty. In order to overcome this penalty, a few σ -
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contributions are mixed into the wavefunction to partially cancel
out the repulsion yielding a lower energy but also darker singlet
than the pure HOMO-LUMO transition.

Next, we want to proceed to an analysis of the terms giving rise
to the final correlated energies of the 11nπ∗, 13nπ∗, 11ππ∗, and
13ππ∗ states according to Eqs (43) and (44). For this purpose, we
use the hierarchy given by the various orders of the ADC method.
The ADC(0) method simply uses orbital energy differences and,
therefore, relates to the εe−εh term. The ADC(1) energy is equiv-
alent to CIS and reflects the model developed above. The triplet
energies only feel the Coulomb term 〈ρh| V̂ |ρe〉 and we can, thus,
use the ADC(1) triplet energies for its estimation. Furthermore,
we find the exchange term 〈ρ0I | V̂ |ρ0I〉 by regarding the singlet-
triplet splitting. And, finally, the difference between ADC(1) and
ADC(2) is interpreted in terms of secondary orbital relaxation and
dynamic correlation. The MO energy gaps are presented in the
left-most part of Fig. 7. These grossly overestimate the excitation
energies yielding values well above 10 eV and the states move into
the expected energy range only after the electron-hole Coulomb
attraction is activated. We find that the Coulomb term makes a
very strong contribution but also that this term is rather uniform
among the states, which is consistent with the fact that it can be
effectively hidden inside the DFT orbital energies as discussed at
bottom of Sec. 2.4. Including the exchange interaction splits the
singlet and triplet states where the effect is much stronger on the
ππ∗ states in line with the above discussion. The inclusion of dy-
namic correlation tends to lower the gap between the individual
states shown here. Fig. 7 also presents the transition dipole mo-
ments of the 1ππ∗ states associated to the various models. The
crucial observation is that the original “pure” HOMO-LUMO tran-
sition would possess a transition moment of 5.7 D and that this
value is almost halved once exchange and dynamic correlation
are activated. As discussed in the context of Fig. 6 (c) the ADC(2)
triplet has an even higher formal transition moment of 7.1 D.
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Fig. 7 Energetic contributions, determined via the ADC(0), ADC(1), and
ADC(2) methods, giving rise to the energies of the lowest singlet and
triplet nπ∗ and ππ∗ states of uracil. The numbers printed correspond to
the transition moment (in Debye) of the 1ππ∗ state.

Revisiting Table 2, we find that the 11nπ∗ state is characterised
by a particularly large promotion number (p = 1.50). To under-
stand this effect in more detail, we plot the electron and hole
densities ρe and ρh in Fig. 8 along with the attachment and de-
tachment densities ρA and ρD. ρe and ρh represent the primary
excitation process whereas ρA and ρD also encompass secondary
density relaxation effects. To isolate the density relaxation effects,
we compute the differences ρA−ρe and ρD−ρh, which are shown
at the centre. One can see that ρA− ρe covers about the space
occupied by ρh and vice versa. Thus, the secondary relaxation
process takes electron density from the area of the excited elec-
tron and puts them near the excitation hole. This can be seen as
a dielectric screening process, which lowers the energy for sepa-
rating the primary charges.

ρe ρA − ρe ρA

ρh ρD − ρh ρD

Fig. 8 Analysis of the 11nπ∗ state of uracil. Comparison of the elec-
tron and hole densities ρe and ρh (left), derived from the 1TDM, with the
attachment and detachment densities ρA and ρD (right) as derived from
the difference density matrix. Their difference, interpreted as the density
relaxation, is shown in the centre.

So far, we have restricted the discussion to the four states that
can approximately be described by a single NTO transition and
have left the 23ππ∗ state out. This latter state is characterised by
a PRNTO value of 1.61, which indicates significant multiconfigura-
tional character. The two pairs of NTOs contributing to the state
are shown at the bottom of Fig. 9. There are two pairs of π/π∗

orbitals contributing with 75% and 22%, respectively. We can
first proceed to constructing the overall hole and electron densi-
ties as shown in Fig. 9 above the NTOs. These generally have a
similar shape to the dominant NTOs and no interesting effects are
clear at this point. To understand the underlying correlation ef-
fects we construct the condtional electron densities according to
Eq. (17).36 The uracil molecule is divided into three fragments as
shown in Fig. 1 (a) and the conditional electron densities are com-
puted for the hole constrained to each of the three fragments. The
result is shown in the upper part of Fig. 9. In the left column, the
probe hole is shown, which is per construction either on the left,
centre, or right of the molecule. The conditional electron densi-
ties computed for the three possible probe positions are shown in
the right column. We find a strong positive correlation between
electron and hole and, in particular, we can view the electron-
hole pair as oscillating between the two CO bonds. Reviewing the
NTOs we find that all NTOs possess at least some contributions on
the CO bonds but with different signs. Their linear combination
leads to the observed interference and correlation effects. This
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discussion is also instructive from an energetic point of view. The
excited electron dynamically follows the hole and, thus, allows to
maximise their dynamic Coulomb attraction.

Probe hole Conditional elec. dens.

Hole density, ρh Electron density, ρe

Hole NTOs Electron NTOs

••

••

••

− 〈γ0I | r−1
12 |γ0I〉

75 %

22 %

Fig. 9 Analysis of the 23ππ∗ state of uracil. Depiction of correlation ef-
fects using conditional densities with the probe hole constrained to three
different parts of the molecule. Isovalues used: 0.06 for orbitals, 0.003
for the densities. Conditional densities are plotted as to encompass 75%
of the probability distribution.

We next discuss the charge transfer connected with the differ-
ent excitations. For this purpose, we look at the linear (dh→e)
and root-mean-square (dexc) electron-hole separations as well as
the electron-hole correlation coefficient (Rhe), as shown in Tab. 2.
The dh→e value measures the separation between the centroids
of the hole and electron densities. This value is about 1.4 Å for
the nπ∗ states while it is significantly lower for the ππ∗ states.
This can be understood in the sense that the π and π∗ orbitals
are all distributed over the molecule fairly evenly while the n-
orbital is concentrated on one side. Thus, only the transition
from the n to the π∗ orbital significantly shifts the electrons on
average. As opposed to dh→e, the dexc value also considers contri-
butions deriving from the extent of the charge distributions and
from correlation effects.94 Thus, it is arguably a better approxi-
mation to the dynamic electron-hole interaction 〈γ0I |r−1

12 |γ0I〉. It
is found that the dexc term is fairly uniform between all states con-

sidered at 2.5± 0.2 Å. This is consistent with the the top row of
Fig. 6 highlighting that the Coulomb interactions are fairly uni-
form for the different states. The correlation coefficient Rhe pro-
vides a somwhat more sensitive measure48,65,75,94 highlighting
whether or not the electron and hole move in a linearly corre-
lated fashion. Viewing Tab. 2, we find that this value is positive
for all states considered meaning that dynamic Coulomb attrac-
tion dominates over exchange repulsion. The largest Rhe value
(0.23) is obtained for the 23ππ∗ state whose wavefunction we
have already discussed in Fig. 9. Finally, we compare these mea-
sures among the analogous singlet and triplet states, i.e. 11ππ∗

vs 13ππ∗ and 11ππ∗ vs 13ππ∗. We find that the charge trans-
fer measures dh→e and dexc are generally higher and the corre-
lation coefficient Rhe generally lower for the respective singlets.
This difference clearly makes sense as the triplet only experiences
Coulomb attraction while exchange adds an additional repulsive
interaction for the singlets pushing the electron and hole apart.

As a final descriptor, we want to discuss the de-excitation mea-
sure Phe as introduced within this work [Eq. (47)]. The absolute
Phe values are generally larger for the 3ππ∗ states while they are
close to zero for the other states. This can be understood in the
sense that the coupling between excitations and de-excitations is
mediated by the exchange-like terms shown in Fig. 5 that are re-
lated to the exchange repulsion 〈ρ0I |V̂ |ρ0I〉. Thus, the states with
the largest 〈ρ0I |V̂ |ρ0I〉 values also experience the largest coupling
between excitations and de-excitations. Indeed, the difference be-
tween singlet and triplet states with respect to de-excitations and
ensuing triplet instabilities have been discussed previously from a
more methodological point of view50,51,91 but this work suggests
that this is a physical phenomenon and not related to any spe-
cific computational method. Aside from the different magnitude
we also obtain different signs for the singlets and triplets as Phe

is generally negative in the former and positive for the latter. A
detailed discussion of the effect of de-excitations has to be left to
the future. Nonetheless, the presented results allow us to postu-
late that de-excitations do indeed have a non-trivial effect on the
relative energies of singlet and triplet states.

Finally, we want to address the question of how much the val-
ues of the above descriptors change for different quantum chemi-
cal methods. For this purpose, the excited states were recomputed
using CASSCF and TDDFT/PBE0 and the results are presented
in Tab. 3. For both methods we find the same state ordering
as for ADC(2). CASSCF places all states within about 0.2 eV of
ADC(2) with the exception of the 11ππ∗, which also has a grossly
overestimated oscillator strength and will be discussed in more
detail below. The TDDFT errors are generally somewhat larger,
around 0.5 eV. Crucially, we find similar trends for most of the
descriptors discussed. The PRNTO values agree between all three
methods in the sense that they are below 1.2 for all states ex-
cept 23ππ∗ meaning that the division into simple orbital-to-orbital
transitions and multiconfigurational excited states is consistent
among the methods. We also find partial agreement among the
promotion numbers p measuring the number of rearranged elec-
trons in the sense that they are larger for the nπ∗ states than for
the ππ∗ states. Interestingly, also the trends for the newly in-
troduced de-excitation measure Phe agree in magnitude and sign
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Table 3 Excitation energies (∆E, eV), oscillator strengths (f), leading configurations and further descriptors computed for the lowest lying singlet and
triplet states of uracil computed at the CASSCF and TDDFT/PBE0 levels of theory.

Method State ∆E f Configurationsa Ω PRNTO p Phe 〈ρ0I | V̂ |ρ0I〉 dh→e dexc Rhe

CASSCF 13ππ∗ 4.02 - 0.85hl−0.32hl1 0.97 1.20 1.15 0.35 0.25 2.10 0.24
13nπ∗ 4.70 - 0.87h2l 0.82 1.00 1.44 0.02 1.11 2.23 0.00
11nπ∗ 5.07 0.00 0.86h2l 0.78 1.00 1.33 -0.02 1.18 2.29 0.00
23ππ∗ 5.93 - −0.77h1l−0.46hl1 0.95 1.53 1.15 0.30 0.51 2.02 0.31
11ππ∗ 7.27 0.49 0.83hl−0.35cs 0.75 1.04 1.31 -0.18 0.60 2.73 -0.04

PBE0 13ππ∗ 3.47 - 0.97hl 1.06 1.11 1.32 0.24 7.94 0.16 2.32 0.15
13nπ∗ 4.41 - 0.92h1l−0.28h1l1 1.01 1.01 1.57 0.08 0.63 1.44 2.66 0.04
11nπ∗ 4.88 0.00 0.96h1l 1.00 1.01 1.61 -0.03 0.35 1.55 2.80 0.03
23ππ∗ 4.92 - 0.81h2l−0.50hl1 1.03 1.75 1.41 0.18 7.08 0.72 2.58 0.21
11ππ∗ 5.56 0.14 0.95hl 1.03 1.17 1.42 -0.01 0.61 0.71 2.87 -0.02

a Dominant configurations and coefficients; hxly refers to the HOMO-x→LUMO+y transition. cs is the closed shell.

between the three methods. This is a striking observation con-
sidering that the de-excitations are included in three completely
different ways among the three methods. They are explicitly in-
cluded via the Y-vector in TDDFT, they appear implicitly in the
intermediate state representation76,133 within ADC, and they are
computed via the standard density-matrix expressions in CASSCF.
We also find similar trends for the 〈ρ0I | V̂ |ρ0I〉 terms in the sense
that they are about 10 times higher for the 3ππ∗ states compared
to the others. Furthermore, the CT terms dh→e, dexc, and Rhe are
quite closely matched among the three methods. Comparison of
the Ω values measuring the single-excitation character55,61,105

is a bit more troublesome considering that neither ADC(2) nor
TDDFT are able to properly describe double excitations. Interest-
ingly, we find that the Ω values are even above 1 for TDDFT and
a closer look at Eq. (51) shows that they are simply given as

Ω = ||X||2 + ||Y||2 (52)

where X and Y are the excitation and de-excitation vectors within
TDDFT. On a more fundamental level, this issue is related to the
assignment problem of TDDFT,145 i.e. it is not clear at all whether
it is possible to rigorously construct TDMs and/or wavefunctions
from TDDFT. In any case, all the Ω values are sufficiently close to
1 to exclude any significant double excitation character.

So far, we have left the CASSCF description of the 11ππ∗ state
aside. This state is identified as an ionic state within valence-bond
language, a class of states which is notoriously difficult to describe
with CASSCF.41–45 The above discussion provides a clear frame-
work for understanding this problem. The true wavefunction of
the 11ππ∗ state should include σ -polarisation43,44 to alleviate the
energetic penalty deriving from the 〈ρ0I | V̂ |ρ0I〉 term. However,
a standard CASSCF description using only n and π orbitals, as
employed here, can never describe this effect leaving the energy
overestimated. The signature of this problem is also seen in the
enhanced oscillator strength of 0.49 for CASSCF deriving from a
transition moment of 4.2 D, which is intermediate between the
pure MO picture and a fully correlated description (Fig. 7).

In a more general sense, we want to stress that all the descrip-
tors discussed above are based on density matrices and, thus, ul-
timately on the wavefunctions. They possess well-defined val-
ues for the exact solutions of the electronic Schrödinger equation

and are not related to any specific wavefunction model. Even
more, if we view the wavefunctions as physically meaningful ob-
jects rather than just mere mathematical constructs, then it also
follows that the descriptors discussed are in a sense physically
real. This also suggests that the classification scheme of Tab. 1
is a physically meaningful way to describe electronic excitation
processes. Just, as we classify states into nπ∗ or ππ∗ states, even
though orbitals are not physically observable, we may also classify
them according to the multiconfigurational character, exchange
repulsion, de-excitations, or orbital relaxation.

4.2 Polyacenes: exchange splitting, correlation and de-
excitations

Having discussed the uracil molecule in detail in the previous
section, we want to examine the transferability of the observed
trends to different molecules. For this purpose, we will study the
polyacenes considering their important technological application
as versatile organic semiconductors146 as well as the fact that
they have been studied widely experimentally147–149 and com-
putationally.113,150–152 Here, we discuss the energies of the low-
est singlet and triplet B2u states. These states are reached via the
HOMO-LUMO transition (see also Ref. 151) and are analogous to
the 11ππ∗ and 13ππ∗ states of uracil as discussed above. The sin-
glet HOMO-LUMO transition is also often referred to as the 1La

state. Technologically speaking these two states are relevant be-
cause for tetracene and pentacene the 11B2u state is about twice
as high in energy as the 13B2u state, which allows for the fission
of one singlet exciton into two triplet excitons.23–25 The consid-
eration of orbital energies is clearly of no use when trying to un-
derstand this dramatic difference between two states reached via
the same orbital transition and we shall therefore proceed to a
more detailed analysis.

The energies and excited-state descriptors, computed for the
lowest singlet and triplet B2u states for the series from naphtha-
lene through pentacene, are presented in Table 4. We find that
the T1 energy rapidly decreases along the series.153 The gap be-
tween T1 and S1 stays roughly constant at somewhat above 1 eV
and, in summary, the S1 energy approaches twice the T1 energy,
which is a prerequisite for singlet fission as discussed above. We
start the discussion with the charge transfer character. The lin-
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Table 4 Excitation energies (∆E, eV), transition moments (µ0I , D), leading configurations and further descriptors computed for the lowest lying singlet
and triplet states of the polyacenes computed at the ADC(2)/aug-cc-pVDZ level of theory.

Molecule State ∆E µ0I Ω PRNTO p Phe 〈ρ0I | V̂ |ρ0I〉 dh→e dexc Rhe

Naphthalene 13B2u (T1) 3.37 5.17 0.89 1.33 1.04 0.23 5.14 0.00 2.90 0.29
11B2u (S2) 4.88 2.19 0.84 1.13 1.09 -0.04 0.60 0.00 3.50 0.00

Anthracene 13B2u (T1) 2.44 6.41 0.86 1.23 1.07 0.22 4.60 0.00 3.43 0.28
11B2u (S1) 3.71 2.52 0.82 1.08 1.13 -0.07 0.52 0.00 4.07 0.04

Tetracene 13B2u (T1) 1.78 7.23 0.85 1.21 1.08 0.23 4.29 0.00 3.88 0.29
11B2u (S1) 2.91 2.72 0.81 1.07 1.15 -0.09 0.48 0.00 4.61 0.07

Pentacene 13B2u (T1) 1.31 7.97 0.83 1.22 1.09 0.24 4.11 0.00 4.27 0.31
11B2u (S1) 2.36 2.89 0.80 1.07 1.15 -0.10 0.43 0.00 5.11 0.09

ear charge separation dh→e vanishes for symmetry reasons and
we directly proceed to a discussion of the root-mean-square sep-
aration dexc. In analogy to uracil, we find that for each molecule
the dexc value for the singlet is larger than that for the triplet. We
also find that the exciton size increases among the series meaning
that the state properties are still governed by confinement effects
even for pentacene. Previous work suggests that the singlet ex-
citon sizes saturate at larger molecular sizes reaching a universal
exciton size limit of about dexc = 7 Å.48,93 In the context of the
correlation coefficient Rhe, we find that its value is consistently
around 0.3 for the triplets and significantly smaller for the sin-
glets, again highlighting the stronger influence of Coulomb bind-
ing for the triplets. It is also worth pointing out that the low value
of Rhe for the individual 1La states is consistent with their assign-
ment as weakly correlated “Lw” states by Hoffmann et al.75 The
larger Rhe values for the triplets also go along with higher PRNTO

values highlighting the connection between these two measures
representing spatial correlation and multiconfigurational charac-
ter, respectively. Conditional electron densities for the T1 state of
anthracene were computed to illustrate the underlying correla-
tion effects in some more detail. At the bottom of Fig. 10, the two
dominant NTO pairs are shown. The first transition, which corre-
sponds to the HOMO-LUMO transition, accounts for 89% of the
1TDM with the second pair only contributing 4%. Nonetheless,
we find significant correlation effects. These are shown in the up-
per part of Fig. 10. Anthracene is divided into three fragments
(left, centre and right) and the conditional electron densities for
these three fragments are computed according to Eq. (17). On
the left, the position of the probe hole is shown while the condi-
tional density is shown on the right. Similarly to Fig. 9, we find a
strong correlation between hole and electron and it is clear that
this correlation enhances the Coulomb attraction.

Proceeding to the transition densities, we find similar trends
as for uracil. The singlet transition densities (Fig. S2) experi-
ence significant σ -polarisation whereas the triplet counterparts
(Fig. S3) are derived from pure π-orbitals. As a consequence,
the transition moments µ0I increase more than twofold and the
exchange repulsion 〈ρ0I | V̂ |ρ0I〉 about tenfold when moving from
the singlets to the triplets (Tab. 4). The effect of the exchange
repulsion on transition densities and moments is elucidated in
some detail for anthracene in Fig. 11. First, we consider a simple
HOMO-LUMO transition, which is constructed technically via the
ADC(0) method. Viewing the HOMO-LUMO transition density in

Probe hole Conditional elec. dens.

Hole density, ρh Electron density, ρe

Hole NTOs Electron NTOs

••

••

••

− 〈γ0I | r−1
12 |γ0I〉

89 %

4 %

Fig. 10 Depiction of correlation effects in the lowest triplet state (13B2u) of
anthracene using NTOs and conditional densities. Isovalues used: 0.06
for orbitals, 0.003 for the densities, 0.001 for conditional densities.

Fig. 11 (a), we find that there is a negative contribution on the
upper edge of the molecule encompassing roughly a charge of
0.5 e and an analogous positive contribution on the lower edge.
Thus, we can estimate the length of the transition moment as

~µ0I ≈ 0.5e×dmol (53)

where e is the unit charge and dmol is the width of the molecule.
If we plot the transition moment as 2~µ0I/e, this vector should
roughly be equal to the width of the molecule, which it as
shown in Fig. 11 (a). Introducing σ -polarisation via the ADC(2)
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method roughly halves the transition dipole moment from 5.1 D
to 2.5 D as shown in Fig. 11 (b). The experimental transition
dipole moment9 of 2.8 D, agreeing with ADC(2), is shown in
Fig. 11 (c). This agreement clearly highlights the need of us-
ing high-level methods like ADC(2) to obtain accurate transition
moments. More strikingly, the relatively low transition moment
of anthracene can be seen as an experimental falsification of the
HOMO-LUMO picture not requiring any higher level computa-
tion. It suffices to know the approximate shapes of the HOMO
and LUMO, which follow from symmetry considerations or basic
semi-empirical calculations, in order to apply Eq. (53) and deduce
that the transition moment of the pure HOMO-LUMO transition
should be about 5 D. The fact that the measured moment is lower
is a direct experimental falsification of the hypothesis that the
state is reached via a pure HOMO-LUMO transition.

Transition density ESP

(a)

(b)

(c)

Fig. 11 Depiction of the transition density, transition dipole moment (plot-
ted as a green arrow of length 2~µ0I/e), and transition ESP for the 11B2u
state of anthracene considering (a) a simple HOMO/LUMO transition and
(b) a correlated description. The experimental transition moment is given
in (c). Isovalues used: 0.005 for the densities, 0.05 for the ESP map.

Finally, we discuss the de-excitation values Phe. Similarly to the
ππ∗ states of uracil these are about 0.2 for the triplet states and
slightly below zero for the singlet states. Without going into too
much detail we want to stress again that these de-excitations are
an important component in explaining the energetic difference
between the singlet and triplet states and, thus, ultimately the
applicability of these molecules for singlet fission.

To summarise, we find three crucial differences between the
singlet and triplet wavefunctions. The singlets have enhanced
charge transfer, experience σ -polarisation in their transition den-
sities and have reduced de-excitation character when compared
to the singlets. All three phenomena are ultimately responsible
for the excitation energies obtained. In the future it will be inter-
esting to examine whether they provide actual handles for tuning
the excitation energies. For example, one can ask how the charge
transfer is affected by the surrounding medium, if σ -polarisation
is enhanced by polarisable groups and if the de-excitation charac-
ter is affected by open-shell electrons in the grounds state.

Table 5 Excitation energies (∆E, eV), oscillator strengths (f) and further
descriptors computed for the lowest lying singlet states of octatetraene
computed at the CIS/aug-cc-pVTZ level.a

State ∆E f PRNTO 〈ρ0I | V̂ |ρ0I〉 dexc

11Bu 4.85 2.22 1.17 1.82 3.64
21Ag 7.05 0.00 2.15 2.40 2.91
31Ag 7.65 0.00 1.97 0.20 4.75
21Bu 8.25 0.08 2.64 2.15 2.71
31Bu 8.79 0.03 2.16 0.45 3.70
41Bu 10.30 0.18 1.86 0.87 4.98

a Plasmonic states are highlighted in bold face.

4.3 Octatetraene: Plasmonic states

To examine the versatility of the suggested model, we want to
examine a physical phenomenon quite different to the above dis-
cussion, the presence of plasmonic states in molecules. Plasmonic
states in clusters and molecules have received recent attention
and significant work has been devoted into finding ways of iden-
tifying them within quantum chemistry calculations.99,100,154 It
has been worked out in detail that plasmons can be identified
via their dependence on the Coulomb interaction.99,100 We shall
build on this work and translate the relations into the nomen-
clature used here. The previously suggested approach99,100 pro-
ceeds by scaling the exchange interaction in Eq. (39) via a param-
eter λ :

∆E(λ ) = ∑
ia
|Cia|2(εa− εi)+λ 〈ρ0I | V̂ |ρ0I〉−〈γ0I |r−1

12 |γ0I〉 . (54)

After computing the excitation energies for different values of
λ , the ones with the largest changes are identified as plas-
mons.99,100 For the purposes of this work, we may directly ap-
proximate the slope of ∆E with respect to λ as

d(∆E)
dλ

≈ 〈ρ0I | V̂ |ρ0I〉 (55)

assuming that the transition density does not have a strong de-
pendence on λ . Thus, we can directly use the term 〈ρ0I | V̂ |ρ0I〉
to find the plasmons. We briefly want to discuss the utility of this
approach in the case of octatetraene following work by Krauter et
al.100 A summary of the excited states of this system is presented
in Tab. 5. The states that were identified as plasmons in Ref. 100
are shown in bold face. Tab. 5 shows that these states are dis-
tinguished from the rest by 〈ρ0I | V̂ |ρ0I〉 values above 1.5 eV. This
suggests that this value can be used directly rather than follow-
ing the somewhat more involved scaling approach. Alternatively,
it has been shown for metal clusters that plasmons can be iden-
tified via excited-state collectivity using what is called here the
PRNTO descriptor and higher values have been associated with
plasmons.154 However, this approach does not seem applicable
for octatetraene as there is no clear correlation between the plas-
mon states and PRNTO.

For comparison, we show the transition densities and ESPs of
the states discussed in Fig. S4. First, we realise that for all the
plasmons the transition densities are located on the atoms rather
than the bonds, which allows an identification as ionic states
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in valence-bond nomenclature. Second, these states possess the
same kind of σ -polarisation as identified for the above molecules.
Third, it is observed that the plasmonic states induce intense tran-
sition ESPs, which ultimately lead to the large 〈ρ0I | V̂ |ρ0I〉 values
discussed. Thus, the plasmonic states of octatetraene also fit into
the general discussion of this work.

5 Conclusions and Outlook
The purpose of this Perspective was to lay out a pathway for
reaching an understanding of electronic excitation energies that
goes beyond the MO picture. What started out with the hope
of developing a few simple rules directly applicable to practis-
ing chemists ended up as a quite substantial and dense work.
There were surprises behind every corner, such as the exten-
sive σ -polarisation of the transition density, the generality of
de-excitations, and the impact of orbital relaxation. Even the
seemingly simple case of orbital-to-orbital transitions in organic
molecules proved to be much more complex than expected. These
challenges also mean that much of the discussion of the even
more fascinating case of multiconfigurational states will have to
be left to future work.

Despite the challenges mentioned, four distinct physical phe-
nomena, giving rise to effects beyond the MO picture, could
be identified: exchange repulsion, dynamic Coulomb attraction,
secondary orbital relaxation, and de-excitations. Even more,
some preliminary design principles emerge how these phenom-
ena could be used to tune excitation energies and we can spec-
ulate about experimentally testable consequences. Exchange re-
pulsion was identified as the Coulomb interaction of the transi-
tion density with itself and shown to be a particularly important
term for bright singlet states. This term is strongly affected by σ -
polarisation, which lowers singlet-triplet splitting as well as oscil-
lator strength both of which are experimentally observable. In the
future it will be of interest to examine whether the amount of σ -
polarisation can be tuned, e.g. by the introduction of polarisable
groups. An alternative strategy is concerned with exploiting in-
terference effects in multiconfigurational states as exemplified by
the paradigmatic B−3u (Lb) and B+

3u (Bb) states of naphthalene.36,65

The second term, Coulomb attraction, was shown to be a dynam-
ical effect that is affected by correlation and its magnitude was
diagnosed by various charge-transfer measures. The main han-
dle one has in terms of affecting the Coulomb interaction is via
screening by the solvent. Thirdly, the effect of secondary orbital
relaxation was examined and shown to be important for states
with strong static charge separation. Finally, we have studied de-
excitation character by considering the expectation value of the
electron-hole permutation operator and found consistently differ-
ent values between singlet and triplet states in terms of magni-
tude and sign.

The wide applicability of the model was exemplified by dis-
cussing various molecules and their different types of excited
states. In the case of uracil, it was shown why the singlet and
triplet ππ∗ state energies are much more split than their nπ∗ coun-
terparts leading to variable state ordering in the singlet and triplet
manifolds. Clear differences between the singlet and triplet wave-
functions were shown in terms of σ -polarisation, charge transfer

and de-excitation character. Furthermore, the comparatively low
energy of the 23ππ∗ state of uracil was explained in terms of a
dynamically enhanced Coulomb attraction. Studying the singlet-
triplet splitting in the polyacenes, we found similar wavefunction
properties as for the ππ∗ states of uracil. Specifically, we showed
how σ -polarisation leads to a reduced transition moment of the
11B2u state of anthracene and we showed that this reduced transi-
tion moment is inconsistent with a straightforward HOMO-LUMO
transition. A final discussion of octatetraene showed that the pre-
sented model is also applicable for characterising plasmonic states
in molecules. In the future it will certainly be interesting to ex-
tend the discussion to transition metal complexes, which are often
characterised by a high density of low-energy singlet and triplet
states of varying character.20,155,156

The presented discussion has clear consequences on the appli-
cability of modern quantum chemistry methods. Previously, we
have shown that the dynamic nature of the Coulomb interaction
can deteriorate the reliability of TDDFT even when no apparent
CT is present48,157 and that an overestimation of secondary or-
bital relaxation effects of ADC(2) had a negative effect on the
computation of the excited states of iridium complexes.49 In this
work, we have shed new light onto the problem of CASSCF in
describing the ionic 11ππ∗ state of uracil due to the absence
of σ -polarisation. In the future, it will be interesting to assess
whether the wide application of the Tamm-Dancoff approxima-
tion in TDDFT computations for comparing singlet and triplet
energies is justified despite differences in the de-excitation con-
tributions.

In a general sense, we hope that we could convince the reader
of the value of analysing excited-state computations beyond the
MO picture to reveal the richness of the involved wavefunctions
and – as much as wavefunctions are “real” – of physical reality.
For this purpose, we advocate an unbiased tool-driven approach
keeping eyes open for surprises. Moving our understanding of
excited-state electronic structure theory beyond the MO picture
is as challenging as it is rewarding and will hopefully be valu-
able through providing new tools in the design of chromophores
and improving our understanding of modern quantum chemistry
methods. Ultimately, we hope it will provide a new lens for view-
ing the world around us.
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