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ABSTRACT 

The use of photodynamic therapy (PDT) against cancer has received increasing attention over 

the recent years. However, the application of the currently approved photosensitizers (PSs) is 

somehow limited by their poor aqueous solubility, aggregation, photobleaching and slow 

clearance from the body. To overcome these limitations, there is a need for the development of 

new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. 

However, these compounds generally lack significant absorption in the biological spectral 

window, limiting their application to treat deep-seated or large tumors. To overcome this 

drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E’)-4,4´-bisstyryl-

2,2´-bipyridine ligands showed  impressive 1- and 2-Photon absorption up to a magnitude 

higher than the ones published so far. While non-toxic in the dark, these compounds were found 

phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and be able to 

eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2-

Photon excitation.  
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INTRODUCTION 

Due to an increasing impact of cancer on the life quality and mortality of human, increasing 

research efforts are devoted towards the development of novel anticancer drugs and strategies. 

Among the most commonly used techniques to fight this disease (i.e., surgery, chemotherapy 

and radiotherapy), photodynamic therapy (PDT) has received increasing attention during the 

last decades. In PDT, a photosensitizer (PS) is activated upon light irradiation to generate 

reactive oxygen species (ROS).1-2 As the majority of currently approved photosensitizers (PSs) 

are based on tetrapyrrolic structures (i.e., porphyrin, chlorin, phthalocyanine), these compounds 

share similar drawbacks (e.g., poor aqueous solubility, aggregation, photobleaching, slow 

clearance from the body and hepatotoxicity).3-5 To overcome these limitations, there is a need 

for the development of new classes of PSs. Among others, the use of transition metal 

complexes6-11 and especially, Ru(II) polypyridine complexes are gaining momentum due to 

their attractive photophysical and chemical properties (i.e., strong luminescence, high singlet 

oxygen production, high chemical and photophysical stability),12-22 with the compound TLD-

1433 having just entered phase II clinical trials for the treatment of non-muscle invasive bladder 

cancer.23-25 Despite these remarkable properties, the vast majority of Ru(II) polypyridine 

complexes are excited using either blue or UV-A light. As the light tissue penetration depth is 

rather poor at these wavelengths, the application of these compounds to treat deep-seated or 

large tumors is limited.26-30 To circumvent this drawback, there is a need for the development 

of PSs with an absorption towards the biological spectral window (600-900 nm), which can be 

achieved by a red shifted one photon (1P) absorption or the use of two photon (2P) absorption 

for 2P PDT, a technique that is not employed yet in the clinics. However, the ability of Ru(II) 

polypyridine complexes to absorb 2P simultaneously, expressed as the 2P cross section, remains 

relatively poor (~ 40-250 Goeppert-Mayer (GM)), limiting their applications in this field of 

research.31-37 
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To tackle these drawbacks, herein, we report a novel approach to design Ru(II) polypyridine 

complexes with a red shifted 1P and exceptionally strong of 2P absorption using an in silico 

optimization. The resulting compounds were synthesized, characterized and photophysically 

and biologically evaluated in-depth. Strikingly, while being able to overcome the limitations of 

clinically applied PS, the compounds were found to be phototoxic in various 2D monolayer 

cells, 3D multicellular tumor spheroids as well as to eradicate a multiresistant tumor inside a 

mouse model upon clinically relevant 1P and 2P excitation.  

 

RESULTS AND DISCUSSION 

With the aim of enhancing the absorption properties of Ru(2,2´-bipyridine)3 without 

deterioration of its 1P absorption properties, the bipyridine ligand was functionalized with rigid 

 conjugated substituents acting as electron donating groups. This is expected to induce a 1P 

absorption red-shift towards the biological spectral window by intercalation of donor centered 

orbitals in the Ru centered frontier orbitals manifold (allowing transitions of metal-to-ligand 

charge transfer (MLCT) and ligand-to-metal charge transfer (LMCT) character at low energy). 

As trans-stilbene are highly effective 2P dyes38, it would be of high interest to extend the ligand 

scaffold with such a moiety as well as to include terminal donor groups, namely (E,E’)-4,4´-

bisstyryl-2,2´-bipyridine (L-H), (E,E’)-4,4´-bis[p-(N,N-dimethylamino)styryl]-2,2´-bipyridine 

(L-NMe2) and (E,E’)-4,4´-bis[p-methoxystyryl]-2,2´-bipyridine (L-OMe). The predicted 

spectra for the resulting complexes of L-H and the L-OMe series (Fig. S1) allow to evidence 

the presence of two main bands in the 400-600 nm region, stemming both from MLCT/LMCT 

type transitions but also from ligand centered (LC) charge transfer excitations. Detailed analysis 

of the 1P and of the lowest lying 2P computed data (Table S1-S4) indicated that the most intense 

lowest lying 2P absorption processes are associated with ligand centered CT transitions with an 

average CT distance of 2.9 to 6.3 Å. Overall, the computed data suggests that Ru(II) coordinated 
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(E,E’)-4,4´-bisstyryl-2,2´-bipyridine complexes with donor substituents have a red shifted 1P 

and a strong 2P absorption. 

Before the synthesis of the final compounds, the known experimental procedures to obtain the 

corresponding ligands were optimized39-42 to a one-step high-yielding synthesis using mild 

conditions (Scheme S1). Having the ligands in hand, the desired complexes 1-7 were 

synthesized. All compounds were analyzed by 1H, 13C-NMR, ESI-HRMS (Scheme S2-S3, Fig. 

S2-S22) and their purity confirmed by HPLC as well as elemental analysis. Additionally, the 

ligands L-H, L-NMe2 and L-OMe as well as 3 were characterized using single crystal X-ray 

crystallography (Table S5-S6, Fig. S23-S26). Details on the synthesis and characterization can 

be found in the SI.  

 

Fig. 1. Chemical structures of complexes 1-7 investigated in this study.  The complexes were 

isolated as PF6
- salts. 

 

The photophysical properties of the complexes (Table S7-S8, Fig. S27) were then 

experimentally investigated to evaluate their potential as PDT PSs. In agreement with 

theoretical findings, the compounds generally show a red-shift of the first 1P absorption (Fig. 
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2a) band maximum of about 50-70 nm for the symmetric Ru(II) complexes in comparison to 

Ru(bipy)3
43 as well as an absorption tail towards the near-infrared region. Strikingly and in 

agreement with theoretical data, the reported compounds have an exceptionally strong 2P 

absorption (Fig. 2b) with values up to ~6800 GM, which is an order of magnitude higher than 

the ones reported before for other Ru(II) polypyridine complexes.31-37 Interestingly, the L-NMe2 

coordinated complexes were found with larger σ2 values than the L-OMe and L-H coordinated 

compounds. Overall, the compounds have a 1P absorption tail towards and a strong 2P 

absorption in the biological spectral window, potentially allowing for the treatment of deep-

seated or large tumors.  

 

Fig. 2. a) 1P and b) 2P absorption spectra of the complexes 1-7. 

The luminescence quantum yields of the L-OMe coordinated complexes (3: 1.1%, 5: 1.4%, 7: 

2.8%) were found to be significantly higher than those of the L-H coordinated (1: 1.9%) or L-

NMe2 coordinated (2: >0.1%, 4: 0.4%, 6: 0.5%) compounds. All complexes were found to have 

excited state lifetimes in the nanosecond range (Fig. S28-S34) in degassed (222-542 ns) and 

aerated saturated (36-96 ns) solutions. As the lifetimes drastically decrease in the presence of 

air, it indicates that the excited state can interact with an air component. For identification of 

the type of ROS produced upon light exposure, electron spin resonance spectroscopy was 

employed using the singlet oxygen (1O2) scavenger 2,2,6,6–tetramethylpiperidine and the •OOH 

or •OH radical scavenger 5,5-dimethyl-1-pyrroline N-oxide. While no signals for the formation 
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of •OOH or •OH radicals were detected, the formation of 1O2 in CH3CN and PBS was confirmed 

by observation of the characteristic 1O2 -induced triplet signal in the ESR spectrum (Fig. S35-

S41). The amount of generated 1O2 was quantitatively determined by two methods: directly by 

measurement of the phosphorescence of 1O2; indirectly by monitoring the change in absorbance 

of a 1O2 scavenger. The singlet oxygen quantum yields were found to be between 16-77% in 

CH3CN and 1-11% in an aqueous solution (Table S9). The comparison between the values 

indicates that the L-OMe coordinated complexes (3, 5, 7) are able to produce 1O2 more 

efficiently than 1 and the L-NMe2 coordinated Ru(II) complexes (2, 4, 6). Overall, complex 7 

was found with the highest singlet oxygen quantum yield (CH3CN: 68-77%, aqueous solution: 

10-11%). 

The stability of the compounds was investigated by incubation in human plasma at 37 °C for 

48 h. The comparison of the HPLC chromatograms (Fig. S42-S48) showed no change before 

and after incubation in human plasma for all compounds, indicative of the stability of the 

complexes under biological conditions. Additionally, the stability upon irradiation was 

investigated (Fig. S49-S57) as the majority of currently clinically employed PSs suffer from 

this drawback. Importantly, no significant differences in the absorption spectra for the L-OMe 

coordinated complexes (3, 5, 7) and 1 were observed over time, indicating their photostability. 

On the contrary, small changes in the absorption spectra of the L-NMe2 coordinated complexes 

(2, 4, 6), especially of 2, were observed, suggesting that the complexes are slightly 

photobleaching. Worthy of note, under identical experimental conditions, the absorption spectra 

of the known PS Protoporphyrin IX (PpIX) was found to be drastically changed, indicating a 

significantly stronger photobleaching. The study of the effect of the irradiation on the molecular 

structure of 2 by NMR spectroscopy suggests the decomposition of the compound (Fig. S58).  

All compounds were found to be lipophilic with high distribution coefficients between an 

organic octanol and an aqueous PBS phase (Table S10). The time-dependent cellular uptake of 
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the complexes was then investigated in human cervical carcinoma (HeLa) cells by determining 

the amount of Ru inside the cells by inductively coupled plasma mass spectrometry (ICP-MS) 

at each time point. The results show that the asymptotic maximum (Fig. S59-S65) of the uptake 

of the compounds was reached within 8 h. As expected, the compounds with a higher 

lipophilicity, except of 2, were found to have the highest uptake (Fig. S66). The uptake 

mechanism of the complexes was then investigated by blocking various pathways by 

preincubation with a cationic transporter (tetraethylammonium chloride), metabolic (2-deoxy-

D-glucose and oligomycin) and endocytotic inhibitors (ammonium chloride or chloroquine) as 

well as at reduced temperature (4° C). Since all compounds were found with a similar profile 

(Fig. S67-S73), it suggests that these are internalized by the same mechanism, namely an 

energy-dependent endocytosis pathway. The localization of the complexes in HeLa cells was 

then investigated by confocal laser scanning microscopy. The distribution pattern of the 

luminescence of the compounds by 1P- (Fig. S74) and 2P- (Fig. S75) excitation was compared 

with the ones of commercial dyes for major cellular organelles (i.e., nucleus, mitochondria, 

lysosomes, golgi apparatus, endoplasmic reticulum). As no significant congruency was detected, 

it suggests that the complexes do not majorly localize in these organelles. In addition, the 

cellular localization was also investigated by separately extracting the cellular organelles (i.e., 

cytoplasm, mitochondria, lysosome, nucleus) and determining the amount of Ru by ICP-MS. 

The results (Fig. S76) indicate that all complexes majorly localize in the cytoplasm with small 

amount of unselective accumulation. 

After an assessment of the uptake and the generation of 1O2 upon light exposure in a cuvette, 

the generation of ROS inside of HeLa cells upon 1P- (488 nm, Fig. S77) and 2P (800 nm, Fig. 

S78) excitation was confirmed using the probe 2´,7´-dichlorofluorescein diacetate. To study 

their efficiency as PDT PSs, their cytotoxicity in the dark as well as upon irradiation at 480 nm 

(10 min, 3.1 J/cm2) and 540 nm (40 min, 9.5 J/cm2) towards non-cancerous retinal pigment 
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epithelium (RPE-1), HeLa, mouse colon carcinoma (CT-26) and human glioblastoma 

astrocytoma (U373) cells was investigated. Importantly, all complexes were found to be non-

toxic in the dark (IC50, dark >100 μM) in all cell lines (Table S11-S12). This is an important 

requirement for a PDT agent. As desired, all compounds were found to be phototoxic in the 

micromolar range (IC50, 480 nm = 0.7 - 53.6 μM, IC50, 540 nm = 0.9 - 83.1 μM) in the different cell 

lines employed in this study. As the lead compounds of this study, complex 7 had an IC50
 value 

even in the nanomolar range in CT-26 cells (IC50, dark >100 μM, IC50, 480 nm = 0.7 ± 0.4 μM, IC50, 

540 nm = 0.9 ± 0.3 μM) with a PI value > 143. Under identical experimental conditions, the 

anticancer drug cisplatin and the well-known PS PpIX display a magnitude lower 

(photo-)toxicity. The cell death mechanism of the complexes was then evaluated by measuring 

the cell viability upon preincubation with autophagy (3-methyladenine), apoptosis (Z-VAD-

FMK), paraptosis (cycloheximide) and necrosis (necrostatin-1) inhibitors (Fig. S79). While 

apoptosis was found to be the cell death mechanism for 1-5, 6-7 triggered cell death by a 

combination of apoptosis and paraptosis pathways.  

After evaluation of the biological effects of the compounds on 2D monolayer cells, their ability 

to act on 3D multicellular tumor spheroids (MCTS) was investigated. MCTS simulate the 

conditions found in clinically treated tumors including hypoxia and proliferation gradients to 

the center.44 Consequently, the penetration of the compounds inside of HeLa MCTS with a 

diameter of 800 μm was investigated by 1P and 2P z-stack confocal laser scanning microscopy. 

4-7 completely penetrated the MCTS within 12 h with a strong luminescence signal at every 

section depth, whereas 1-3 were mostly found on the outer sphere (Fig. S80-S86). Upon an 

increased incubation time up to 60 h, the remaining compounds were also able to penetrate the 

MCTS, with exception to 2, which was still found mostly on the outer sphere (Fig. S87-S91). 

Following this, the tumor growth inhibition effect of 1-7 (20 μM) in HeLa MCTS was 

investigated and compared to the well-known PS tetraphenylporphyrin (H2TPP) (20 μM) and 
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cisplatin (10 μM, 30 μM). The compounds were incubated for 3 days in the dark as this time 

was shown to be required for a complete MCTS penetration. The MCTS were then exposed to 

a 1P (500 nm, 10 J/cm2) or 2P irradiation (800 nm, 10 J/cm2, section interval of 5 μm) on day 

3. During the whole time period, the shape and volume of the MCTS was constantly monitored. 

As expected, the MCTS treated with 1-7 or H2TPP in the dark (Fig. 3a, representative image of 

MCTS: Fig. S92) were asymptotically growing in the same manner than the control group, 

indicating that the compounds do not show any inhibitory effect whereas cisplatin showed a 

weak effect on the tumor growth. On the contrary, the volume of the MCTS treated with 

complexes 1-7 and exposed to 1P or 2P irradiation (Fig. 3b-3c, representative image of MCTS: 

Fig. S93-S94) significantly shrank, demonstrating their strong tumor inhibition effect.  

 

 

Fig. 3. Tumor growth inhibition assay. Change of the volume in HeLa MCTS in correlation to 

the time of the treatment. The MCTS were treated with compounds 1-7 (20 μM, 2% DMSO, 

v%), H2TPP (20 μM, 2% DMSO, v%) and cisplatin (10 μM and 30 μM). The MCTS were a) 

strictly kept in the dark, b) exposed to 1P irradiation (500 nm, 10 J/cm2), c) exposed to 2P 

irradiation (800 nm, 10 J/cm2 with a section interval of 5 μm) on day 3. The error bars 

correspond to the standard deviation of the three replicates.  

 

To further study the effect the complexes on the tumor survival, the treated MCTS were stained 

with a cellular living cell kit using Calcein AM (Fig. 4). The fluorescence images confirmed 
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that the MCTS treated with 1-7 in the dark and with 1-3 upon a 1P irradiation (500 nm, 10 

J/cm2) or 2P irradiation (800 nm, 10 J/cm2, section interval of 5 μm) are still intact. The low 

phototoxic effect of 1-3 is caused by the poor MCTS penetration. Promisingly, the MCTS 

treated with 4-7 and exposed to 1P or 2P light were completely eradicated.  

 

Fig. 4. Representative image of a viability assay in HeLa MCTS. MCTS were treated with 

compounds 1-7 (20 μM, 2% DMSO, v%) in the dark for three days. After this time, MCTS were 

kept in the dark, exposed to 1P irradiation (500 nm, 10 J/cm2) or to 2P irradiation (800 nm, 10 

J/cm2, section interval of 5 μm). After two days, the cell viability was assessed by measurement 

of the fluorescence of calcein (λex = 495 nm, λem = 515 nm), which is generated in living cells 

from calcein AM. 
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The photodynamic effect using a 1P (500 nm, 10 J/cm2) and 2P irradiation (800 nm, 10 J/cm2, 

section interval of 5 μm) was then quantified by determination of the ATP concentration (Table 

S13). Importantly, no measurable cytotoxicity in the dark could be observed in HeLa MCTS 

for all compounds and 1-3 upon light exposure in agreement with the previous investigations. 

4-6 were found to be phototoxic in the micromolar range (IC50, 500 nm = 6.8 – 78.3 μM, IC50, 800 

nm = 1.4 – 87.3 μM). Strikingly, the lead compound of this study 7 was found to be non-toxic in 

the dark at even higher concentrations (IC50, dark > 300 μM), while being highly phototoxicity 

in the low micromolar range (IC50, 500 nm > 6.8 ± 0.2 μM, IC50, 800 nm > 1.4 ± 0.2) with 

exceptionally high PI values (PI500 nm > 44, PI800 nm > 250). Importantly, under identical 

experimental conditions, treatment with H2TPP did not show a cytotoxic effect (IC50, dark = IC50, 

500 nm = IC50, 800 nm > 100 μM), indicating that 7 is able to act at low drug and light doses 

compared to a clinically utilized tetrapyrrolic compound.  

Capitalizing on these promising results, the biological properties of 7 to act as a PDT PS were 

further investigated in a mouse model. To ensure solubility and biocompatibility, the PS was 

converted to a Cl- salt using a counter ion exchange resin. A challenging to treat multiresistant 

doxorubicin-selected P-gp-overexpressing human colon cancer tumor model (SW620/AD300) 

was used to evaluate the PS potential. The biodistribution of 7 (2 mg/Kg) inside this mouse 

model was then time-dependently (30 min, 1 h, 2 h) studied by intravenous tail-injection into 

nude mice. After each time point, the mice were sacrificed and the major organs (i.e., blood, 

spleen, intestine, stomach, liver, kidney, uterus, lung, heart, brain, tumor) were separated, 

grinded and the Ru content determined by ICP-MS. Interestingly, 7 was absorbed from the 

blood stream within 1 h with a high accumulation in the intestine and some accumulation in the 

tumor (Fig. S95). Following this, 1 h after an intravenous tail-injection of 7 (2 mg/Kg), in vivo 

PDT experiments using a 1P (500 nm, 10 mW/cm2, 60 min) or 2P irradiation (800 nm, 50 mW, 

1 kHz, pulse width 35 fs, 5 s/mm) were performed on mice with an 80 mm3 tumor. 



14 
 

Encouragingly, after only one PDT treatment, the tumor drastically shrank until they were 

nearly eradicated whereas the tumors treated with the light or 7 in the dark (Fig. 5a, 5c) kept 

growing. Importantly, the animals treated with the compound behave normally, without signs 

of pain, stress or discomfort and did not lose or gain weight (Fig. 5b). After the treatment, the 

mice were sacrificed, the tumor and organs were separated and histologically examined by an 

H&E stain. The tumor tissue treated with 7 and exposed to light displayed pathological 

alterations caused by the PDT treatment (Fig. S96) while all other organs did not show any 

significant effect (Fig. S97). Overall, this study demonstrates the enormous potential of 7 as a 

PS for 1P and 2P PDT. 
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Fig. 5. In vivo PDT study of 7 using 1P (500 nm, 10 mW/cm2, 60 min) or 2P (800 nm, 50 mW, 

1 kHz, pulse width 35 fs, 5 s/mm) excitation on nude mice bearing a doxorubicin-selected P-

gp-overexpressing human colon cancer tumor (SW620/AD300). a) Tumor growth inhibition 

curves upon treatment. b) Average body weights of the tumor-bearing mice. c) Representative 

photographs of the tumor-bearing mice. 
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CONCLUSION 

Ru(II) polypyridine complexes with (E,E’)-4,4´-bisstyryl-2,2´-bipyridine ligands have been 

rationally designed using DFT calculations and were found to have a remarkable red-shifted 1P 

absorption as well as exceptionally high 2P cross sections. The complexes were found to be 

taken up by cancerous cells through an energy-dependent endocytosis pathway and to majorly 

accumulate in the cytoplasm. Upon irradiation, they were found to generate 1O2, causing a 

phototoxic effect by apoptosis and paraptosis pathways in various monolayer cells as well as 

multicellular tumor spheroids. In vivo studies confirmed the impressive ability of 7 to act as a 

PS upon treatment at clinically relevant 1P (500 nm) and 2P (800 nm) irradiation with an 

eradication of the tumor. Importantly, these compounds were found to be highly water soluble, 

stable in human plasma as well as upon constant irradiation and therefore are able to overcome 

the limitations of currently employed PSs. We strongly believe that these complexes have great 

potential for preclinical trials.  
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