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Abstract  

 Host-guest binding is a challenging problem in computer simulation. The prediction of binding affinities 

between hosts and guests is an important part of the statistical assessment of the modeling of proteins and 

ligands (SAMPL) challenges. In this work, the volume-based variant of well-tempered metadynamics is 

employed to calculate the binding affinities of the host-guest systems in the SAMPL6 challenge. By biasing 

the spherical coordinates describing the relative position of the host and the guest, the initial-configuration-

induced bias vanishes and all possible binding poses are explored. The agreement between the predictions 

and the experimental results and the observation of new binding poses indicate that the volume-based 

technique serves as a nice candidate for the calculation of binding free energies and the search of the binding 

poses. 
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Introduction 

Accurate prediction of the free energy difference between states of interest is of great importance in 

computer modeling.1-8 Due to the energy penalty in the Boltzmann factor and the numerical limitation in the 

integration of the equation of motion, long simulations are required to obtain converged statistics of the 

systems.9-12 Fortunately, with the development of computer architecture and the optimization of simulation 

software, modern researchers could achieve sufficient level of convergence in many cases.13-15 The sampling 

efficiency could be further increased with the enhanced sampling techniques, which greatly expand the 

applicability of computer simulations.16-24 For instance, umbrella sampling25 was employed to obtain 

converged thermodynamic profile in the protonation-dependent and sulfur-substitution-dependent base 

flipping cases with several µs simulations.26-27 Nonphysical pathway was constructed to connect the states of 

interest and free energy calculation was performed along the alchemical reaction coordinate to determine the 

free energy difference between physical end states.21, 28-38 Aside from the sampling issue, the accuracy of the 

description of the system or the so-called Hamiltonian is another source of error limiting the quality of 

prediction. Quantum mechanics Hamiltonians39-43 provide accurate descriptions but are computationally 

demanding, while all-atom force fields44-48 provide a faster alternative with moderate accuracy.  

In computer-aided drug discovery, high throughput virtual screening provides preliminary hits, which 

are then refined with free energy calculations.49-57 Hit-to-lead optimization is often performed with the so-

called alchemical method, which features an alchemical pathway connecting the end states.58-64 Direct 

simulation of the binding/unbinding event is also popular.65-67 Although the simulation of the direct 

binding/unbinding event is often more time-consuming and computationally expensive, more physical 

pictures in the host-guest interactions could be obtained. All-atom force fields have often been employed due 

to efficiency considerations. Numerous biologically relevant systems reported by experimental investigators 

have been simulated.37, 60 Recently, some challenging systems have been proposed by computational 

chemists to assess the sampling and Hamiltonian issues. The statistical assessment of the modeling 

(SAMPL) challenges are examples of such grand challenges.68-73 Their expanding areas include solvation 

free energies, pKa, host-guest systems, and partition coefficients. In the 6th statistical assessment of the 

modeling (SAMPL6), the host-guest binding is one of the main challenge and many researchers submitted 

predictions obtained from various simulation techniques.71, 74-75 For instance, equilibrium free energy 

simulation methods such as umbrella sampling and the double decoupling method were used to calculate the 

binding affinities.70, 73 The nonequilibrium pulling technique in the alchemical space was employed to obtain 

the binding affinities.72 The various mean errors reported are about 2 kcal/mol.71  
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In umbrella sampling, the distance between atoms in the host and the guest or its mass-weighted 

variants is often chosen as the collective variable (CV) describing the binding and unbinding events. 

However, this one-dimensional (1D) CV could only describe the distance between groups of atoms, but 

details about their relative position are absent. Recently, the spherical coordinates  , ,    have been 

emerged to enhance the sampling of the binding/unbinding event in protein-ligand systems.76 The three-

dimensional (3D) CV set enables us to scan all possible binding poses, which makes it a nice alternative for 

simulating the host-guest binding event in the SAMPL challenge. In the current work, with this set of CV, 

we explore all possible binding poses in the host-guest systems in SAMPL6 and reweight the statistics on 

the two-dimensional (2D) radius-contacts ( C  ) surface to calculate the binding affinities. Two widely 

applied charge schemes will be employed. The illustrative calculations show that multiple binding poses 

could be identified and the quality of prediction is comparable to the existing publications.  

 

Methodology and Computational Details  

System preparation. The host molecules include two cavitands named octa acids (OA)77 and tetra-

endo-methyl octa-acids (TEMOA)78 and one molecule from the cucurbituril family named cucurbit[8]uril 

(CB8).79 OA and TEMOA are of low symmetry. Their basket-like binding pockets are accessible to the guest 

through a large entryway. The difference between these two hosts is the 4 methyl groups at the entryway, 

which alters the size of the acceptable guest. These two hosts share the same set of 8 guest molecules. The 

highly symmetric CB8 is composed of 8 identical glycoluril monomers, which form a ring. 13 guest 

molecules for CB8 are simulated in the current work. The structures of the hosts and guests are obtained 

from the online server of the SAMPL6 challenge.80 The structures of the hosts and the guests are shown in 

Fig. 1. 

Two widely accepted charge schemes are used in the current work. We construct the hosts and the guests 

with AM1-BCC81 charges and the other parameters such as bonded terms and vdW radius are obtained from 

the general Amber force field (GAFF) force field.82 The other charge scheme used is the restrained 

electrostatic potential (RESP) scheme. We construct the systems (hosts and guests) again with the traditional 

RESP fitting procedure, namely B3LYP/6-31G* optimization and HF/6-31G* electrostatic potential (ESP) 

scanning. A single conformation is used to generate the ESP data and restrained fitting gives the atomic 

charges. The other parameters are again obtained from GAFF. The systems are solvated with TIP3P83-84 

water molecules in octahedron boxes. The truncated octahedron cell is replicated in whole space by periodic 
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boundary conditions. The minimum distance between the box edge and the surface of the solute is set to 28 

Å. This value is much larger than the one used in normal protein-ligand simulations. The reason for 

choosing such a value would be discussed later. Non-polarizable spherical counter ions of Na+ and Cl- 

parameterized for TIP3P water model by Joung and Cheatham85-86 are added for neutralization.   

MD simulations.  

The well-tempered metadynamics method is used to enhance the sampling of the binding/unbinding 

event.66, 87-88 Gaussian biasing potentials are added periodically and the overall biasing potential increases 

with time. The method defines the biasing potential with the following equation,  
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where nV  represents the overall biasing potential in the nth step, s  is the CV matrix,  , nG s s  denotes the 

Gaussian kernels of biasing potentials,   is the bias factor. The post-process reweighting is obtained by the 

time-independent algorithm.89 The resulting free energy estimate can be obtained with the reweighting formula 

applicable for finite-time sampling estimates, 
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where the canonical bracket denotes ensemble average, O  is the mechanical observable,   represents the 

reciprocal temperature, c  is the offset of the biasing potential or the average biasing potential in the CV 

space (i.e. rct), and t   is the time of simulation. This reweighting formula uses the rbias term 

     , ,rbiasV t V t c t s s  , and requires to omit the first part of the simulation. Note that other enhanced 

sampling methods such as the Hamiltonian replica exchange method (H-REMD)90-91 are also usable.  

The CV set we bias should be able to describe the binding/unbinding between the host and the guest and 

differentiate different binding poses appropriately. The spherical coordinates  , ,    define the relative 

position of the center of mass (COM) of the host and that of the guest, and thus satisfy the above requirements. 

Biasing these coordinates enables us to scan all possible binding poses of the host-guest systems and thus find 

the most stable binding pose. Therefore, the initial configuration of the host-guest systems is irrelevant and 

can be chosen randomly. With a large radius  , the guest is fully decoupled from the host, which provides a 

nice definition of the unbound state. As the simulation box is of finite size, an upper wall is added on the radius 

 , which limits the volume of phase space that the ligand could explore. An entropic correction defined in 

Eq. (3) is thus added to recover the unbiased free energy.  
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where s  is the upper wall on the radius  , 0 1660V   Å3 is the standard state volume, and 
hostV  is the 

volume of the host.  

The volume-based technique scans a sphere around the host. Therefore, a huge water box centered at the 

COM of the host is required to solvate the system. The minimum size of the box is determined by the 

minimum distance between the COM of the host and that of the guest, at which the interactions between the 

host and the guest is zero. This minimum distance is determined by the sizes of the host and the guest and 

the strength of interactions between the host and the guest. A fully decoupled state could be defined by the 

zero or near-zero contact between the host and the guest. The following switching function is used to 

calculate the contact number between the host and the guest. 
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where A  and B  denote two groups of atoms (i.e. the host and the guest), the subscripts i  and j  are the 

ith and jth atom in the groups, m  and n  are 6 and 12, respectively, r  refers to the distance and the 

threshold for the contact 0r . In our calculation of the host-guest contacts, all heavy atoms in the host and the 

guest are included and 0 6r   Å. The resulting decoupled state defined by this definition has the guest at 

least 6 Å away from the host. The upper wall on the radius   is set at 26 Å in the current simulation, 

which is large enough to define a fully decoupled state with near-zero contacts between the host and the 

guest. 

 For each host-guest system, the reference bound structure provided by the SAMPL6 online server is 

used as the starting structure, from which 100 ps NVT equilibration and 5 ns NPT equilibration is 

performed. After that, we perform 400 ns enhanced sampling simulation. As all relative positions are 

scanned, the starting conformation is irrelevant to the simulation results and all possible binding poses could 

be explored. The simulation is performed at 298 K (the experimental condition) with GROMACS 2018.4 92 

patched with PLUMED 2.6.0-dev93. The V-rescale algorithm94 is employed for temperature regulation and 

the Parrinello-Rahman barostat95-96 is used for pressure regulation. A time step of 1 fs is used to propagate 
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the dynamics. Long-range electrostatics are treated with the PME97-98 method. The initial Gaussian height is 

0.24 kcal/mol, the deposition interval is 0.5 ps, and the bias factor used is 20. Gaussian widths are set as 0.1 

Å, 
16


, and 

8


 for the three polar coordinates, respectively. 

 

Result and discussion 

 We discuss the results obtained with AM1-BCC charges to provide some insights into the simulation. To 

illustrate the enhancement of the sampling efficiency for the relative position of the host and the guest, we 

calculate the number of contacts between the host and the guest and decompose it into the atomic sequence. 

All atoms of the host and the guest are included in the calculation, which differs from the later free energy 

projection case, where only heavy atoms are included. We choose the OA-G5 complex as an example. The 

time-dependence of the total number of contacts between the host and the guest is shown in Fig. 2a, from 

which we notice that the binding/unbinding event is observed frequently. Namely, the sampling of the 

association/dissociation of the host-guest complex is enhanced by the biasing potentials on the spherical 

coordinates. As the total number of contacts represents the overall outcome of the host-guest interactions, in 

order to investigate the details of the host-guest binding, e.g. identifying the parts of the host coordinating 

the guest, we decompose the total number of contacts into the contributions of each atom of OA. The 

resulting time series of the atom-specific contacts is given in Fig. 2b, from which we know that the guest 

explores the accessible areas around the host. Therefore, all possible binding poses could be identified, as 

long as the simulation converges.     

Convergence check is indispensable in free energy calculation. It provides the evidence of the reliability 

of the ergodic assumption and thus should be checked in the first place. The time-evolution of the height of 

Gaussian potentials (cf. Fig. S1.) indicates that for all host-guest systems, at the end of the simulation, the 

height of new Gaussian potentials decreases to a very small value (e.g. 0.0002 kcal/mol). Therefore, the 

overall biasing potential in the whole CV space changes slowly. The average bias or the offset  c t  (rct in 

the plot) is shown in Fig. S2, from which we know that the average biasing potential increases smoothly 

over the simulation time. The convergence is further checked with the time-dependence of the binding 

affinity. We project the free energy on the radius-contacts (  -C) surface and two examples are shown in 

Fig. 3. We choose the global free energy minimum as the most stable binding pose and calculate the free 

energy difference between that state and the zero-contact state. The time-dependence of the binding affinities 

is shown in Fig. S3. We can see that 350 ns is already long enough for convergence and the binding affinities 
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do not change with further simulation.  

After checking the convergence of the simulation, we then focus on the binding affinities predicted by 

the volume-based technique. The volume and the resulting entropic correction for the host-guest systems are 

summarized in Table S1. The volumes of the hosts are estimated to be 5510 Å3, 5360 Å3, and 3840 Å3, 

respectively. Then, as the radius of the sphere is 26 Å, the volume corrections are calculated to be 2.195 

kcal/mol, 2.193 kcal/mol and 2.206 kcal/mol.  

The corrected binding free energies for the host-guest systems are given in Table 1, Table 2 and Table 3. 

Several metrics including the mean signed error (MSE), the mean absolute error (MAE), the root-mean-

squared error (RMSE), Kendall's rank correlation coefficient (τ), and Pearlman's predictive index (PI) are 

used to assess the errors and the consistency of the ranks of binding affinities from our modeling and the 

experimental reference. The reported RMSE values are 1.3 kcal/mol, 2.4 kcal/mol and 3.5 kcal/mol for the 

three hosts, which are comparable to the reported statistics in the overview of SAMPL6 submission.71 The 

case of the ranking coefficients is similar. A comparison between the predictions and the experimental 

references is given in Fig. 4. We can see that for the hosts of OA and TEMOA, the predicted binding 

affinities agree to the experimental results, while the agreement for the CB8 case is not very good. The 

results obtained with RESP charges are given in Table S2, Table S3 and Table S4. The RESP results are also 

shown in Fig. 4. We can see that the predicted binding affinities slightly differ from the AM1-BCC results, 

but the mean errors and the ranking coefficients are similar. Specifically, for the host of OA, that the binding 

affinities of the guests G1 and G4 are predicted to deviate from the experimental reference in both charge 

schemes, while for the guests of G3, G5, G6 and G7, both charge schemes provide results consistent with 

the experiments. For G0 and G2, the BCC results seem to agree with the experiments, while the deviations 

of the RESP ones are relatively large. As a result, the binding affinities calculated with the BCC charges are 

in better agreement with the experimental references. The three error estimates (including RMSE, MSE, and 

MAE) are all smaller in BCC. Note that the rank coefficients are very similar for the predictions obtained 

from the two charge schemes and are larger than 0.5, which indicates that both of them are able to correctly 

predict the ranks of the binding affinities for these guest systems targeting OA. For the TEMOA case, the 

predictions from the two charge schemes differ from the experimental values for G0, G1, G2 and G7. In the 

G3 and G5 cases, the agreements between the predictions and the experiments are good for both charge 

schemes. As for G4 and G6, the BCC results are in better agreement with the experiments, compared with 

the RESP ones. The three mean error estimates of the dataset from different charge schemes are similar. The 

BCC charge scheme provides very good predictions on the ranking coefficients, while the RESP ones are 
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worse. For the last host CB8, the agreements between the predicted binding affinities and the experimental 

references are worse than the previous two cases. Only for the guest of G0, the predictions from the two 

charge schemes agree with the experiments within the statistical uncertainty, while for the other guests, the 

deviations are large. As a result, the mean error estimates are larger than the previous two cases. Note that 

the three mean errors are similar for the two charge schemes, but the ranking coefficient from the RESP 

charges is better than that from the BCC charges. Note that the quality of our predictions is comparable to 

the existing publications. Therefore, the performance of biased simulations along spherical coordinates is 

similar to other techniques. The success of these predictions indicates the applicability of the spherical 

coordinates in the simulations of the host-guest binding.  

Aside from the binding affinity, an interesting phenomenon we observed is the existence of multiple 

stable binding poses in the host-guest systems. Although we use the reference bound state given by the 

SAMPL6 online server80 as the starting structure, all possible binding poses are scanned and the most stable 

binding pose could be found. We choose two examples to discuss the features of different binding cases in 

the following paragraph. 

In Fig. 3, two typical free energy surfaces are given. The first one has only one free energy minimum, 

while the other has two minima, which indicates the existence of multiple stable binding poses. In Fig. 3a, 

starting from the free energy minimum, the free energy increases monotonically with the distance  , and 

the number of contacts decreases with  . This indicates that when the guest leaves the bound state, the 

contacts between the host and the guest become less and the host-guest interactions become weaker. When 

they are separated by about 15 Å, the contact number becomes near-zero and the guest is fully decoupled 

from the host. However, in Fig. 3b, such a monotonic behavior changes to some extent and multiple free 

energy minima exist. This suggests that there are multiple (meta-) stable binding poses. It is worth noting 

that the CB8-G3 complex is reported to have difficulty in convergence.80 The bias due to the initial 

configuration could be significant and the correlation time is long. We visualize the structures of the binding 

poses to dig deeper into the problem. As two free energy minima exist, we extract one configuration from 

each free energy basin. Aside from the binding pose provided from the SAMPL6 online server, the binding 

poses observed in our simulation include one with the aromatic ring being coordinated at the center of the 

host. The free energy landscape indicates that these two binding poses are of similar binding affinities. 

Therefore, it is clear that by biasing the spherical coordinates, the whole space of binding poses could be 

explored efficiently and the simulation results are irrelevant to the starting configuration.  
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Conclusion  

The current work provides illustrative calculations of the binding affinities in host-guest systems with 

the recently proposed volume-based metadynamics. Specifically, we simulate SAMPL6 host-guest systems 

by biasing the spherical coordinates  , ,   , which scan all possible binding poses. For some systems, 

only one stable binding pose is observed, while for the other multiple stable poses exist. For the CB8-G3 

complex, we observe a new binding pose that differs from the starting configuration provided by the 

SAMPL6 online server, which indicates that the initial-configuration bias is effectively avoided. The quality 

of the predicted binding affinities of the host-guest systems is comparable to existing publications. Note that 

the success of the current simulation is mainly determined by the choice of CV set, while the enhanced 

sampling method could be changed to alternatives such as H-REMD. Therefore, our results indicate that the 

spherical coordinates could be a nice candidate for the CV chosen in the computational modeling of the 

host-guest binding. 
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Table 1. The OA-guest binding affinities in kcal/mol obtained from metadynamics simulations with AM1-

BCC charges. expG  is the experimental value, 
metadG  denotes the free energy difference between the 

bound and unbound states, 
VCG  represents the volume correction, and 

calcG  is the predicted binding 

affinity. MSE, MAE, RMSE, τ, and PI serve as quality measurements. SD denotes the standard error of the 

free energy estimate, which is obtained from block averaging.  

Host Guest expG  
metadG  SD VCG  

calcG  SD 

OA 

G0 -5.68 -3.4  0.6  2.2  -5.6  0.6  

G1 -4.65 -4.3  0.6  2.2  -6.5  0.6  

G2 -8.38 -6.7  0.6  2.2  -8.9  0.6  

G3 -5.18 -3.4  0.6  2.2  -5.6  0.6  

G4 -7.11 -7.8  0.5  2.2  -10.0  0.5  

G5 -4.59 -2.8  0.5  2.2  -5.0  0.5  

G6 -4.97 -2.1  0.6  2.2  -4.3  0.6  

G7 -6.22 -4.1  0.5  2.2  -6.3  0.5  

RMSE           1.3   

MSE      0.7  

MAE      0.9  

τ      0.6  

PI           0.8   
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Table 2. The TEMOA-guest binding affinities in kcal/mol obtained from metadynamics simulations with 

AM1-BCC charges. Error estimates are obtained from block averaging. expG  is the experimental value, 

metadG  denotes the free energy difference between the bound and unbound states, 
VCG  represents the 

volume correction, and 
calcG  is the predicted binding affinity. MSE, MAE, RMSE, τ, and PI serve as 

quality measurements. 

Host Guest expG  
metadG  SD VCG  

calcG  SD 

TEMOA 

G0 -6.06 -7.5  0.5  2.2 -9.7 0.5  

G1 -5.97 -8.0  0.6  2.2 -10.2 0.6  

G2 -6.81 -7.7  0.6  2.2 -9.9 0.6  

G3 -5.6 -2.6  0.6  2.2 -4.8 0.6  

G4 -7.79 -6.9  0.6  2.2 -9.1 0.6  

G5 -4.16 -1.4  0.6  2.2 -3.6 0.6  

G6 -5.4 -4.4  0.5  2.2 -6.6 0.5  

G7 -4.13 -0.1  0.6  2.2 -2.3 0.6  

RMSE           2.4   

MSE      1.3  

MAE      2.0  

τ      0.6  

PI           0.9   
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Table 3. The CB8-guest binding affinities in kcal/mol obtained from metadynamics simulations with AM1-

BCC charges. Error estimates are obtained from block averaging. expG  is the experimental value, 
metadG  

denotes the free energy difference between the bound and unbound states, 
VCG  represents the volume 

correction, and 
calcG  is the predicted binding affinity. MSE, MAE, RMSE, τ, and PI serve as quality 

measurements. 

Host Guest expG  
metadG  SD VCG  

calcG  SD 

CB8 

G0 -6.69 -4.3  0.6  2.2 -6.5  0.6  

G1 -7.65 -4.3  0.6  2.2 -6.5  0.6  

G2 -7.66 -11.0  0.6  2.2 -13.2  0.6  

G3 -6.45 -9.5  0.6  2.2 -11.7  0.6  

G4 -7.8 -11.0  0.5  2.2 -13.2  0.5  

G5 -8.18 -12.2  0.6  2.2 -14.4  0.6  

G6 -8.34 -8.6  0.6  2.2 -10.9  0.6  

G7 -10 -8.0  0.5  2.2 -10.2  0.5  

G8 -13.5 -11.2  0.6  2.2 -13.4  0.6  

G9 -8.68 -9.3  0.5  2.2 -11.5  0.5  

G10 -8.22 -2.0  0.6  2.2 -4.2  0.6  

G11 -7.77 -7.8  0.6  2.2 -10.0  0.6  

G12 -9.86 -7.6  0.6  2.2 -9.9  0.6  

RMSE           3.5   

MSE      1.9  

MAE      2.7  

τ      0.1  

PI           0.2   
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Fig. 1. 2D chemical structures of the hosts and guests. Top: OA, TEMOA and their guests from G0 to G7. 

Bottom: CB8 and its guests from G0 to G12. 
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Fig. 2. a) The number of contacts between OA and G5 and b) its decomposition by each atom of OA during 

metadynamics simulations. Therefore, the y-axis represents the serial number of atom in the host. All atoms 

of the host and the guest are included in the calculation. Thus, the number of contacts differ from the later 

projection of the metadynamics results shown in other figures. Red dots denote contacts larger than 10, 

green dots represent contact number between 5 and 10, blue ones are those larger than 1, and the other are 

represented by white dots.  
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Fig. 3. Typical 2D  -C free energy surface in kcal/mol with a) a single free energy minimum (the OA-G5 

system), and b) multiple free energy minima (CB8-G3).  
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Fig. 4. Correlation between the predicted binding affinities and the experimental reference for a) OA-guest 

systems, b) TEMOA-guest systems, and c) CB8-guest systems. The exact values of the binding affinities are 

presented in Table 1-3 and Table S2-S4.  
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Fig. S1. Time evolution of the height of Gaussian potentials under the AM1-BCC charge scheme for a) OA-

guest systems, b) TEMOA-guest systems, and c) CB8-guest systems.  
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Fig. S2. Time evolution of the average bias in the CV space (i.e. rct) under the AM1-BCC charge scheme for 

a) OA-guest systems, b) TEMOA-guest systems, and c) CB8-guest systems.  
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Fig. S3. Binding affinities from metadynamics simulations with AM1-BCC charges as a function of 

simulation time. The length of simulation to omit is set to 100 ns, which are chosen according to the average 

bias in the CV space (i.e. rct). The binding affinity is zero at the beginning as no free energy surface is 

reweighted.  
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Table S1. The volume of the protein and the resulting entropic corrections. The probe radius used is 2.0 Å, 

and the grid step is set to 0.5 Å. The only statistical quantity in the equation for the entropic correction is the 

volume of the host molecule Vhost. As the hosts are quite rigid and the fluctuation of their sizes is very small, 

the statistical error of Vhost is negligible. Therefore, we do not give any statistical error about the entropic 

correction.  

Terms    

 

 Systems 

V0 (Å 3) Vhost (Å
 3) s  (Å) Vs (Å

 3) entropic correction (kcal/mol) 

OA 1660.0 5110.0 26.0 73622.2 2.195 

TEMOA 1660.0 5360.0 26.0 73622.2 2.193 

CB8 1660.0 3840.0 26.0 73622.2 2.206 
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Table S2. The OA-guest binding affinities in kcal/mol obtained from metadynamics simulations with RESP 

charges. Error estimates are obtained from block averaging. expG  is the experimental value, 
metadG  

denotes the free energy difference between the bound and unbound states, 
VCG  represents the volume 

correction, and 
calcG  is the predicted binding affinity. The mean signed error (MSE), the mean absolute 

error (MAE), the root-mean-squared error (RMSE), Kendall's rank correlation coefficient (τ), and 

Pearlman's predictive index (PI) serve as quality measurements. 

Host Guest expG  
metadG  SD VCG  

calcG  SD 

OA 

G0 -5.68 -5.5  0.6  2.2  -7.7  0.6  

G1 -4.65 -5.8  0.6  2.2  -8.0  0.6  

G2 -8.38 -9.7  0.6  2.2  -11.9  0.6  

G3 -5.18 -2.7  0.5  2.2  -4.9  0.5  

G4 -7.11 -8.6  0.6  2.2  -10.8  0.6  

G5 -4.59 -2.1  0.6  2.2  -4.3  0.6  

G6 -4.97 -3.2  0.6  2.2  -5.4  0.6  

G7 -6.22 -4.2  0.5  2.2  -6.4  0.5  

RMSE           2.3   

MSE      1.6  

MAE      1.7  

τ      0.6  

PI           0.8   
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Table S3. The TEMOA-guest binding affinities in kcal/mol obtained from metadynamics simulations with 

RESP charges. Error estimates are obtained from block averaging. expG  is the experimental value, 

metadG  denotes the free energy difference between the bound and unbound states, 
VCG  represents the 

volume correction, and 
calcG  is the predicted binding affinity. MSE, MAE, RMSE, τ, and PI serve as 

quality measurements. 

Host Guest expG  
metadG  SD VCG  

calcG  SD 

TEMOA 

G0 -6.06 -1.3 0.6 2.2 -3.5 0.6 

G1 -5.97 -8.1 0.5 2.2 -10.3 0.5 

G2 -6.81 -7.3 0.5 2.2 -9.5 0.5 

G3 -5.60 -2.8 0.6 2.2 -5.0 0.6 

G4 -7.79 -5.2 0.6 2.2 -7.4 0.6 

G5 -4.16 -1.6 0.5 2.2 -3.8 0.5 

G6 -5.40 -2.6 0.6 2.2 -4.8 0.6 

G7 -4.13 -4.3 0.5 2.2 -6.4 0.5 

RMSE           2.2   

MSE      0.6  

MAE      1.7  

τ      0.2  

PI           0.4   
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Table S4. The CB8-guest binding affinities in kcal/mol obtained from metadynamics simulations with RESP 

charges. Error estimates are obtained from block averaging. expG  is the experimental value, 
metadG  

denotes the free energy difference between the bound and unbound states, 
VCG  represents the volume 

correction, and 
calcG  is the predicted binding affinity. MSE, MAE, RMSE, τ, and PI serve as quality 

measurements. 

Host Guest expG  
metadG  SD VCG  

calcG  SD 

CB8 

G0 -6.69 -3.9 0.6 2.2 -6.1 0.6 

G1 -7.65 -0.1 0.6 2.2 -2.3 0.6 

G2 -7.66 -1.0 0.6 2.2 -3.2 0.6 

G3 -6.45 -1.0 0.6 2.2 -3.2 0.6 

G4 -7.8 -5.4 0.6 2.2 -7.6 0.6 

G5 -8.18 -14.4 0.6 2.2 -16.6 0.6 

G6 -8.34 -6.8 0.6 2.2 -9.0 0.6 

G7 -10 -12.8 0.6 2.2 -15.0 0.6 

G8 -13.5 -7.2 0.6 2.2 -9.4 0.6 

G9 -8.68 -5.4 0.6 2.2 -7.6 0.6 

G10 -8.22 -11.6 0.6 2.2 -13.8 0.6 

G11 -7.77 -4.2 0.6 2.2 -6.4 0.6 

G12 -9.86 -6.6 0.6 2.2 -8.8 0.6 

RMSE           4.0   

MSE      -0.1  

MAE      3.2  

τ      0.5  

PI           0.6   

 

 

 

 


