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ABSTRACT: A general method for the N-arylation of sulfamides with aryl bromides is described. 

The protocol leverages a dual-catalytic system of nickel and a photoexcitable iridium complex and 

proceeds at room temperature under visible light irradiation. Using these tactics, aryl boronic esters 

and aryl chlorides can be carried through the reaction untouched. Thereby, this method 

complements known Buchwald-Hartwig coupling methods for N-arylation of sulfamides. 

 

INTRODUCTION 

 N-Aryl sulfamides are critical components of active pharmaceutical1 and agrochemical2 

agents (Figure 1).3,4 In drug discovery, sulfamides can be valuable analogues of sulfamate, 

sulfonamide, urea, carbamate, and amide functional groups.1a In reactions, N,N’-disubstituted 

sulfamides are useful as chiral auxiliaries,5 as organocatalysts,6 as reagents to promote 

dehydration,7 as precursors to sterically encumbered carbon–carbon bonds8 and as directing groups 

for C–H functionalization processes.9 Despite the potential of this valuable functional group, 
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sulfamides may be underutilized due to limitations in practical methods for their preparation.10, 

11, 12 

Figure 1. N-heteroaryl sulfamides are important FDA-approved drugs and therapeutic targets 

 To date, approaches to prepare N-(hetero)aryl sulfamides rely on N–S bond-forming 

reactions that involve the nucleophilic addition of amines to SO2 sources (not depicted),12, 13 or on 

C–N bond-forming strategies (Scheme 1). These direct methods for C–N bond formation have 

been primarily limited to nucleophilic substitution reactions (Scheme 1A), copper-mediated Chan-

Lam coupling processes that transform sulfamoyl azides (Scheme 1B),14 and Buchwald-Hartwig 

amination conditions that are palladium-mediated (Scheme 1C).15, 16, 17 

 Recently, room temperature Buchwald-Hartwig reaction protocols have emerged that are 

photochemically-driven and nickel-catalyzed.18, 19 These mild conditions are complementary to 

palladium-mediated protocols, representing one of the most general platforms in terms of the 

breadth of arenes tolerated in N-arylation processes.18a Additionally, nickel-catalyzed 

photochemically-driven conditions engage a broader range of nucleophilic coupling partners in 

efficient C–N bond-forming reactions.19 Accordingly, we anticipated that these photo-driven, 

nickel-catalyzed processes would afford an efficient, robust, and complementary strategy to access 

valuable N-(hetero)aryl sulfamides. Herein disclosed is the first photochemically-mediated, 

nickel-catalyzed method to access N-(hetero)aryl sulfamides.  
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Scheme 1. Recent advances allow for diverse and complementary strategies for the synthesis of N-(hetero)aryl 

sulfamides 

 

Results and Discussion 

 We13 and others18d have observed that, relative to electron-deficient arylbromides, electron-

rich arylbromides can be more challenging electrophiles when employing nickel-mediated cross-

coupling technologies. Accordingly, we optimized the reactions of sulfamide 1a with electron-

deficient 4-(trifluoromethyl)bromobenzene and electron-rich 4-(tert-butyl)bromobenzene 

concurrently (Table 1).  

  Relying on previously established conditions for the arylation of sulfamate esters,13 

sulfamide 1a reacts with 4-(trifluoromethyl)bromobenzene to afford N-aryl sulfamide 3a in 

quantitative yield (Table 1, entry 1). This synthetic protocol can transform aryl chloride and iodide 

electrophiles, albeit in slightly diminished yields (entries 2–3). Unsurprisingly, sulfamide 1a reacts 

with 4-(tert-butyl)bromobenzene inefficiently (entries 4–5). Consistent with previous 
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observations,13, 18d higher turnover numbers can be achieved when 4,4’-di-tert-butyl-2,2’-dipyridyl 

(dtbbpy) is employed as a ligand for nickel (entry 6).  

 To our surprise, the efficiency of this reaction improves substantially when it is run in 

absolute ethanol, or with ethanol as a co-solvent (entries 7–8). Importantly, the solvent and the 

aryl bromide do not engage in undesirable C–O coupling processes, as the predicted products of 

these processes are not detected.  Unfortunately, the reaction efficiency drops in the presence of 

100 equiv of water (entry 9). When we assessed a single solvent from each of seven solubility 

clusters,20 the reaction was less efficient in these other solvents (entries 10–15). The advantages of 

ethanol were isolated to reactions engaging this more electron-rich aryl bromide, and did not 

translate to the reaction of 4-(trifluoromethyl)bromobenzene (entries 16–17). This synthetic 

protocol can be used to transform aryl iodide electrophiles but does not transform electron-rich 

aryl chlorides in synthetically useful efficiencies (entries 18–19). Control experiments confirm that 

nickel, photocatalyst, and light are critical to the success of both of the optimized cross-coupling 

protocols (see supporting information for details). 

Table 1. Optimization informs distinct conditions for electron-deficient and electron-rich aryl bromides 

entry R X [Ni] 

(mol %) 

ligand solvent yield 
(%)b 

1 CF3 Br 5 – MeCN >98c 

2 CF3 I 5 – MeCN 79 

3 CF3 Cl 5 – MeCN 43 

4 tBu Br 5 – MeCN 32 

5 tBu Br 10 – MeCN 33 

6 tBu Br 10 dtbbpy MeCN 47 

7 tBu Br 10 dtbbpy EtOH 89c 

8 tBu Br 10 dtbbpy 9:1 MeCN: 
EtOH 

90 
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1a 3
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R[Ir(ppy)2(dtbbpy)]PF6 (1 mol %)

ArX (2, 1.5 equiv)
NiBr2•glyme, ligand
 DBU  (3.0 equiv), hν

solvent, 24 h



9 tBu Br 10 dtbbpy EtOH with H2O 
(100 equiv) 

6 

10 tBu Br 10 dtbbpy MeOH 76 

11 tBu Br 10 dtbbpy iPrOAc 7 

12 tBu Br 10 dtbbpy CH2Cl2 0 

13 tBu Br 10 dtbbpy DMSO 32 

14 tBu Br 10 dtbbpy acetone 35 

15 tBu Br 10 dtbbpy 2-methyl 
tetrahydrofuran 

23 

16 CF3 Br 5 – EtOH 70 

17 CF3 Br 5 – MeOH 81c 

18 tBu I 10 dtbbpy EtOH 81 

19 tBu Cl 10 dtbbpy EtOH 7 

a General reaction conditions: sulfamide 1a (1.0 equiv), aryl halide 2 (1.5 equiv), NiBr2•glyme,  [Ir(ppy)2(dtbbpy)]PF6 

(1 mol %), DBU (3.0 equiv), and ligand (4 mol %) in indicated solvent (0.25 M) with stirring and irradiation between 

two 34 W blue Kessil lamps for 24 h. b NMR yield using an internal standard of 2,3,5,6–tetrachloronitrobenzene. c 

Isolated yield. 

 These dual catalyzed processes offer complementary reactivity profiles to those available 

through palladium-mediated Buchwald-Hartwig reactions. We have employed the developed 

ligand-free conditions to recapitulate palladium-mediated C–N bond-forming reactions to access 

arylated 3c and 3d.16a The developed nickel-mediated transformations furnish these products with 

increased yields, relative to those documented using a known palladium-mediated protocol,16a 

suggesting that this nickel-mediated approach is worthy of concurrent investigation in the course 

of synthetic campaigns. Given our interest in functionalized pyridines,21 we were pleased to find 

that bromopyridines were effective arylating agents using the disclosed protocol. Furthermore, this 

dual catalytic reaction manifold can transform aryl bromides, without engaging either C(sp2)–B 

(3e) and C(sp2)–Cl (3f-g) bonds to afford products with useful synthetic handles for further 

functionalization.    

 The reaction arylates N,N-disubstituted sulfamides in synthetically useful yields, with 

examples including N-morpholino 1a, N,N-dimethylated 1b, and N-carbonyl-N-alkylated 1c 



sulfamides. In this arylation reaction, N-carbonyl-N-alkylated sulfamides, such as 1c, are 

appropriate surrogates for sterically deshielded N-monosubstituted sulfamides, which are not 

prone solely to monoarylation reactions under the developed protocols.  

Scheme 2. Photochemically-mediated nickel-catalyzed conditions engage a variety of electron-deficient aryl bromides 

and sulfamides 

 a General conditions: sulfamide 1 (1.0 equiv), (hetero)aryl bromide (1.5 equiv), [Ir(ppy)2(dtbbpy)]PF6 (1 mol %), 

NiBr2•glyme (5 mol %), and DBU (3.0 equiv) in MeCN (0.25 M) with stirring between two 34W blue Kessil lamps 

for 24–48 h. b Isolated yield through a palladium-mediated cross-coupling reaction.16a c Isolated yield when prepared 

from  subjecting morpholinyl sulfamoyl chloride22 following literature conditions.23  

In general, electron-deficient aryl bromides N-arylate sulfamides in good to excellent 

yields (3c–3i). By contrast, in acetonitrile, some electron-rich aryl bromides react with modest 

efficiency (c.f. Table 1, entry 4; Scheme 2, 2j). In spite of this limitation, a thiophene (2j) can be 

installed onto a sulfamide in modest yield. This result suggests that this protocol overcomes the 

common tendency of nickel catalysts to engage in C–S bond activation,24 or to be deactivated upon 

reaction with sulfur.  
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 Fortunately, with the use of EtOH as a solvent and inclusion of a ligand, the protocol can 

transform a similar range of sulfamide substrates and allows the efficient cross-coupling of 

electronically-varied (hetero)aryl bromides. Specifically, electron-rich para- and meta-substituted 

N-aryl sulfamides 3k, 3l were synthesized with similar or improved yields relative to those 

reportedly isolated upon reaction of morpholinyl sulfamyl chloride with anilines. As anticipated, 

under these conditions, aryl bromides can react, without engaging either C(sp2)–B (3e) and C(sp2)–

Cl (3m) bonds to afford products with useful synthetic handles for further functionalization. 

Furthermore, these conditions can be used to install heteroaryl groups including a pyrimidine (3n). 

Unfortunately, the installation of more conjugated benzothiazole, tert-butyl indole-1-carboxylate, 

quinoline, and 2-methylnaphthalene moieties has proven less efficient (c.f. 3o–3r). By 

comparison, while 13% yield of the quinoline analogue 3q can be isolated under the developed 

nickel/iridium-mediated conditions, its preparation has proven more efficient by way of 

nucleophilic substitution on sulfur(VI), which proceed in 57% yield.13b   

 In EtOH, some variations in sulfamide substitution are well tolerated. The reaction engages 

N,N-disubstituted sulfamides in synthetically useful yields, with examples including N-

morpholino 1a, N-carbonyl-N-alkylated 1c, and N,N-dimethylated 1b sulfamides. In this arylation 

reaction, N-carbonyl-N-alkylated sulfamides, such as 1c, are appropriate surrogates for sterically 

deshielded N-monosubstituted sulfamides, which can be forced to engage in monoarylation 

reactions when larger aryl bromide electrophiles are employed, albeit in low efficiency. Notably, 

this protocol does not provide efficient access to a tetrasubstituted sulfamide 3u. 



Scheme 3. Photochemically-mediated nickel-catalyzed conditions engage a variety of sulfamides and electron-rich 

aryl bromides 

a General conditions: sulfamide 1 (1.0 equiv), (hetero)aryl bromide (1.5 equiv), [Ir(ppy)2(dtbbpy)]PF6 (1 mol %), 

NiBr2•glyme (10 mol %), dtbbpy (4 mol %) and DBU (3.0 equiv) in EtOH (0.25 M) with stirring between two 34 W 

blue Kessil lamps for 24–96 h. b Isolated yield when prepared from N,N-dichlorosulfamide.25 c Isolated yield when 

prepared from sulfamic acid.13b  

Conclusion 

 We have developed a new catalytic method for sulfamide N-(hetero)arylation. This 

protocol offers several attributes, as it proceeds under mild conditions, and employs a variety of 

readily available substrates and reagents that complements the range that may be used under 

palladium-mediated Buchwald-Hartwig reaction conditions. The developed photo-driven nickel-

mediated tactics can be employed with (hetero)aryl bromide, iodide, and chloride electrophiles. 
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Fortunately, owing to the higher reaction efficiency with (hetero)aryl bromides, aryl boronic esters 

and aryl chlorides can be carried through the reaction untouched, so these useful synthetic handles 

can be retained for further synthetic manipulation.  Owing to these attributes, this method extends 

chemists’ ability to use a sulfamide in the most versatile step a medicinal chemistry campaign, the 

“production step.”26 Moreover, it broadens the synthetic access to N-(hetero)aryl sulfamides, which 

are of increasing pharmacological interest.  
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