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Abstract

We present a methodology using fixed charge force–fields for alchemical solvation

free energy calculations which accounts for the change in polarity that the solute

experiences as it transfers from the gas-phase to the condensed phase. We update

partial charges using QM/MM snapshots, decoupling the electric field appropriately

when updating the partial charges. We also show how to account for the cost of

self-polarization. We test our methodology on 30 molecules ranging from small polar

to large drug–like molecules. We use Minimum Basis Iterative Stockholder (MBIS),

Restrained Electrostatic Potential (RESP) and AM1-BCC partial charge methodologies.

Using our method with MP2/cc-pVTZ and MBIS partial charges yields an Average

Absolute Deviation (AAD) of 6.3 kJ·mol−1 in comparison with the AM1–BCC result

of 8.6 kJ·mol−1. AM1–BCC is within experimental uncertainty on 10% of the data

compared to 30% with our method. We conjecture that results can be further improved

by using Lennard–Jones and torsional parameters refitted to MBIS and RESP partial

charge methods that use high levels of theory.
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1 Introduction

Molecular simulation using classical force–field (FF) methodology is increasingly being

used to calculate thermodynamic properties. One of the most significant is the chemical

potential, which is important for applications such as calculations of chemical reaction

equilibria,1–3 phase equilibria,4,5 solubility,6–8 hydration free energies (∆Ghyd),9–12 and protein

binding.13–19 The accuracy of the simulations is dependent both on the quality of the FF,

which requires parameters for intramolecular bonds, intermolecular van der Waals and

electrostatic interactions, and on the accuracy of the simulation algorithm used.

A common feature of classical FF algorithms, primarily for reasons of computational

efficiency, is the use of point charges of fixed magnitudes placed at fixed atomic centers to

model the electrostatic interactions. The partial charges are typically calculated in the vacuum

state prior to the simulation, without the influence of the ensuing solution environment, using

the HF/6-31G* level of electronic structure (ES) theory or using ad–hoc corrections meant

to make a simpler charge method equivalent to HF/6-31G*. Partial charges calculated at

this level in vacuum implicitly include polarization effects not present in vacuum, but are

intended to mimic polarization effects present when the solute is in a condensed phase,20

but are not specific to any particular solvent. Zhou et al. recently bench–marked several

Electronic ES methods and found that HF/6-31G* varied from under–polarizing on one

extreme to over–polarizing by 35% in gas phase calculations on the other.21

In a typical molecular dynamics (MD) alchemical ∆Ghyd calculation, the solute molecule’s

Coulombic interactions with the solvent are first decoupled through a sequence of steps

(windows), followed by decoupling of its Lennard–Jones (LJ) interactions. The former is by

far the largest contribution, and in a fixed–charge simulation the solute’s partial charges

maintain constant magnitudes as they are simultaneously decoupled from the solvent. The

lack of polarization inherent in the use of fixed–charge FF’s is a well–known problem22 that

affects many properties, and several methods to incorporate its effects have been developed.

The commonest approaches are to develop explicitly polarizable FFs that allow either the
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magnitudes23–28 or the positions29,30 of the solutes partial charges to fluctuate, or alternatively

to add additional FF terms such as atomic dipoles.31

Single Simulation

Fixed charge
 simulation

HF/6-31G*
vacuum

HF/6-31G*
condensed phase

Same electron density in 
vacuum and condensed phase

Polarized 
electron density

Ideal Gas
(no induced polarization)

Present Work

Optional 
Correction

Optional 
Correction

OR

Figure 1: Hydration free energy as the difference between an ideal gas and polarized solute
molecule

One approach is to implement post–processing after the fixed-charge MD calculation. This

involves the use of ES software, and incorporates the solvent’s effect on the solute molecule

either implicitly or explicitly. The simplest method is to account for these effects using a

self–consistent reaction field (SCRF) within the ES software. Swope et al.32,33 and Riquelme

et al.34 recently used this approach, by calculating the free energy required to polarize the

solute molecule. Swope et al. used PCM (Polarized Continuum Model) calculations and

Riquelme et al. used SMD (Solvation Models based on Density) calculations to correct

MD alchemical free energies for the cost of polarizing the solute molecule. These methods

are computationally efficient, since they require only the post–processing of a classical MD

simulation and use implicit solvent for the polarization correction.

An alternative to using an SCRF calculation (implicit solvent) to correct for polarization

is to correct the endpoints of the free energy calculation using Quantum Mechanical Molecular

Mechanics (QM/MM); this approach is termed the reference potential method.35,36 In this case,
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the endpoints of the simulation are corrected as per the top portion of Figure (1) by treating

the solute at the QM level and the surrounding solvent at the MM level. The endpoints are

perturbed to extend the path from beginning to end to match that of an un–polarized solute

in vacuum and a polarized solute in solution. Other methods have been developed which also

use QM/MM calculations to calibrate the intramolecular FF parameters while also correcting

the reference potential.36 In either case, the endpoint trajectories are re–sampled at intervals

and the potential energy is calculated using both a QM/MM calculation and a strictly MM

calculation. The difference in potential energy is used in a free energy perturbation scheme to

polarize the solute at the QM/MM level. This has the inherent advantage common to all post–

processing schemes, in that the QM/MM calculations can be run in parallel, and in theory

can be done quickly while the bulk of the calculations are done in the classical fixed charge

MD simulation. Convergence requires sufficient sampling, and there are indications that the

perturbation between the MM and QM/MM results must be reasonably small.37–40 It is also

often the case that this use of QM/MM makes the estimated free energy of hydration worse

than using the MM approach alone.41 The method has recently been applied to hydration

free energy simulations of organic molecules and, in conjunction with the IPolQ-Mod partial

charge method, yielded results similar to standard RESP and AM1–BCC free energies with

GAFF on small test sets.35,42

IPolQ is a recently developed method that calculates the electron density distribution of

the solute based on measurements taken during explicit water simulation,43 and then employs

it to calculate polarized restrained electrostatic potential (RESP).44 These charges are then

averaged with charges derived for the solute in vacuum. This method is the default atomic

charge method for the AMBER ff14ipq45 and ff15ipq46 FFs. The advantage of this approach

is that polarity is explicitly involved in the charge calculations, and with much higher levels

of QM theory (MP2/cc-pV(T+d)Z) rather than relying on the over–polarization exhibited by

using HF/6-31G* in vacuum simulations to mimic liquid phase effects.21,47 While providing

more consistent partial charges, IPolQ still suffers from having incorrect polarization in each
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endpoint when used in free energy calculations, since both endpoints are half polarized to

the same degree.

The IPolQ-Mod method has been developed recently as a simpler form of the IPolQ

method by using implicit solvent to polarize the solute partial charges by Muddana et al.47

where they found it closely matched solvation free energies calculated using RESP partial

charges derived from HF/6-31G* vacuum calculations. A comprehensive comparison has

also been made between using default RESP partial charges and IPolQ-Mod charges by

Mecklenfeld and Raabe.48They found that both methods give similar results. This approach

has also been used recently for free energy calculations by Jia and Li35 and by Jia35 and

a modified form was used by Riquelme et al.34 Jia and Li found slightly improved results

over those of the classical RESP partial charges on a small test set of molecules when using

IPolQ-Mod. When correcting the endpoints using QM/MM, Jia and Li35 and Jia42 found

the results improved and were similar to AM1–BCC. Riquelme et al’s IPolQ-Mod results

when using Minimal Basis Iterative Stockholder (MBIS)49 charges rather than RESP charges

achieved lackluster results in comparison with the simple and general AMBER force field

(GAFF)50 default charge method AM1–BCC,51 and with their proposed method that used

MBIS charges with post–simulation implicit polarization corrections.

All methods mentioned thus far that attempt to account for polarization effects without

the use of additional parameters (with the exception of SMD,52 which is parameterized

to fit experimental hydration free energy data), either pre– or post–simulation, treat the

interaction in a fixed averaged way rather than dynamically, and thereby suffer a similar

flaw: the dynamics of the actual MD simulations is implemented using fixed charges and is

unaccountably affected by this simplification. The previously mentioned methods account

for solute self-polarization costs to varying degrees, but do not account for the polarization

cost of rearranging the solvent as the solute interacts and becomes polarized by the changing

environments.

A more computationally expensive method has also been used by Reddy et al. for relative
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free energy calculations that encapsulates the dynamics of the simulation, termed QM/MM-

FEP (quantum–mechanical–based free energy perturbation53–55). At every MD step the

energy and its gradients in the QM zone are calculated using semi–empirical AM1, while

the QM/MM and MM interactions are calculated using the MM FF. QM/MM solvation

free energies using a potential of mean force (PMF) approach that updates the mean charge

distributions for the solvent has also been used by Rosta et al.56 Similar to the approach

of Reddy et al. , all interactions between the QM and MM region are calculated using a

MM FF, although partial atomic charges for the solute are calculated using implicit solvent

(Polarizable Continuum Model, PCM).

Importantly, for the test set of organic molecules in the present study, Reddy et al. applied

their method to alkylamines and successfully predicted the signs of the hydration free energies,

whereas the corresponding pure MM FF failed.54 In the QM/MM-FEP method, alchemical

windows are calculated in serial order, and partial charges on the solute are updated at

the initiation of each window’s simulation using HF/6-31G** electrostatic potential (ESP)

derived charges. Whereas significant improvements were shown over the corresponding MM

FF results, there is a nontrivial computational cost in using QM at every MD step, and

to compensate, a low semi–empirical QM level was used. This method has the advantage

that intramolecular parameters are not required, and as increased computational speeds

become available, higher QM levels can be used for both the QM region’s energy and gradient

calculations, and more sophisticated methods can be used to obtain the partial charges, for

instance MBIS and RESP rather than ESP.

An intuitively attractive way to allow the partial charges of a solute molecule to dynamically

evolve during a simulation is to update the charges in the course of the simulation. This

approach has been carried out by Maranon et al.57,58 to study structure and hydrogen bonding

in biomolecular simulations, where charge updates were dynamically implemented based on

the solute’s geometry in an implicit solvent. A more rigorous method that polarizes the

solute in the presence of explicit solvent was developed by Kimura et al. .,59 who updated
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the partial charges of the solute using QM/MM snapshots during the free energy calculations.

They employed multiconfigurational RESP charges calculated at the HF/6-31G** level. They

found that this method overpolarized the solute and the resulting free energies showed large

errors in comparison with experiment. They overcame this problem by empirically scaling

the RESP charges by an ad–hoc factor of 0.9.

The goal of this paper is to propose and test a new method (on–the–fly–polarization:

OTFP) for more accurately capturing the contribution of the electrostatic interactions in a

hydration free energy simulation than has been achieved by previous approaches. We present

results at 298.15 K and a pressure of 1 bar for a test set of 30 molecules containing C/H/N/O

atoms, of various structures and sizes. We show results calculated using both fixed–charge FF

methods, and our OTFP method. We show results using several charge derivation methods:

MBIS at both the B3LYP/cc-pVTZ and MP2/cc-pVTZ levels, RESP at both HF/6-31G*

and B3LYP/cc-pVTZ, in addition to AM1-BCC. We compare our results with those in the

FreeSolv12 database, in addition to those calculated by Riquelme et al.34 using their MBIS

method with post–simulation SMD polarization corrections.

The paper is organized as follows. In the next section, we summarize the simulation

methodology, including the FF generation methods and our OTFP on–the–fly methodology

for periodically updating the partial charges with the explicit water solvent and electric field

decoupling. We then describe the test set and the simulation protocols used. This is followed

by a section describing the results and their discussion, followed by our conclusions and

recommendations.

2 Simulation Methodology

The intrinsic hydration free energy (hereafter we drop the adjective) is the molar free energy

change when a single solute molecule is inserted into pure water solvent when both phases
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are at the same density.

∆Ghyd(T, P ) = µres,NV T ;∞
solute [T, ρsolv(P, T )] (1)

where ρsolv(P, T ) is the solvent density at the specified values of T and P and µres,NV T ;∞
solute [T, ρsolv(P, T )]

is the residual chemical potential of the solute at infinite dilution in the solvent. Hydration

free energies may be obtained experimentally by measuring the aqueous solubility of the

solute in solution at a particular temperature, and its partial pressure in the vapour phase in

equilibrium with the solution, at a sufficiently low concentration that the solute chemical

potential can be expressed in Henry-Law form with the density concentration variable and

the pressure is sufficiently low that ideal gas behaviour in the vapour phase holds. The

solute’s vapour-liquid equilibrium is governed by the equality of its vapour and solution phase

chemical potentials:

µ0
solute(T ;P 0) +RT ln

(
P vap
solute

P 0

)
= µ0

solute(T ;P 0) +RT ln

(
xRTρ∗solv(T, P )

P 0

)
+µres,NV T ;∞

solute [T, ρsolv(T, P )] (2)

µ0
solute(T ;P 0) is the ideal–gas chemical potential of the pure solute at T and the reference

state pressure P 0, P vap
solute is its partial pressure in the vapour phase, ρsolute(T, P ;x) is the

solute density at the specified T, P and mole fraction x, and µres,NV T
solute [T, ρsoln(T, P ;x)] is the

solute residual chemical potential at the solution (T, P, x). Eqs (1) and (2) yield

∆Ghyd(T, P )

RT
=

(
P vap
solute

xRTρ∗solv(T, P )

)
(3)

There may be experimental deviations if the solute concentration or its vapour pressure are

not sufficiently low as to respectively obey Henry’s law or ideal gas behaviour.

We calculate µres,NV T ;∞[ρsolv(T, P )] by incorporating a quantum mechanical strategy to
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account for the polarization of the solute in conjunction with the usual free energy change

procedure of a standard molecular simulation package such as GROMACS.60 Similar to

the general approach employed by Maranon et al.57,58 and of Kimura et al.,59 we allow the

partial charges of a solute molecule to dynamically evolve by updating the charges during the

simulation. Our approach differs in three ways: (1) we use a higher level of ES calculation to

avoid implicit polarization in gas–phase ES calculations due to low level theory and/or small

basis set; (2) we compare several charge assignment procedures, whereas they used only the

multi–configuration RESP method; and (3) we develop an approach for calculating the effect

of the solvent electric field so that in a single simulation we sample the free energy difference

between an unpolarized solute in vacuum and a polarized solute in solution.

The improved algorithm for calculating ∆Ghyd of the solute involves modifications to

standard procedures. First, we explore different methodologies for charge assignment in the

construction of the FF in vacuum. Second, we introduce a novel approach for calculating the

effects of the solute polarization on ∆Ghyd. We describe these aspects in the following two

sections.

2.1 Force-Field Parameterization

The FFs were generated in four steps: 1) the ES software Spartan’1861 was used to find

all conformers for each molecule using the MMFF94 level of theory. Next, we calculated

the equilibrium geometries at the semi-empirical PM6 level of theory. The 20 lowest energy

geometries were then recalculated at the HF/6-31G* level of theory; 2) the lowest energy

conformer was further optimized at the MP2/aug-cc-pVTZ level of theory if there were fewer

than 7 heavy atoms (CNO) or else at the ωB97XD/aug-cc-pVTZ level for the larger molecules;

3) the AmberMD toolpackage Antechamber62 was used to generate GAFF(2.11) FFs, and

when necessary, RESP or AM1–BCC charges. In the latter case, the molecule’s geometry

was re–optimized at the AM1 level of theory, which is the default and recommended setting

in Antechamber. This default setting was over–ridden when solute charges were optimized
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periodically during OTFP simulations. HORTON 2.0.063 was used for generating minimum

basis iterative Stockholder (MBIS) charges. Gaussian1664 was used for all ES structure

calculations of the solute electron density except for AM1–BCC charges, which used the

Antechamber sqm software; 4) the python program ACPYPE65 was used to convert the

generated Amber topology for the FFs to GROMACS topology files. An ultra–fine grid was

used in HORTON for the MBIS charges.

Many different QM theories exist for electronic structure calculations. We selected

B3LYP because it is a common hybrid density functional theory that strikes a balance

between computational speed and accuracy. We selected MP2 strictly for its accuracy; it is

computationally expensive.

The choice of basis sets was more involved, because we desired accuracy at an affordable

cost but we also wanted to avoid potential issues when updating the solute molecule’s partial

charges via QM/MM snapshot calculations pertaining to charge migration to the QM/MM

boundaries.66 To avoid this, we purposely did not add diffuse functions (aug) to the basis set.

A benchmark review was done for dipole moments and polarizabilites relatively recently,67

and based on its results we chose to use cc–pVTZ as our basis set of choice. In order to

compare with standard GAFF protocols we also used HF/6-31G* with RESP, as well as

AM1-BCC. This also created reasonable benchmarks for comparisons, since we used GAFF(2)

rather than the original GAFF.

For both RESP and AM1–BCC, the fixed charges for equivalent atom types were calculated

by averaging via Antechamber’s built–in use of OpenEye software.68 Since this is not available

in the HORTON program for MBIS charges, we used a python script to duplicate the

averaging procedure used by Antechamber.

2.2 The On–the–fly–Polarization Charge Updating Procedure

In a conventional fixed–charge alchemical free energy change calculation, a solute molecule’s

electrostatic interaction with its environment is linearly decoupled over a series of λ windows
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from λ = 1 when the solute molecule is fully interacting with the solvent to λ = 0 when it

is fully noninteracting. Linear scaling of the λ parameter is the mathematical equivalent of

scaling the solute molecule’s partial charges, which achieves the desired decoupling effect of

the forces and energies between the solute and solvent (but retains solvent-solvent and all

intramolecular interactions). At intervals in the MD simulation we calculate polarized partial

charges on–the–fly by taking snapshots of the MD simulation and including the solvent partial

charges in the background call to Gaussian when we update the solute’s partial charges. We

scale the solvent background partial charges by the λ parameter in order for the electric

field generated by the solvent, which polarized the solutes electron density, to reflect the

decoupled interactions of the solute and solvent. We effectively scale the partial charges of

the solvent in the QM/MM snapshot to decouple the electric field produced by the point

charge background, and scale the partial charges in the MD simulation to decouple the forces

and energies. In this way when the solute is fully coupled to the solvent in the MD simulation

the solute partial charges will be fully polarized by the surrounding solvent, and when the

solute is fully decoupled from the solvent in the MD simulation the solutes partial charges

will be calculated with no influence from the solvent since the solvent partial charges will

have been scaled to zero in the QM/MM snapshots. This procedure is illustrated in Fig. (2).

As an example of the difference between a conventional alchemical free energy calculation

and our method, we compare the equations used to calculate the free energy perturbation

according to a simple forward Zwanzig perturbation expression. For a linearly scaled

Coulombic free energy contribution, this is

∆Afwd = −RT ln

[
Nk∑
k=1

〈
exp{−β[U(λk+1|q0)− U(λk|q0)]}

〉
k

]
(4)

where A is the Helmholtz free energy, Nk is the number of Coulomb windows, Uk is the

potential energy, and < x >k denotes the ensemble average of the quantity x in window k.

In our method, the partial charges of the solute change both with time in a given window,
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Figure 2: Workflow of partial charge updates with electric field decoupling. First all solvent
partial charges within 12 Åof the solute are found and used as a point charge background
to explicitly polarize the solute in the QM electron density calculation. The solvent’s MM
charges are scaled by the coulomb λ, this decouples the electric field generated by the solvent
MM partial charges which induces polarization in the solute molecule. The electron density is
calculated, and then partitioned into partial charges according to the desired method. Finally,
the simulation is continued with the updated charges.

but also in average magnitude in a coulomb window i.e., the average set of partial charges on

the solute is different in each Coulomb window. Our free energy is calculated according to

∆Afwd = −RT ln

 Nk∑
k=1

〈
1

Nj

Nj∑
j=1

〈
exp{−β[U(λk+1|qk

j )− U(λk|qk
j )]}
〉
j

〉
k

 (5)

where qk
j denotes the sample set j of the partial charges on the solute molecule calculated

with the explicit solvent electric field strength of window k, Nj is the number of sample sets.

2.2.1 Cost of self-polarization

It is well established that according to linear response theory the cost of polarizing a molecule

is half the value of the solute–solvent interaction energy.69,70 IPolQ methods account for this
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cost by using half-polarized partial charges, as discussed earlier. Eqn. (5) sums the differences

in potential energy with respect to adjacent windows where both states in the perturbation

use the partial charges of the reference window and whose intermolecular coulombic potential

energy U coul
inter differs by the λ factor. In our case the adjacent windows have charges of different

average magnitudes due to polarity differences. The self–polarization cost can be accounted

for by using half–polarized partial charges, as is done by IPolQ and IPolQ-Mod. However,

this does not account for the costs associated with reorganizing the solvent around the solute

due to the latter’s differing polarization at each endpoint. We instead take advantage of the

fact that we evaluate the free energy difference between state points using MBAR, which

uses forward and reverse perturbation sampling. If we denote the two states as a and b then

in the forward perturbation we use the partial charge set qa on the solute, whereas in the

reverse perturbation we use the partial charge set qb. This results in two sets of potential

energy differences being sampled between the two states, ∆Ua→b(q
a) and ∆Ub→a(q

b). It is

straightforward to show that the average of these two potential energy differences is equivalent

to using half–polarized charges, i.e.,

∆Uab(qa +
∆q

2
) =

∆Ua→b(qa) + ∆Ub→a(qb)

2
(6)

where ∆q = qb − qa and ∆Uab(qa + ∆q
2

) implicitly accounts for the cost of self–polarization.

It is not, however, the case that the difference in free energy accounts for the free energy

cost of self-polarization, since it involves the exponential (Boltzmann factors) of energy

differences. In the case of suitably small arguments in the exponential functions the average

of two exponentials with different arguments is approximately equal to the exponential of the

average of their arguments.

∆Aab

(
∆Uab(qa +

∆q

2
)

)
u

∆Aa→b(∆U(qa)) + ∆Ab→a(∆U(qb))

2
(7)
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where

∆Aa→b = −RT ln〈exp(−β
[
U(λb|qa)− U(λa|qa)

]
)〉 (8)

∆Ab→a = RT ln〈exp(−β
[
U(λa|qb)− U(λb|qb)

]
)〉 (9)

As validation of the approximation, we compare the Zwanzig and BAR estimators of the

Coulomb contributions to the ∆Ghyd values for 2-methoxyethanamine and caffeine using both

our OTFP sampling and half–polarized potential energies. The results are shown in Tables

(S4-S6) of the SI, and indicate that the BAR and Zwanzig estimators using OTFP sampled

data provide results equivalent to using half–polarized potential energy samples between

each pair of windows. Also shown in Tables (S4-S6) in the SI are comparisons of the MBAR

estimator with the Zwanzig and BAR estimators. These show that MBAR is comparable to

both Zwanzig and BAR for the Coulomb contributions. Therefore, the use of MBAR with

OTFP sampling provides estimators that account for the cost of self–polarization, and in

addition accurately handle the LJ contribution.

We also show in Table S3 of the Supporting Information ∆Ghyd results for a medium-size

polar molecule comparing the standard deviation of 10 independent replicate runs with the

MBAR uncertainty estimates of each run. For MBIS partial charges, each MBAR uncertainty

estimate (whether for OTFP or fixed charges) provides a slightly conservative estimate of the

standard deviation of the replicate runs. This is also the case for RESP partial charges using

OTFP, but for fixed charges, each MBAR uncertainty underestimates the replicate run result

by about 40%. We take this as validation that the OTFP MBAR uncertainty for a single run

is a reasonable surrogate for that arising from independent replicate runs.

Each sample set j consists of a relatively short MD simulation run in window k with

solute charges qk
j . These are calculated from the final configuration of the previous run by

performing an independent ES calculation that incorporates the partial charges of all solvent

molecules within a surrounding shell (we used 12 Å). When updating the solute’s partial
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charges, we include the solvent’s MM partial charges in the background of the electron density

calculation, but we scale the value of the solvent’s partial charges by the same λk used in the

corresponding MD window. In this way, the electric field generated by the solvent partial

charges is at full strength when the solute is fully coupled to the solvent environment at

λk = 1.0 and is fully decoupled at λk = 0.

3 Systems Studied and Simulation Details

We used SPC/E71 water rather than the typical TIP3P72 model for simulations using MBIS

derived partial charges. This choice of water model was motivated by the findings of Riquelme

et al.34 that SPC/E gave a 0.56 kcal·mol−1 lower RMSD compared with TIP3P water when

using MBIS charges where they tested 613 molecules in the FreeSolv database. We used

TIP3P for RESP and AM1–BCC calculations, and we also show results for RESP and

AM1–BCC using SPC/E water in the Supporting Information.

We performed hydration free energy calculations for 30 molecules containing C/H/N/O

atoms from the FreeSolv database of varying complexity, shown in Fig. (3). We specifically

chose to test our method, but not exclusively, on molecules that AM1–BCC struggles with,

which we define as having an error over 8.4 kJ·mol−1 (2.0 kcal·mol−1). We also included

several molecules for which AM1–BCC handles very well, and we also chose some molecules

that AM1–BCC both over–estimates and under–estimates the hydration free energy; this

is clearly indicated in Fig. (6). This latter point was to ensure that our methodology

is not restricted in its usefulness to, for instance, only molecules whose free energies are

over-estimated or under-estimated by AM1–BCC.

All simulations were carried out using the GROMACS version 2016.373 suite of software

for systems with N = 2000 water molecules and 1 solute molecule at T = 298.15 K and

P = 1 bar. We first determined the box size, V (NPT ) corresponding to the specified N,P, T

values, by averaging over 10 independent NPT runs. We initiated each independent NPT
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Figure 3: Molecules studied. mobley 9534740 = (2R,3R,4S,5S,6R)-6-
(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol

run by randomly inserting the water molecules into a cubic box of length 4.3 nm using the

GROMACS “insert-molecules” function.74 The steepest descent algorithm was then used to

minimize the system energy, terminating after either 20,000 steps or a maximum force of 100

kJ·mol−1nm−1 was reached. In all cases, the minimization converged to the force constraint

before reaching the maximum number of steps. Initial velocities were then assigned according

to a Maxwell–Boltzmann distribution at the simulation temperature. An NV T ensemble run
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was then equilibrated for 1 ns with a timestep of 2 fs using a stochastic Langevin leapfrog

integrator.75 A Lennard–Jones cutoff distance of 1.2 nm was employed with tail corrections

for energy and pressure, and a neighbour list with a cutoff of 1.2 nm was updated every

10 steps. The Particle Mesh Ewald (PME) method was used with real space cutoff of 1.2

nm, tolerance of 10−6, an order of 12 and Fourier spacing of 0.1 nm. We then ran an NPT

equilibration run for 5 ns using a Berendsen thermostat with thermo-coupling parameter 0.1

and a Berendsen barostat with pressure-coupling parameter 2.0, compressibility of 4.5×10−5

and reference pressure of 1 bar. Following this we did a production run for 15 ns using a

stochastic Langevin leapfrog integrator with a thermo-couple of 1.0 and a Parinello-Rahman

barostat with a pressure couple of 5.0, compressibility of 4.5e-5, and reference pressure of 1

bar. The same neighbour list, Ewald criteria and cutoffs were used in all ensembles.

In the ∆Ghyd calculations, for every simulation each λ window used unique initial random

number seeds to generate positions and velocities in the starting configuration. We carried

out energy minimization on each window according to the same criteria as described above

for the NPT simulations. Energy minimization was followed by NV T equilibration and

production runs, both using the same protocols as the NV T equilibration in the NPT box

size simulations. We performed both the conventional fixed–charge simulation and our OTFP

simulation starting from the last configuration of the NV T equilibration. We also equilibrated

each window with a 2 ns run prior to a 4 ns production run.

Free energy calculations were performed using the Multistate Benedict Acceptance Ratio

(MBAR)76 as implemented in the pymbar/alchemical analysis software.77 We first decoupled

the solute’s Coulombic interactions from its solution environment, followed by decoupling

of the LJ interactions using λcoulomb = [0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0] and λLJ =

[0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0]. While it is

common to use fewer lambda windows for decoupling the Coulombic interactions, the number

5 being frequently used,11,12,34 there are important cases where hydration free energies differ

markedly when using 5 or 11 windows, notably for Triethylamine, one of the molecules studied

18



here.11 To be on the side of caution we always used 10 Coulomb windows. We used a soft–core

Lennard-Jones potential with parameters λ = 1 and α = 0.5. Potential energies of all λ

windows were sampled every 100 steps for post-processing with MBAR. For each window we

updated the partial charges every 20 ps (10,000 steps) with exceptions for four large drug-like

molecules (Caffeine, Pirimor,(2R, 3R, 4S, 5S,5R)-6-(hydroxymethyl)tetrahydropyran-2,3,4,5-

tetrol, and 2,3-diacetoxypropylacetate) when using MP2/cc-pVTZ, in which case we updated

the partial charges every 80 ps.

We explored the effect of system size by solvating 2-Propoxyethanol, a medium–size

molecule and Caffeine, a large molecule, in 500, 2000 and 8000 water molecules and measuring

the resulting ∆Ghyd. We show these results in Table (S2) of the Supporting Information.

Since the results for 2000 and 8000 water molecules were equal within their calculated MBAR

uncertainties, we used 2000 water molecules for all simulations.

4 Results

In all cases, we calculated ∆Ghyd using both a conventional fixed–charge approach and using

our proposed OTFP method, each in conjunction with the partial charge and QM theory/basis

sets shown in Table 1 as described earlier. Results for each method in comparison with

experiment are shown in Figs (4)–(6) as parity plots. The deviations from experiment and

statistical measures of agreement of the predicted and experimental results are shown in

the figures and summarized in Table 2. The quality of the agreement with experiment of a

theoretical approach can be assessed by various empirical and statistical measures. All raw

simulation results can be found in the Supporting Information, which enables alternative

measures to be calculated. We note in passing that the Pearson R2 statistic is not generally

useful for this purpose, due to its well-known deficiencies.78,79 We refer to our results as either

“fixed” or “OTFP”. Fixed means the partial charges were calculated in vacuum using the

indicated level of theory/basis set, and those partial charges were not updated throughout
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Table 1: Partial charge methods and ES details. SPC/E water model results for RESP and
AM1–BCC are shown in the Supporting Information.

Present Work
Charge Method QM theory QM basis set water model Force–Field

MBIS B3LYP cc-pVTZ SPC/E GAFF(2.11)
MBIS MP2 cc-pVTZ SPC/E GAFF(2.11)
RESP B3LYP cc-pVTZ TIP3P GAFF(2.11)
RESP HF 6-31G* TIP3P GAFF(2.11)

AM1–BCC AM1 - TIP3P GAFF(2.11)
Literature Results

AM1–BCC AM1 - TIP3P GAFF(1.7)12

MBIS + SMD BLYP def2-TZVP SPC/E GAFF(1.7)34

the simulation. “OTFP” refers to our method which updates partial charges on the fly and

incorporates polarization into the partial charges in each Coulomb window.

4.1 Hydration free energies using MBIS partial charges

Fig. 4 shows parity plots against experimental results using partial charges determined by the

MBIS approach, with SPC/E water and different levels of theory (4(a) and 4(b)). Fig. 4(a)

shows results obtained by Riquelme et al.34 using a combination of MD and SMD simulations.

Fig. 4(b) shows our results using two different levels of theory for the ES calculations; the

left figure shows results using B3LYP/cc-pVTZ and the right figure shows results using

MP2/cc-pVTZ. We also show results at both levels of theory for fixed charges calculated

in vacuum in the Supplemental Information; they serve as baseline indicators for how the

results change when using our OTFP method to implement polarization. Both levels of

theory used with OTFP produce results aligned more closely to parity with experimental

values than the Riquelme et al. results. There are fewer outliers and more results are within

the experimental uncertainty using OTFP. The best results are obtained using the MP2 level

of theory. Both OTFP methods have more than double the number of values lying within

experimental uncertainty in comparison with those of Riquelme et al.

The Table 2 data shows that the MBIS fixed–charge results for both B3LYP and MP2
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Table 2: Comparison of ∆Ghyd results for all methods, in addition to existing literature
results. All values are in kJ·mol−1. † = cc-pVTZ. χ = def2-TZVP. The Spearman rank
correlation coefficient (ρs) is a statistical measure between two sets - in this case between
simulation and experimental ∆Ghyd values, with a value of 1 indicating perfect monotonic
rank correlation, 0 indicating no correlation, and -1 indicating perfect negative monotonic
rank correlation.80 AAD is the Absolute Average Deviation (Prediction minus Experiment),
AD is the Average Deviation. The Confidence Intervals (CI) for the AD were obtained using
the Student–t distribution at the 95% level; the others are 95% CIs obtained by means of
empirical bootstrapping using 105 resamples with replacement (e.g., Chernick81).

Charge Theory/ Mode H2O RMSD AAD AD ρs
80

Method Basis Model

MBIS B3LYP/† Fixed SPC/E 12.5(8.6,16.8) 9.8(7.3,12.8) 8.1(4.5,11.7) 0.87(0.68, 0.95)
MBIS B3LYP/† OTFP SPC/E 12.1(8.2,15.5) 8.6(5.8,11.8) -0.6(-5.2,4.0) 0.87(0.70, 0.96)
MBIS MP2/† Fixed SPC/E 11.4(6.9,16.2) 8.3(5.9,11.4) 7.5(4.3,10.7) 0.88(0.70, 0.97)
MBIS MP2/† OTFP SPC/E 8.7(6.1,11.0) 6.3(4.3,8.5) -0.8(-4.1,2.5) 0.90(0.75, 0.97)

RESP B3LYP/† Fixed TIP3P 15.5(11.0,20.2) 12.6(9.7,16.1) 11.9(8.1,12.7) 0.81(0.58, 0.92)
RESP B3LYP/† OTFP TIP3P 10.0(6.7,13.3) 7.4(5.2,10.0) 2.2(-1.5,5.9) 0.82(0.58, 0.93)
RESP HF/6-31G* Fixed TIP3P 9.5(6.3,12.5) 6.8(4.6,9.4) 4.4(1.2,7.6) 0.81(0.57, 0.93)
RESP HF/6-31G* OTFP TIP3P 11.5(8.8,14.0) 9.4(7.1,11.9) -5.8(-9.6,-2.0) 0.83(0.58, 0.94)

AM1–BCC AM1 Fixed TIP3P 12.2(7.2,17.6) 8.6(5.9,12.1) 3.2(-1.3,7.7) 0.86(0.69, 0.93)
AM1–BCC AM1 OTFP TIP3P 14.0(9.5,18.2) 10.1(6.9,13.8) -2.9(-8.1,2.3) 0.93(0.83, 0.97)

FreeSolv12 AM1 Fixed TIP3P 10.5(7.3,13.6) 8.2(6.1,10.7) 1.9(-2.0,5.8) 0.93(0.83, 0.97)
Riquelme et al.34 BLYP/χ Fixed SPC/E 11.9(9.3,14.3) 9.8(7.4,12.2) 1.7(-2.8,6.2) 0.83(0.61, 0.94)
(MBIS)

deviate positively from experiment (a positive AD value of comparable magnitude to the

AAD and an AD confidence interval (CI) that does not contain zero). OTFP reduces the

magnitudes of the AD values by over 6.7 kJ·mol−1 and results in AD CIs containing zero).

The MBIS OTFP results show the smallest AD magnitudes of all charge methods. The

Spearman ρs is largest for OTFP with MP2, followed by that of B3LYP, then of Riquelme et

al. however, the CIs of all ρs values overlap.
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Figure 4: Parity plots comparing calculated and experimental results for ∆Ghyd in SPC/E
water at T = 298.15 K and P = 1 bar for the 30 molecules of this study using MBIS–derived
partial charges with the SPC/E water model. Fig. (a) shows previous results of Riquelme et
al.,34 Fig. (b) shows our results using the indicated ES theory levels. F indicates results

whose absolute error ei satisfies ei <
√
σ2
expt + σ2

sim, where σexpt and σsim are the respective

experimental and simulation uncertainties; � indicates Outliers (ei > 5σexpt); and # indicates

results satisfying
√
σ2
expt + σ2

sim < ei < 5σexpt. Experimental error bars are shown and

simulation error bars are within the symbol sizes.
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Figure 5: Parity plots comparing experiment and simulated ∆Ghyd results using RESP
derived partial charges with the TIP3P water model (a): HF/6-31G* fixed charges, upper
(b): HF/6-31G* OTFP charges, (c): B3LYP/cc-pVTZ fixed charges, (d): B3LYP/cc-pVTZ

OTFP.F indicates results whose absolute error ei satisfies ei <
√
σ2
expt + σ2

sim, where σexpt

and σsim are the respective experimental and simulation uncertainties; � indicates Outliers

(ei > 5σexpt); and # indicates results satisfying
√
σ2
expt + σ2

sim < ei < 5σexpt. Experimental

error bars are shown and simulation error bars are within the symbol sizes.

4.2 Hydration free energies using RESP partial charges

Fig. (5) shows parity plots against experimental results using partial charges with TIP3P

water, determined by the RESP approach and different levels of theory (5(a) and 5(b)). We
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show the corresponding results using the SPC/E water model in the Supporting Information,

but we discuss here only the TIP3P results. The figures on the left show results using fixed

charges and the figures on the right show results using our OTFP approach. Fig. 5(a)

compares results using the GAFF default HF/6-31G* level of theory with those of a higher

level of theory and a larger basis set (B3LYP/cc-pVTZ) in Fig. 5(b). We did not expect to

see improvements in the AAD when using OTFP with the HF level of theory, since partial

charges calculated in the gas phase using HF/6-31G* already contain implicit polarization,

so the application of OTFP results in over–polarization.

The Table 2 data indicate that neither fixed–charge nor OTFP results have AD values

that contain zero in their confidence interval. This is an example showing that a method,

despite having a relatively low AAD, may provide poor predictions. As expected, the use

of OTFP with B3LYP/cc-pVTZ improves the corresponding fixed–charged results. While

B3LYP with OTFP has a higher AAD than HF/6-31G* fixed–charge it has an AD and

confidence interval which includes zero. We conjecture that the B3LYP RESP results can

be further improved by using a higher level of theory, as well as a different (larger) basis

set, and results can likely be further improved by fitting LJ and torsional parameters to

B3LYP/cc-pVTZ derived partial charges.

4.3 Hydration free energies using AM1–BCC

Fig. 6(a) shows parity plots against experimental results for partial charges determined by

the AM1–BCC approach. We show corresponding results using the SPC/E water model in

the Supporting Information, and note in passing that results are qualitatively the same using

the SPC/E or the TIP3P water model. Fig. 6(b) shows AM1–BCC results from the Freesolv

database versus experiment, which are discussed in Section 5.3.)

In Fig. 6(a) the left figure shows results using fixed–charges and the right figure shows

results using our OTFP approach. The numerical results in Table 2 show that, similarly to

the situation for HF/6-31G* partial charges, OTFP leads to over–polarizing the fixed–charge
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results, changing the AD from 3.2 kJ·mol−1 to -2.9 kJ·mol−1. It also similarly raises the AAD

value. The Spearman ρs for AM1–BCC shows the largest increase in going from fixed–charge

to OTFP (rising from 0.86 to 0.93). Due to the overlapping CIs on the fixed–charge and

OTFP ρs, the two values cannot be counted as statistically different; however, the CI using

OTFP is considerably tighter around the mean value.

5 Discussion

5.1 Dependence on charge method

Since their vacuum phase electron densities do not include significant polarization effects, the

most relevant tests of the OTFP method are MBIS using B3LYP and MP2 theories, and RESP

using B3LYP, all with the cc-pVTZ basis set (the first six rows of data in Table 2). Their

corresponding fixed–charge methodologies expectedly yield poor agreement with experiment,

as indicated by the similarity of their AD and AAD values, implying over–prediction. In

these cases, the OTFP results consistently yield improvement. This is illustrated in Fig. 5(b)

and Figs. S1(a) and S1(b).

In these three cases, the fixed–charge AD 95% CIs do not contain zero, indicating that

the hypothesis that each method gives an adequate prediction of the experimental data

must be rejected. Conversely, the OTFP CIs all include zero, and the hypothesis cannot

be rejected. The OTFP results also have AAD values equal to or smaller than the “gold

standard” AM1–BCC fixed–charge result.

The AM1–BCC and HF/6-31G* RESP partial charge sets already implicitly include

polarization, and the AD and AAD values of Table 2 indicate a shift from over–prediction

of the experimental results to under–prediction with the application of OTFP polarization.

This is illustrated in Fig. 5(a). We note that despite fixed–charge RESP HF/6-31G* having

one of the lowest AAD values in Table 2, it fails to contain zero in the confidence interval

around its AD, which indicates systematic deviations in its predictions for this test set.
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Figure 6: Parity plots comparing experiment and simulated ∆Ghyd results using AM1–BCC
derived partial charges with the TIP3P water model A: AM1-BCC fixed charges, B: AM1-
BCC OTFP, C: FreeSolv database AM1–BCC values.F indicates results whose absolute

error ei satisfies ei <
√
σ2
expt + σ2

sim, where σexpt and σsim are the respective experimental

and simulation uncertainties ; � indicates Outliers (ei > 5σexpt); and # indicates results

satisfying
√
σ2
expt + σ2

sim < ei < 5σexpt. Experimental error bars are shown and simulation

error bars are within the symbol sizes.

There are many ES theories, basis sets, and partial charge methods that can be used. We

have shown, however, that when using RESP or MBIS, the OTFP works well with GAFF,

and also that increasing the theory level of the ES calculation leads to improved results.
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The structure of the OTFP methodology allows its straightforward implementation for any

combination of these ingredients. Its application to the Additive Variational Hirshfeld (AVH)

partial charge method developed in a recent thesis,82 which has been shown to produce

“more intuitive” partial charges, than MBIS and other Hirshfeld variants, particularly for

nitrogen–containing molecules, seems promising.

5.2 Dependence on molecular structure

Fig. (7) shows a grouping of the AAD results comparing the influences on the ∆Ghyd

predictions of molecular sizes and shape, and of nitrogen and oxygen. Small molecules and

non-cyclic molecules show the lowest AAD across all methods. Oxygen–containing molecules

are difficult for all methods; however OTFP using MBIS(MP2), OTFP RESP(B3LYP), and

fixed charge RESP (HF/6-31G*) show at least 4 kJ·mol−1 smaller AAD than the other

methods. The same trend is followed for cyclic molecules. Large molecules are best predicted

using OTFP with MBIS(MP2). Our study includes calculations on linear alcohols and

alkylamines from C1–C4. With the exception of the MP2 predictions of methanol and ethanol,

which are 1 kJ·mol−1 outside experimental uncertainty, all cases of OTFP using MBIS partial

charges perform well, whereas AM1–BCC gives results well outside the indicated experimental

uncertainties (generally u 2.5 kJ·mol−1).

OTFP with MBIS partial charges struggles with the tertiary amine triethylamine, whereas

AM1–BCC shows the lowest AAD. (See also our earlier discussion in Section 3 concerning

its Coulomb decoupling calculation protocol.) Muddana et al.47 also found that AM1–BCC

performed better than IPolQ–Mod for tertiary amines.

Our OTFP approach also exhibits difficulties with both ammonia and benzene, which

represent the smallest building blocks for amines and cyclics, respectively. (With the current

non–Coulomb FF parameter sets, we found that both could be predicted by MP2 OTFP to

within experimental uncertainty by using a double ζ basis (cc-pVDZ) set rather than using

the larger triple ζ basis set; however, this might be coincidental.)
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Figure 7: ∆Ghyd AAD comparison plot. Error bars indicate 95% uncertainty using the
Percentile Bootstrapping method with 100,000 resamples.

Small cyclic molecules are more difficult for all methods, likely because the dipole moment

of the ring is unable to leave the plane in an atom–centered charge method. Either out–

of–plane charges would be needed, or a charge–on–spring approach, both of which involve

additional parameters. In the case of AMOEBA, which already has additional parameters for

point dipoles, different polarizability parameters are used for ring–member atoms. It has been

noted by Swope et al. that for benzene, quadrapole terms contribute more to polarization

than dipole terms,32 and this is possibly also the case for other small cyclic molecules, making
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their ∆Ghyd predictions especially difficult for standard atom–centered FFs.

We lastly remark that for the 30 molecules common to the MBIS approach of Riquelme

et al.34 and present in the FreeSolv database, our MBIS(MP2) results show an AAD of

6.30 kJ·mol−1 in comparison with the Riquelme et al. AAD value of 9.79 kJ·mol−1 and the

FreeSolv database values of 8.19 kJ·mol−1. A rough extrapolation to the entire FreeSolv

database species would indicate an AAD of around 4.1 kJ·mol−1.

5.3 Potential FF modifications

While the OTFP method only influences the partial charges of the solute molecule, modifica-

tion of the partial charges has a ripple effect on the accuracy of the remaining FF parameters,

most notably the LJ and torsion parameters. GAFF was developed on the basis of fitting LJ

and torsion parameters for a particular partial charge set, namely RESP charges calculated

from HF/6-31G* electron densities. When the partial charges are not those used in the LJ

and torsional optimizations, sub–optimal performance is to be expected by the resulting FF,

and the results achieved using OTFP can be expected to improve with refitting of these

parameters. A modification to the RESP protocol has recently been proposed which found

that predictions of liquid densities and enthalpies of vaporization were improved when the LJ

parameters were re–optimized to the new partial charges.83 In this respect, the very recent

method of Kantonen et al. for efficiently fitting LJ parameters for MBIS partial charges,84

should prove to be useful.

An indication of the effects of different LJ and intramolecular FF parameters in the context

of the same set of partial charges can be seen by comparing the GAFF(1.7) and GAFF(2.11)

AM1–BCC results. This is shown in the parity plot of Fig. (8). The GAFF(1.7) results are

those of the FreeSolv database, and the GAFF(2.11) results are our own. Although the two

sets of predictions correlate well (ρs = 0.93), several results differ by nearly 4 kJ·mol−1, and

an outlier discussed further below shows a difference of over 16 kJ·mol−1. Table (2) also

shows values for RMSD, AAD and AD for both AM1–BCC methods. Despite their identical
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Figure 8: ∆Ghyd results for AM1–BCC with GAFF(2.11) compared with FreeSolv, which
used AM1–BCC with GAFF(1.7). The red dashed line represents a 4 kJ·mol−1 vertical
and horizontal deviation from the parity line. mobley 9534740 is (2R, 3R, 4S, 5S,5R)-6-
(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol

partial charges and sharing some (but not all) intramolecular and LJ parameters, GAFF1

has a smaller AAD and an AD that is closer to zero and its CI is better centered around zero

than GAFF2.

In this study, three molecules are outliers. Two are included in our results: (2R,3R,4S,5S,6R)–

6–(hydroxymethyl)tetrahydropyran–2,3,4,5–tetrol and 2,3–diacetoxypropyl acetate. They

are deemed to be outliers because no methods can predict their ∆Ghyd values within 5

times their respective experimental uncertainties. A third molecule, 2-hydroxybenzaldehyde

is not included in our set of results, since for all the fixed–charge methods the Coulomb

window calculations failed to converge, with additional windows exacerbating the failure.

This is shown in Figure S4 of the Supporting Information for AM1–BCC partial charges. We
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were only able to make the results converge by increasing the magnitudes of the parameters

governing the torsional barrier height on the carbonyl group to make the molecule less flexible.

Of the two outliers included in this study, one is a large cyclic and the other a large

branched molecule and they both have 6 oxygen atoms. One has 5 hydroxyls and an ether

group, while the other has three ester groups. This would seem to indicate that the underlying

GAFF parameters for ester and hydroxyl groups perform poorly; however, our results for

other molecules containing hydroxyl groups do not indicate serious issues when using OTFP

with MBIS. Problems with the ester GAFF parameters have been found by others.12,34,85

Coupled with the poor results for 2-Hydroxybenzaldehyde, which has a carbonyl oxygen and

an alcohol, this seems to indicate that GAFF needs improvement with its carbonyl and ester

oxygen parameters.

6 Computational Efficiency

Fig. (9) shows the dependence of ∆Ghyd for 2–methoxyethanamine as a function of the number

of MD steps between charge updates. For both MBIS and RESP partial charges, 10,000 steps

per charge update (used in this study, with the exception of several large molecules noted

earlier for which their partial charges were updated every 40,000 steps) is a conservative

strategy. Interestingly, MBIS partial charges only need to be updated once every 100,000 MD

steps, whereas RESP must be updated once every 40,000 MD steps. This is not surprising,

given that RESP is sensitive to molecular geometry and MBIS is much less sensitive.49

Fig. (10) shows the ratio of the simulation time required for the OTFP approach with

respect to that required for the corresponding fixed–charge approach, as a function of the

number of heavy atoms (C/N/O) in the molecule. Fig. 10(a) shows the results using partial

charge updates every 10,000 steps and Fig. 10(b) shows the results using partial charge

updates every 100,000 steps. As expected, the cost increases with the number of heavy atoms

in the molecule. Calculations with MP2 are the most expensive. Both methods using B3LYP
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Figure 9: ∆Ghyd results for 2-methoxyethanamine as a function of the number of MD steps
between charge update intervals. CI in the legend stands for Confidence Interval. Error bars
on data are calculated at the Student-t 95% confidence level from 5 independent simulations,
and the dashed CI’s are calculated using data points up to and including 100,000 steps for
MBIS and 40,000 steps for RESP.

(MBIS and RESP) have the same computational cost for the ES electron density calculation,

but our implementation of the post–processing step (using a single CPU) to partition the

partial charges using MBIS is somewhat more expensive than for RESP.

Fig. 10(b) indicates that for molecules with up to 8 heavy atoms using OTFP with MP2

costs less than a factor of two compared to the cost of a fixed charge simulation, increasing

to a factor of roughly an order of magnitude larger for large molecules with 15 or more heavy

atoms. When using B3LYP with RESP or MBIS, the OTFP cost reaches roughly twice that

of the corresponding fixed–charge for such large molecules.

7 Conclusions

Based on calculations for a diverse test set of 30 neutral molecules, we have demonstrated

that fixed charge force–field hydration free energy simulations can be greatly improved by
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Figure 10: Comparison of computational time required to perform a simulation. (a) OTFP
method with partial charge updates occurring every 10,000 steps; (b) OTFP method with
100,000 steps between each partial charge update. The dashed dot line indicates the ratio
OTFP/fixed = 1.5. The dashed line indicates the ratio OTFP/fixed = 2.0. Error bars
indicate the standard deviation for molecules with the given number of heavy atoms. Each
molecule’s time is the average of 200 measurements with the exception of the molecules which
had their partial charges updated every 40,000 steps, in which case their timing is the average
of 50 measurements.
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accounting for the solvent’s influence on inducing polarity in the solute’s partial charges. We

have implemented this by updating partial charges on–the–fly and decoupling the solvent

electric field appropriately when updating the solute partial charges as its interactions with

the solvent are decoupled. By manipulation of double–sided perturbation sampling, we have

accounted for the cost of solute self–polarization in a manner similar to that of IPolQ, but

with the advantage of maintaining proper polarity, and as a result proper forces and energies,

in the endpoint windows. This allows a single ∆Ghyd simulation to calculate the free energy

difference between an isolated solute with vacuum–derived partial charges and a solute fully

polarized when coupled to the solvent.

OTFP using MBIS or RESP partial charges with higher–level theories than HF and basis

sets larger than 6-31G* outperforms AM1–BCC in all cases, and in the best case, using MBIS

partial charges with electron densities calculated at the MP2/cc-pVTZ level, showed a 2.25

kJ·mol−1 lower AAD than that of AM1–BCC. We also showed that RESP using HF/6-31G*

systematically deviates from experiment despite having a lower AAD than AM1–BCC. We

further showed that the level of QM theory affects the quality of ∆Ghyd simulations.

The OTFP method is modular and easy to modify to incorporate different QM theories

and basis sets, and different partial charge partitioning schemes can be easily implemented. A

convenient feature of this method is that it accounts for polarization without the requirement

for any additional parameters beyond those of a classical fixed–charge FF. Although we

did not optimize the GAFF parameters to the underlying partial charge method, and we

conjecture that optimizing the LJ and torsional parameters with respect to the partial charge

method used will further improve the results.

8 Associated Content

The Supporting Information contains the following:

• Raw simulation data for all simulations, parity plots for RESP and AM1–BCC with
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SPC/E water models, tables of RMSD and AAD results for all methods and water

models used, system size dependence, the equivalence of the Zwanzig and MBAR cost

of self–polarization, independent runs vs. MBAR uncertainty estimate comparison, and

figures for 2-hydroxybenzaldehyde convergence issues.

• Python code for updating the partial charges (Python code and data files are also

available at GitHub:

https://github.com/BradenDKelly/Alchemical-Free-Energy-OTFP/

• Basic GROMACS files used: *.top, *.gro, *.mdp

The Supporting Information is available free of charge on the ACS Publications website at

DOI:xx.xxx/acs.xxx
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