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Abstract

Interaction energies of alkali ion−water dimers, M+(H2O), and trimers, M+(H2O)2,

with M = Li, Na, K, Rb, Cs, are investigated using various many-body potential en-

ergy functions, and exchange correlation functionals selected across the hierarchy of

density functional theory approximations. Analysis of interaction energy decomposi-

tions indicates that close range interactions such as Pauli repulsion, charge transfer,

and charge penetration must be captured in order to reproduce accurate interaction

energies. In particular, it is found that simple classical polarizable models must be

supplemented with dedicated terms which account for these close range interactions

1

ckegan@ucsd.edu
fpaesani@ucsd.edu


in order to achieve chemical accuracy across configuration space. It is also found that

the XC functionals mostly differ from each other in their Pauli repulsion + Dispersion

energies, and hence benefit from the inclusion of nonlocal terms such as Hartree-Fock

exchange and dependence on the electronic kinetic energy density in order to reproduce

the interactions that contribute to this term, namely Pauli repulsion and (intermediate-

range) dispersion. As a continuation of the analysis performed in J. Chem. Theory

Comput. 2019, 15, 2983, we make comparisons between findings for alkali ion−water

interactions with those for halide−water interactions.

1 Introduction

Molecular dynamics (MD) simulations allow for the calculation of molecular-scale properties

of chemical systems that are difficult, or currently impossible, to obtain through experimen-

tal means.1–9 As of today, the primary difficulty in performing MD simulations is solving the

Schrödinger equation for the electronic degrees of freedom10 which provides the potential

energy surface (PES).11 Within the Born-Oppenheimer approximation, the most accurate

methods for calculating the PESs, such as the configuration interaction and its approxima-

tions such as the coupled cluster hierarchy,11,12 are prohibitively expensive13 for condensed

phase systems in periodic boundary conditions, which may contain thousands of electrons.

One of the most efficient approaches to calculating approximate PESs for MD simulations

is the use of analytical potential energy functions (PEFs),14,15 commonly known as force fields

(FFs), wherein the electronic degrees of freedom are effectively integrated-out. The efficiency

comes at a cost, however, since the complicated nature of the electronic structure of molecular

systems requires that the comparatively-simple analytic PEFs be tailored specifically to the

system of interest, often requiring that each atom be assigned a unique identity that must

be preserved during an MD simulation.

Alternatively, density functional theory (DFT) allows for the calculation of PESs for MD

simulations through an explicit treatment of the electron density, thus circumventing the
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need for reparametrization for each system of interest. DFT requires a much greater cost

than analytic PEFs, but is tractable for simulations of relatively small systems, unlike the

configuration interaction or coupled cluster methods. However, it has been shown16–20 that

the approximate exchange-correlation (XC) functionals used in DFT simulations of aqueous

systems can yield PESs that are much less accurate than those produced by analytic PEFs.

We previously conducted an analysis of the energy decompositions of a number of PEFs

and popular XC functionals in calculating halide ion−water interaction energies20 to identify

interaction components that are necessary to achieve sufficient accuracy, and to identify lim-

itations of the tested models. Energy decompositions of the PEFs are easily calculated since

the three tested models (AMOEBA,21,22 TTM-nrg,23,24 and MB-nrg18,19) are constructed

as a sum of contributions arising from specific interactions, such as permanent electrostat-

ics (ELEC), polarization (POL), Pauli repulsion (PAULI), and dispersion (DISP) (where

the PAULI and DISP terms are often represented as a single term, which we refer to as

“Pauli+Disp,” such as the Lennard-Jones and Buckingham potentials), along with terms due

to intramolecular distortion energies (bond stretches, angle bends, dihedrals, etc.) which we

are not concerned with here.25 Energy decompositions of the XC functionals were computed

using the 2nd generation absolutely localized molecular orbital energy decomposition analysis

(ALMO-EDA) method,26,27 which decomposes an interaction energy calculated with a given

functional into terms due to ELEC, PAULI, DISP, POL and charge transfer (CT).26–30 It

should be noted that in order to keep all analysis consistent, we only discuss the sum of

PAULI + DISP = Pauli+Disp energies for both the PEFs and the XC functionals. Despite

the fact that these specific interaction terms are not observable quantities,31,32 and, therefore,

energy decompositions of XC functionals are not uniquely-defined, ALMO-EDA was devel-

oped to satisfy a number of properties,20,28 which allows for qualitative comparisons between

the descriptions of intermolecular interactions produced by a survey of functionals.20

In our analysis of halide−water energy decompositions, it was found that close range

interactions such as CT and charge penetration posed the greatest difficulties for the PEFs
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that do not include dedicated terms to correct for these effects, while the tested XC func-

tionals displayed greatly-varying accuracies, but were for the most part distinguished from

each other in their Pauli+Disp energy terms, and to a lesser extent, in their CT energies.

In particular, we found that the MB-nrg PEFs performed better, on average, than all other

models (among both the PEFs and the XC functionals), as a result of the balanced treatment

of long-range interactions—which are effectively captured with classical representations of

ELEC, POL, and DISP terms—with the more complicated close-range interactions where

CT and PAULI interactions become significant, and the simple classical long-range repre-

sentations break down (e.g., CP effects that cannot be captured by damped atomic point

charges). The accuracy of the MB-nrg PEFs is achieved through the use of permutationally

invariant polynomials33 (PIPs) fitted to large sets of two-body (2B) and three-body (3B) en-

ergies calculated at the coupled cluster level of theory with single, double, and perturbative

triple excitations (CCSD(T))34,35 which act as close range “quantum corrections” to under-

lying long-range classical potentials which include long-range, system-wide polarization.18–20

Additionally, it was found that the inclusion of nonlocal terms such as Hartree-Fock ex-

change (in hybrid functionals), as well as terms dependent on the kinetic energy density (in

meta-GGAs) in XC functionals had significant effects on the close-range CT and Pauli+Disp

interactions. However, it was also found that Hartree-Fock exchange on its own can be in-

sufficient to improve interaction energies, for example the PBE0 F−(H2O) 2B energy was

found to deviate from the CCSD(T)-F12b reference energy more than the PBE 2B energy,

despite the use of Hartree-Fock exchange.

Here, we extend the analysis of interaction energy decompositions to alkali ion−water

interactions as described by various analytical PEFs and XC functionals, paying particu-

lar attention to comparisons with analogous results reported in Ref. 20 for halide−water

interactions. Specifically, we find that as was the case for halide−water interactions, ana-

lytical PEFs entirely based on classical representations of the alkali ion−water interactions

have trouble reproducing close-range effects, and that quantum corrections (such as those
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from PIPs) can significantly improve accuracy. Furthermore, we find that the MB-nrg18,19

PEFs yield, on average, the most accurate 2B and 3B energies for alkali ion−water systems

among all PEFs and XC functionals tested in this study. We find some differences in trends

of energy decompositions of XC functionals for alkali ion−water interactions compared to

those for halide−water interactions, but again find that nonlocal terms in XC functionals

are needed to reproduce the correct Pauli+Disp energies. In particular, comparisons of

Pauli+Disp energies of GGAs, meta-GGAs, hybrid GGAs, and hybrid meta-GGAs suggest

that differences in Pauli+Disp energies may be due in part to the ability or inability to

capture intermediate-range dispersion interactions. Additionally, through a comparison of

alkali ion−water and halide−water Pauli+Disp energies, we identify that the delocalization

error36–38 leads to spurious Pauli repulsion, further deteriorating Pauli+Disp energies of

functionals that do not contain sufficient nonlocal character.

2 Theoretical and Computational Methodology

2.1 Electronic structure calculations

M+(H2O) and M+(H2O)2 (M = Li, Na, K, Rb, Cs) cluster structures were obtained from

MP239,40 geometry optimizations using the aug-cc-pVTZ basis set41,42 for water, the cc-

pwCVTZ basis set43 for Li and Na, and the cc-pwCVTZ-PP basis set44 for K, Rb, and

Cs using the ECP10MDF, ECP28MDF, and ECP46MDF effective core potentials, respec-

tively.45 A threshold of 1.0×10−6 a.u., a step size of 1.0×10−6 a.u., and a gradient precision

of 1.0× 10−8 a.u. were used in all optimizations.

2B scans of each alkali ion along the water H−O−H bisector were performed by optimizing

the water monomer at the RI-MP246,47 level of theory with the aug-cc-pVTZ basis set,

initially placing each ion, except for Li+, 1.5 Å away from the water-oxygen (Li+ was

initially placed 1.25 Å away from the oxygen), coplanar with the water molecule, on the

other side of the water-hydrogens (Figure 1). Each ion was displaced along the water bisector
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Figure 1: Schematic representation of the geometry used in the scans along the RM+O

distance carried out for each of the four M+(H2O) dimers, with M = Li, Na, K, Rb, Cs. The
ion remains in the plane of the water molecule.

(in the plane) up to 5.0 Å from the oxygen in 0.1 Å increments.

Reference interaction energies were computed at the CCSD(T)34,35 level of theory in the

complete basis set (CBS) limit using a two-point extrapolation48 with the aug-cc-pVTZ and

aug-cc-pVQZ basis sets for O and H, the cc-pwCVTZ and cc-pwCVQZ basis sets for Li and

Na, and the cc-pwCVTZ-PP and cc-pwCVQZ-PP basis sets for K, Rb, and Cs, using the

ECP10MDF, ECP28MDF, and ECP46MDF effective core potentials, respectively. In all the

calculations, the valence electrons were correlated for O and H, while for the metals, the

n− 1 valence shell was also correlated since there are no electrons in the positively charged

cation. All optimizations and energy calculations were performed using MOLPRO 2015.1.49

2.2 The AMOEBA force field

The Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) is

a polarizable FF commonly used in MD simulations.21,22,50–53 A thorough description of the

AMOEBA FF can be found in the original references.14,21 The AMOEBA functional form

for the total interaction energy is expressed as:

V AMOEBA
INT = V AMOEBA

ELEC + V AMOEBA
POL + V AMOEBA

Pauli+Disp (1)
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The AMOEBA FF employs classical Coulombic equations to describe the permanent electro-

static potential energy, V AMOEBA
ELEC , using atom-centered point multipoles (monopoles through

the quadrupole) calculated via distributed multipole analysis (DMA) from MP2/aug-cc-

pVTZ.21 V AMOEBA
POL is treated explicitly, including self-consistent atom-centered induced point

dipoles. Atomic isotropic polarizabilities are derived from fits to experimental data.14,21

To avoid overpolarization at close range, a Thole-type electrostatic damping scheme, with

exponential-3 damping is used in V AMOEBA
POL .21,54 None of the terms in V AMOEBA

ELEC are damped.

The remaining energy contribution, V AMOEBA
Pauli+Disp, is modeled with the buffered 14-7 po-

tential55 to capture close-range pairwise additive interactions and can be decomposed into

terms which mainly correspond to Pauli-repulsion and London dispersion:

V AMOEBA
Pauli+Disp =

∑
i<j

εij

(
1 + δ

ρij + δ

)7(
1 + γ

ρ7ij + γ
− 2

)

=
∑
i<j

εij

(
1 + δ

ρij + δ

)7(
1 + γ

ρ7ij + γ

)
− 2εij

(
1 + δ

ρij + δ

)7
(2)

where ρ = |Ri −Rj|/R0
ij. |Ri −Rj| is the interatomic separation distance between atoms i

and j, and R0
ij and εij are flexible parameters, specific to the atomic species of atoms i and

j, representing the minimum energy distance and energy well depth respectively. The values

of the buffering constants are set to δ = 0.07 and γ = 0.12, and were originally determined

from fits to noble gas data.55 The values for R0
ii/R

0
jj and εii/εjj for homonuclear dimers were

obtained from fits to MP2/aug-cc-pVTZ energies and experimental data, while values for

heteronuclear dimers are calculated from the combining rules:21

Rij =
(R0

ii)
3 + (R0

jj)
3

(R0
ii)

2 + (R0
jj)

2
(3)

εij =
4εiiεjj

(ε
1/2
ii + ε

1/2
jj )2

(4)
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2.3 The TTM-nrg PEF

Within the TTM-nrg PEF,23,24 water−water interactions are represented by the MB-pol

PEF,56–60 while ion−water interactions are represented by analytical functions representing

ELEC, POL, DISP, and PAULI:

V TTM-nrg
INT = V TTM-nrg

ELEC + V TTM-nrg
POL + V TTM-nrg

PAULI + V TTM-nrg
DISP (5)

TTM-nrg V TTM-nrg
ELEC and V TTM-nrg

POL terms use an extended Thole-type model54 with exponential-

4 damping to represent permanent and induced electrostatic interactions, respectively, as

described in detail in refs 23 and 24. The ion dipole polarizabilities were calculated at the

CCSD(T)/cc-pwCV5Z level of theory.24

The TTM-nrg Pauli repulsion energy, V TTM-nrg
PAULI , is represented by a pairwise sum of

Born-Mayer functions

V TTM-nrg
PAULI = AOXe

−bOXROX + AH1Xe
−bH1X

RH1X + AH2Xe
−bH2X

RH2X (6)

Aij and bij in eq 6 are flexible parameters, specific to the atomic species of atoms i and j,

determined by fitting to reference CCSD(T) interaction energies (after subtracting V TTM-nrg
ELEC

and V TTM-nrg
POL ). The TTM-nrg dispersion energy (V TTM-nrg

DISP ) is represented by the following

function:

V TTM-nrg
DISP = −fTT6 (δXORXO)

C6,XO

R6
XO

− fTT6 (δXH1RXH1)
C6,XH1

R6
XH1

− fTT6 (δXH2RXH2)
C6,XH2

R6
XH2

(7)

C6,ij in eq 7, specific to atoms i and j, are fitted independently of the other terms using

the exchange dipole method (XDM)61–63 calculated with the Postg software.64,65 Damping is

achieved using the Tang-Toennies (fTT6 (δαβ)) damping scheme.66 Additionally, the damping

parameters, δij, are constrained to be equal to the corresponding bij parameters in eq 6.
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2.4 The MB-nrg PEF

The MB-nrg PEFs for alkali ion−water interactions19 are rigorously derived from the many-

body expansion.67 The MB-nrg PEFs adopt the same functional form and parameterizations

as the TTM-nrg ELEC, POL, and DISP terms, V TTM-nrg
ELEC , V TTM-nrg

POL , and V TTM-nrg
DISP , respec-

tively, but replace the TTM-nrg Born-Mayer functions, V TTM-nrg
PAULI , with PIPs33 for ion−water

2B and ion−water−water 3B interactions, V MB−nrg
2B and V MB−nrg

3B , respectively.

The PIPs can be thought of as quantum corrections to the underlying classical TTM-nrg-

like potential, accounting for close-range PAULI and CT interactions, as well as correcting

deficiencies in the TTM-nrg ELEC and DISP terms.20 The PIPs are turned on via sigmoidal

“switching functions” at small intermonomer separations, leaving the remaining TTM-nrg

terms to capture long range interactions, and many-body polarization.18,19 The PIPs are

“permutationally invariant” with respect to interchangeable atoms in the system.33 The

PIPs are functions of the distances between the ion and the six sites of an MB-pol water

molecule. The coefficients of both 2B and 3B PIPs were optimized using Tikhonov regres-

sion68 (also known as ridge regression) to reproduce reference 2B and 3B energies calculated

at the CCSD(T)-F12b69,70/CBS level of theory for Li+−water and Na+−water interactions,

and at the CCSD(T)/CBS level of theory for K+−water, Rb+−water, and Cs+−water in-

teractions.19

2.5 ALMO-EDA calculations

Given a base density functional, Ebase[·], ALMO-EDA decomposes the interaction energy

calculated with that functional, VINT , into a sum of frozen, POL, and CT energies, VFRZ ,

VPOL, and VCT , respectively:27

VINT = VFRZ + VPOL + VCT (8)
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The VFRZ term can be further decomposed into a sum of ELEC, PAULI, and DISP energies,

VELEC , VDISP , and VPAULI , respectively:27,29

VFRZ = VELEC + VDISP + VPAULI (9)

Since the ALMO-EDA method is discussed in detail in the original references,26–29 we only

summarize the main aspects of the method here.

The three terms on the right-hand side of eq 8 are each interaction energy components

for the total system, with each term corresponding to its own total-system electron den-

sity, differing from each other in their respective degrees of relaxation (minimization of the

total electronic energy). The least-relaxed (highest energy) electronic density, the frozen

density, ρFRZ(r), results from the antisymmetric product of the isolated monomer occupied

orbitals (fully-relaxed in isolation, calculated with the base functional), superimposed into

the complex geometry. ρFRZ(r) is “frozen” in the sense that monomer densities are un-

changed relative to their optimized, isolated densities (apart from the antisymmetrization).

The frozen energy, VFRZ is taken to be the difference from subtracting the sum of the iso-

lated monomer total energies, Etot
1B, from the total energy of ρFRZ(r) calculated with the

base functional.

VFRZ = Ebase[ρFRZ(r)]− Etot
1B = Etot

FRZ − Etot
1B (10)

The decomposition of the frozen energy (eq 9) is described in detail in refs 27 and 29,

but we note here that the calculation of the dispersion energy, VDISP , requires the use of a

“dispersion-free” XC functional, EbaseDF [·] specific to the base functional. Ideally, EbaseDF [·] would

lack any dispersion interaction, but would otherwise be identical to the base functional.

Therefore, in the interest of fair comparisons between the functionals, we only consider

the sum, VPauli+Disp = VPAULI + VDISP , in the analyses presented in Section 3. We also

only consider the ALMO-EDA 2 “classical” ELEC energy27,29 in order to make meaningful

comparisons between the decompositions of XC functionals with those obtained with the
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PEFs. We also make use of the kinetic energy pressure (KEP) in section 3.4

The POL energy, VPOL, is calculated from the total-system electron density obtained via

relaxation with respect to the base functional, such that each monomer polarizes each other

monomer, but no electron density is transferred between the monomers. This is accom-

plished by only allowing monomer electron densities to relax within their own “polarization

subspaces. In ALMO-EDA 2, these subspaces are determined with the use of fragment elec-

tric field response functions.27,28,30 VPOL is then computed by subtracting Etot
1B and VFRZ

from the total energy of the polarized density, ρPOL(r) calculated with the base functional:

VPOL = Ebase[ρPOL(r)]− Etot
1B − VFRZ (11)

The CT energy, VCT , is calculated from the fully-relaxed total-system electron density,

ρSCF (r), (i.e. what one would obtain from an unconstrained DFT calculation with the

base functional). This electron density can be thought of as resulting from mixing each

monomer’s (polarized) occupied orbitals from ρPOL(r) with the occupied and virtual orbitals

of the surrounding monomers (as well as its own virtual orbitals).27,28,30 The total interaction

energy, VINT , is calculated by subtracting Etot
1B from the total energy of ρ

SCF
(r) with respect

to the base functional. The CT energy, VCT , is finally calculated by subtracting VFRZ and

VPOL from VINT ,

VINT = min
ρ
SCF

(r)
Ebase[ρ

SCF
(r)]− E1B = Etot

SCF − Etot
1B (12)

VCT = VINT − VFRZ − VPOL (13)

The ALMO-EDA 2 method27 was used in all energy decompositions that were carried

out using the following XC functionals: BLYP,71,72 PBE,73 revPBE,74 SCAN,75 TPSS,76

B97M-rV,77,78 B3LYP,79 PBE0,80 revPBE0, M06-2X,81 ωB97X,82 and ωB97M-V.77,83 Ex-

cluding B97M-rV and ωB97M-V, all DFT energies were calculated with and without the
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D3(0) empirical dispersion corrections.84 Since ωB97X-D uses D2 empirical dispersion cor-

rections85 which are unavailable for Cs, we do not include ωB97X-D in our analysis, but do

briefly discuss its accuracy in 2B energies of K+(H2O) and Rb+(H2O) dimers in section 3.2.

It should also be noted that in addition to using D2 corrections, the ωB97X-D functional

itself has a different parameterization than that of ωB97X, which means that ALMO-EDA

terms other than the DISP energy will differ between the ωB97X-D and ωB97X-D3. All

ALMO-EDA 2 calculations were carried out with Q-Chem 5.186 and used the same basis

sets as those used in the reference CCSD(T) calculations (section 2.1).

3 Results

3.1 Many-Body Halide–Water Models

To assess the ability of AMOEBA, TTM-nrg, and MB-nrg to describe alkali ion−water inter-

actions, Figure 2 shows comparisons with CCSD(T) interaction energies calculated for radial

scans obtained by moving each alkali ion along the direction of the water H−O−H bisector,

as described in section 2.1. The most apparent feature seen here is the tendency of the

AMOEBA to produce interaction energies that are too repulsive at close range for all dimers

except for K+(H2O), for which AMOEBA is slightly too repulsive near the minimum-energy

distance (by less than 0.5 kcal/mol), and becomes slightly too attractive at close range (by

around −2 kcal/mol at an K+−O distance of 2 Å. For all other dimers, but most significantly

for Rb+(H2O) and Cs+(H2O), the AMOEBA interaction energy converges to the reference

CCSD(T) interaction energy at long range where the permanent electrostatics are the dom-

inant interaction,14 but becomes too repulsive at too large of an M+−O distance. This

artificially-steep repulsive wall results in overestimation of the minimum-energy distances by

around 0.2 Å in both Rb+(H2O) and Cs+(H2O). The AMOEBA 2B energy was also found

to diverge from CCSD(T)-F12b at close range in halide−water dimers scanned along the wa-

ter O−H axis, producing 2B curves that were too repulsive (and too steep) at too large an
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Figure 2: Comparisons between CCSD(T) (open circles) and ωB97M-V (dotted red),
AMOEBA (solid green), TTM-nrg (dotted blue), and MB-nrg (solid black) interaction en-
ergies calculated for radial scans of M+(H2O) dimers, with M = Li (a), Na (b), K (c), Rb
(d), Cs (e), in which each alkali ion in displaced along the water H−O−H bisector, on the
opposite side of the water-hydrogens, in the water-plane, as described in section 2.1.

X−−O distance, leading to overestimated minimum-energy distances.20 However, AMOEBA

additionally predicts minimum energies that are too attractive in the halide−water dimer

scans,20 while we find here that AMOEBA predicts minimum energies that are too repulsive
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in the alkali−water scans.

TTM-nrg performs better than AMOEBA on average in all dimer scans except for parts

of the Na+(H2O) and K+(H2O) scans. It should be noted, however, that despite performing

better than AMOEBA on average, TTM-nrg deviates from the CCSD(T) reference energies

by around 2 kcal/mol or more in some configurations at close range in each dimer scan.

As is the case for AMOEBA, TTM-nrg appears to converge to the CCSD(T) curves at long

range. This agreement of AMOEBA and TTM-nrg with CCSD(T) at long range is consistent

with the fact that both models use similar representations of the ELEC energy, which is the

dominant interaction at large ion−water separations.14 While TTM-nrg tends to find the

correct minimum-energy distances along each scan, the TTM-nrg 2B interaction energies

at the minima differ from the corresponding CCSD(T) values by more than 1 kcal/mol in

K+(H2O), Rb+(H2O) and Cs+(H2O). Interestingly, this behavior was not apparent in the the

halide−water TTM-nrg scans, which were slightly too repulsive in the close range repulsive

region, but were otherwise quite accurate at all other ion−water separations except for

F−(H2O), in which TTM-nrg predicted that the minimum energy was around 1.3 kcal/mol

lower than the CCSD(T) value.20

MB-nrg remains within 1 kcal/mol of the CCSD(T) 2B energies along each scan. The

largest deviations of MB-nrg relative to CCSD(T) occur within the repulsive regions in each

scan, but the deviations remain within roughly 0.25 kcal/mol at medium and long ranges.

Given that the MB-nrg differs from TTM-nrg only by the replacement of the TTM-nrg

Born-Mayer repulsive potential with PIPs (Section 2.4), the higher accuracy of MB-nrg than

TTM-nrg at all configurations along each scan demonstrates the importance of including

effective quantum corrections to the TTM-nrg classical interactions at close range, keeping

in mind that TTM-nrg reproduces the CCSD(T) 2B energies in the long range regime of

each scan.
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3.2 2B Interaction Energies

Figure 3 shows the deviations of the total 2B interaction energies calculated with each tested

model relative to CCSD(T)/CBS for each of the five M+(H2O) dimers in their corresponding

minimum-energy geometries obtained from MP2 optimizations (section 2.1). For reference, a

dashed line, indicating the ±1 kcal/mol threshold that is generally used to define “chemical

accuracy,” is also shown in each panel of Figure 3. Similar comparisons for other alkali

ion−water dimer geometries are reported in the Supporting Information.

Some general trends are apparent when comparing the performance of a given method

across different M+(H2O) dimers. Notably, all non-dispersion-corrected functionals except

for ωB97X produce 2B energies that tend to become less attractive and/or more repulsive

than CCSD(T) with increasing ion size from Li+(H2O) to Rb+(H2O), while ωB97X 2B errors

become less positive and more negative with increasing ion size for all dimers. Following this

trend, functionals such as B3LYP and PBE0 have negative errors for Li+(H2O), but positive

errors for Cs+(H2O). Since many of the functionals have positive errors for the dimers of the

larger ions, the inclusion of D3 corrections appears to substantially improve the 2B energies

(notably in B3LYP-D3), although functionals such as BLYP-D3, revPBE-D3, TPSS-D3, and

revPBE0-D3 still show errors around 1 kcal/mol. ωB97X has large negative errors for these

dimers, so the D3 corrections significantly worsen the 2B energies. ωB97X-D (which, for

the reasons mentioned in section 2.5, is not shown in Figure 3) produces more accurate 2B

energies in K+(H2O) (−17.4 kcal/mol), and in Rb+(H2O) (−15.7 kcal/mol) than ωB97X-D3,

although these energies differ from the CCSD(T) values by more than 0.5 kcal/mol each.

It is also apparent that most models show similar accuracy for Rb+(H2O) and Cs+(H2O),

with the largest differences in accuracy between the dimers of the two largest ions occurring

in AMOEBA (−0.58 kcal/mol), ωB97X-D3 (−0.38 kcal/mol), ωB97X (−0.27 kcal/mol),

revPBE-D3 (−0.17 kcal/mol), B3LYP (0.16 kcal/mol), and TTM-nrg (0.15 kcal/mol). It is

interesting that most models have 2B interaction energy errors within 0.1 kcal/mol between

Rb+(H2O) and Cs+(H2O), despite the fact that the reference CCSD(T) 2B energies for the
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Figure 3: Deviations from the CCSD(T) 2B interaction energies of the M+(H2O) dimers
with M = Li (a), Na (b), K (c), Rb (d), Cs (e), in the corresponding minimum energy
configurations (from MP2 as described in section 2.1) calculated with various XC functionals
as well as the AMOEBA, TTM-nrg, and MB-nrg PEFs.
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two dimers differ by around 2 kcal/mol.

Among the GGA functionals considered in this study, revPBE without D3 corrections sig-

nificantly underestimates the interaction strength in all dimers, deviating from the CCSD(T)

2B energies by more than 1 kcal/mol for each. BLYP also underestimates the interaction

strength of all dimers other than Li+(H2O), for which it deviates from CCSD(T) by 0.01

kcal/mol. BLYP has errors greater than 1 kcal/mol for K+(H2O), and errors just under

2 kcal/mol in Rb+(H2O), and Cs+(H2O), but is still more accurate than revPBE for all

alkali ion−water dimers. Furthermore, revPBE appears to have the largest errors on aver-

age among all functionals, deviating from CCSD(T) by over 1 kcal/mol in Li+(H2O) (for

which M06-2X has similar accuracy), and deviating by around 2.5 kcal/mol in Rb+(H2O)

and Cs+(H2O). PBE performs the best out of the GGA functionals, having errors just below

1 kcal/mol in Rb+(H2O) and Cs+(H2O), and errors below 0.25 kcal/mol in Li+(H2O) and

Na+(H2O).

Among the meta-GGA functionals considered here, SCAN and B97M-rV perform the

best, both deviating from CCSD(T) by at most 0.5 kcal/mol for all dimers. TPSS yields

2B energies that are too repulsive for all dimers other than Li+(H2O), for which it has a

small negative error, leading to significant improvements upon adding the D3 corrections.

Interestingly, the accuracy of TPSS-D3 is comparable to that of BLYP-D3 for all minimum

energy dimers.

The hybrid functionals have varied performance, with ωB97M-V being, on average, the

most reliable hybrid functional for all dimers, revPBE0 and ωB97X-D3 being the least ac-

curate hybrid functionals for dimers of the larger ions, and with M06-2X being the least

accurate hybrid functional for Li+(H2O) and Na+(H2O). PBE0 tends to benefit from D3

corrections, such that PBE0-D3 deviates from CCSD(T) by around 0.1 kcal/mol for all

dimers except for Li+(H2O) and Na+(H2O), for which it has errors of around -1 and -0.5

kcal/mol, respectively. B3LYP benefits from D3 corrections as well, having errors within

0.25 kcal/mol for all dimers except for Li+(H2O) and Na+(H2O), for which its errors are
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comparable to those for PBE0.

AMOEBA underestimates the strength of the interactions in all alkali ion−water dimers,

deviating from the CCSD(T) 2B energies by at most 2.3 kcal/mol in Rb+(H2O), and by as lit-

tle as 0.3 kcal/mol in K+(H2O). AMOEBA is among the least accurate models in Li+(H2O),

Rb+(H2O), and Cs+(H2O), although it outperforms revPBE in all dimers. TTM-nrg also un-

derestimates the interaction strength in Rb+(H2O), and Cs+(H2O), having errors of 1.4 and

1.6 kcal/mol, respectively. TTM-nrg and AMOEBA exhibits similar accuracy for Cs+(H2O)

and Na+(H2O), but AMOEBA is more accurate than TTM-nrg for K+(H2O). Interestingly,

TTM-nrg shows negative errors in Li+(H2O) and Na+(H2O), but positive errors for all other

dimers. MB-nrg is, on average, the most accurate model for all alkali ion−water dimers,

deviating from CCSD(T) by at most −0.1 kcal/mol in both Li+(H2O) and Na+(H2O).

3.3 3B Interaction Energies

Figure 4 shows the deviations of the 3B energy calculated with each model relative to

CCSD(T)/CBS for each of the five minimum-energy alkali ion−water M+(H2O)2 trimers.

The deviations of each model relative to CCSD(T)/CBS for all stable alkali ion−water

M+(H2O)2 trimers are reported in the Supporting Information. Dotted lines on each plot

indicate the ±1 kcal/mol “chemical accuracy” threshold. Similar comparisons for the other

alkali ion−water trimer geometries are reported in the Supporting Information.

All XC functionals have deviations within 1 kcal/mol for each trimer. Li+(H2O)2 has the

largest mean absolute 3B errors among the XC functionals (0.29 kcal/mol), while Rb+(H2O)2

has the lowest mean absolute error (0.09 kcal/mol). It should be noted that Li+(H2O)2 also

has the largest reference 3B energy of 3.37 kcal/mol, which is a factor of two larger than

that of Na+(H2O)2. The second largest 3B energy. In the analysis of halide−water trimers,

it was found that the 3B errors were very uniform between the different systems, such that

the F−(H2O)2 and Cl−(H2O)2 minimum energy isomers have the largest and smallest mean

absolute errors of 0.27 and 0.23 kcal/mol, respectively.
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Figure 4: Deviations from the CCSD(T) 2B interaction energies of the M+(H2O)2 trimers
with M = Li (a), Na (b), K (c), Rb (d), Cs (e), in the corresponding minimum energy
configurations (from MP2 as described in section 2.1) calculated with various XC functionals
as well as the AMOEBA, TTM-nrg, and MB-nrg PEFs.
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Nearly all functionals predict 3B energies that are more repulsive than the CCSD(T)

reference value for all trimers, with the exception being M06-2X for Cs+(H2O)2. All other

negative errors have magnitudes less than 0.05 kcal/mol. It was also found that most of the

tested XC functionals predict halide−water 3B energies that are more repulsive than the

CCSD(T)-F12b reference values for the minimum energy halide−water X−(H2O)2 trimers,

such that all negative errors have magnitudes less than 0.05 kcal/mol.20

Among the XC functionals, SCAN, B97M-rV, and ωB97X yield the best 3B energies,

averaged over the minimum-energy geometries, each deviating from the CCSD(T) reference

3B values, on average, by no more than 0.1 kcal/mol. PBE has the largest mean absolute

error among the functionals (0.30 kcal/mol). For the minimum energy halide−water trimers,

revPBE0, ωB97X-D, and ωB97M-V produced the most accurate 3B energies, while PBE

produced the least accurate 3B energies.20

Among the PEFs, TTM-nrg shows very large, positive 3B energy errors for the Li+(H2O)2

and Na+(H2O)2 trimers in their minimum-energy geometries, deviating from the CCSD(T)

reference by 2.88 and 0.92 kcal/mol, respectively. Given that the TTM-nrg ion−water−water

3B energy is entirely due to classical POL, these large errors may suggest that close-range

quantum effects such as CT may be important for reproducing these 3B interactions. How-

ever, the AMOEBA PEFs yields 3B energies for Li+(H2O)2 and Na+(H2O)2 that deviate

from the CCSD(T) 3B energy by −0.34 and 0.01 kcal/mol, respectively, despite being com-

posed solely of classical POL, themselves. Looking at the energy decomposition analysis

of 2B interaction energies of Li+(H2O) and Na+(H2O) dimers, as well as decompositions of

3B energies of Li+(H2O)2 and Na+(H2O)2 trimers, it appears that AMOEBA tends to pro-

duce POL energies that are similar to ALMO-EDA POL energies of XC functionals, while

TTM-nrg and MB-nrg (classical) POL energies tend to be larger in magnitude than the

corresponding ALMO-EDA values. Note that there is widespread agreement between the

tested XC functionals with respect to their ALMO-EDA POL energies. This difference in

POL energies between AMOEBA and TTM-nrg for Li+ and Na+ dimers and trimers could
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be due to a combination of factors, including differences in atom-centered dipole polariz-

abilities, differences in permanent charges, the use of permanent dipoles and quadrupoles in

AMOEBA, differences in Thole damping parameters, or in the different damping schemes

used by each model (see section 2). These differences in POL energies between the two sets

of models may be accentuated in the Li+ and Na+ dimers and trimers due to the small

distances between the ion and the water molecule(s) in these structures, compared to those

in the K+, Rb+, and Cs+ dimers and trimers. We note, however, that TTM-nrg was found

to predict, on average, better 3B energies for halide−water trimers than AMOEBA,20 indi-

cating some amount of error cancellation, for example in the non-negligible 3B CT energies

found in alkali ion−water trimers (see the Supporting Information), and in halide−water

trimers (see the Supporting Information of reference 20).

Irrespective of the underlying cause leading to the large deviations in the TTM-nrg 3B

interaction energies of the minimum energy Li+(H2O)2 and Na+(H2O)2 trimers, Figure 4

demonstrates that the 3B MB-nrg PIPs (section 2.4) provide sufficiently accurate close-

range corrections to the underlying classical model, which for 3B and higher-body energy

terms, is identical to those of TTM-nrg.

3.4 Energy Decomposition Analysis

Decompositions of the 2B energies of the M+(H2O) dimers are reported in Figure 5. Statistics

for 2B ALMO-EDA calculations of alkali ion−water M+(H2O) dimers and M+(H2O)2 trimers

are reported in the Supporting Information to aid in the analysis. Additionally, statistics for

2B ALMO-EDA calculations of halide−water X−(H2O) dimers taken from ref 20 are also

reported in the Supporting Information for comparison with the alkali ion water dimer statis-

tics. Interestingly, some of the trends found in the analysis of energy decompositions of 2B

energies of halide−water dimers20 are not reproduced in the analogous decompositions of the

2B energies of the alkali ion−water dimers. Differences in trends between the halide−water

and alkali ion−water decompositions could be due to differences in the descriptions of the ion,
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in particular because anionic species are more difficult to describe with semi-local functionals

than neutral or cationic species.87 Differences between halide−water and alkali ion−water

decompositions could also be due to differences in the variations among the functionals in

their descriptions of the water hydrogens and the water oxygen, since halide ions accept

hydrogen bonds from the water molecule while alkali ions are bound to the water oxygen.

One notable difference between halide−water and alkali ion−water energy decomposi-

tions is that the Li+(H2O) ELEC energy has a larger standard deviation (0.7 kcal/mol) than

any other interaction term among XC functionals, while the ELEC energy is very consis-

tent among all XC functionals in all halide−water dimers, with F−(H2O) having the largest

standard deviation of 0.3 kcal/mol (relative to all functionals from all classes of XC func-

tionals).20 The mean ELEC energies (and their standard deviations) in Li+(H2O) for GGA,

meta-GGA, and hybrid functionals are found to be −31.4 (0.2), −32.0 (0.4), and −32.8 (0.3)

kcal/mol, respectively. Relative uniformity within XC functional classes, but large deviations

between the classes, suggests that nonlocal effects due to the use of the kinetic energy density

in meta-GGAs and more significantly, Hartree-Fock exchange in hybrid functionals, might

be necessary for describing the ELEC energy in Li+(H2O). It should be noted, however, that

the GGA functionals BLYP and PBE yield more accurate total 2B energies of the Li+(H2O)

dimer, relative to the CCSD(T) reference, than a number of hybrid functionals, such as

M06-2X, B3LYP, PBE0, and ωB97X, which indicates that the accurate reproduction of the

Li+(H2O) ELEC term is more complicated than simply adding Hartree-Fock exchange.

It is likely that the large deviation of the Li+(H2O) ELEC energy trend from the trends

seen in halide−water dimers is at least in part due to the fact that Li+ has no isoelectronic

counterpart in the halide ions. However, we point out that Figure 5 (and Tables S1 and

S2 in the Supporting Information) shows that ELEC energies of the other alkali ion−water

dimers have, on average, more variance than the halide−water ELEC energies.20 Figure 5

shows that ELEC energies calculated with GGA and meta-GGA functionals in the other

alkali−water dimers tend to be very similar, with the two classes having mean values within
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Figure 5: Energy decompositions for each minimum energy M+(H2O), with M = Li (a),
Na (b), K (c), Rb (d), Cs (e), with numerical energy values (in kcal/mol) shown on the
right-hand side of each bar.

0.1 kcal/mol of each other.

However, the ELEC energies of all alkali ion−water dimers calculated with the hybrid
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functionals are, on average, more attractive than those calculated with the semi-local func-

tionals, although differences between the values calculated with hybrid functionals and semi-

local functionals become smaller with increasing ion size. Since the ELEC energy is calculated

within the ALMO-EDA frozen energy term, differences between functionals reflect differences

in their descriptions of the electronic structures of the isolated monomers. The fact that all

dimers other than Li+(H2O) have relatively uniform ELEC energies among the functionals

suggests that the large variance in Li+(H2O) is likely due to differences in descriptions of

Li+ between the functionals given that the water molecules are similarly distorted between

the dimers. However, it is also possible that the small distance between Li+ and the water

oxygen (around 1.8 Å) accentuates differences in the electronic structures of the isolated

water produced by each functional compared to those in the other dimers.

The Pauli+Disp terms are the most varied among all functionals for all alkali ion−water

dimers except for Li+(H2O). The variance in Pauli+Disp energies increases with increasing

ion size, with the standard deviations (among all functionals) for Li+(H2O) and Cs+(H2O)

being 0.5 and 1.0 kcal/mol, respectively. Pauli+Disp is also the most varied interaction term

for all halide−water dimers, although it was found that the standard deviation decreases with

increasing ion size, with the standard deviations for F−(H2O) and I−(H2O) being 2.2 and

1.0 kcal/mol, respectively.20 The difference in this variance trend likely reflects the fact that

Pauli+Disp energies represent increasing (negative) fractions of the total 2B interaction

energy of alkali ion−water dimers with increasing ion size, while representing decreasing

(negative) fractions of the total 2B energy of halide−water dimers with increasing ion size.20

One notable similarity between energy decompositions of the alkali ion−water dimers

and the halide−water dimers is that Pauli+Disp energies predicted by hybrid functionals

are, on average, less repulsive than those predicted by GGA functionals.20 One possible

explanation of this trend stems from the inability of GGA functionals to reproduce interme-

diate to long range (attractive) dispersion interactions, which requires a nonlocal treatment

of electron correlation.88–91 The fact that the meta-GGA functionals tested here predict
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Pauli+Disp energies that are comparable to (and sometimes even less repulsive than) those

predicted by hybrid functionals supports this hypothesis, since the use of the kinetic energy

density adds more nonlocal character to the correlation energy of an XC functional. In

particular, the meta-GGA SCAN functional has been shown to capture intermediate-range

dispersion,75,89 and the meta-GGA B97M-rV includes the explicitly nonlocal rVV10 corre-

lation functional.90 We point out that hybrid GGA XC functionals have been shown to lack

dispersion interactions,89,91 which appears to be consistent with the fact that B3LYP and

revPBE0 tend to yield Pauli+Disp energies that are more repulsive than those from hy-

brid meta-GGAs (M06-2X, ωB97X, and ωB97M-V), SCAN, and B97M-rV, especially in the

dimers of the larger ions. The hybrid GGA PBE0 appears to be an exception to this finding,

likely benefiting from error cancellation, resulting from the fact that PBE yields less repul-

sive Pauli+Disp energies than BLYP and revPBE due to the behavior of its exchange energy

with respect to the electronic density gradient.20 Note that these trends in the Pauli+Disp

energies for GGAs, meta-GGAs, hybrid GGAs, hybrid meta-GGAs, can also be seen in the

halide−water dimer EDA in reference 20.

A second possible explanation for the trend in the differences between GGA and hy-

brid Pauli+Disp energies is based on the tendency of semi-local functionals to artificially

delocalize electron density while Hartree-Fock exchange localizes the electron density.37,38

Excessive delocalization of the isolated monomer electron densities may result in spurious

Pauli repulsion in the frozen-electronic state (section 2.5) of dimers at small intermonomer

separations, which would lead to the observed trends. Furthermore, the fact that differences

between GGA and hybrid Pauli+Disp energies are more pronounced in the halide−water

dimers20 strengthens this argument since anionic species tend to suffer from artificial delo-

calization more than neutral or cationic species.87 The dominant repulsive interaction con-

tributing to the ALMO-EDA Pauli repulsion energy is the kinetic energy pressure (KEP),

which can be thought of as the (primarily kinetic) energetic penalty paid to orthogonalize

isolated monomer electron wavefunctions when brought into the complex geometry in the
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ALMO-EDA frozen state, and therefore quantifies the importance of the second explana-

tion. Although the ALMO-EDA KEP is inaccessible in calculations with ECPs, Tables S1

and S2 (in the Supporting Information) provide strong evidence that artificial delocalization

contributes significantly to the observed differences between Pauli+Disp energies calculated

with GGAs compared to hybrid functionals. It should be noted, however, that the analysis

presented in ref 38 indicates that non-hybrid meta-GGA functionals suffer from delocaliza-

tion errors comparable to those seen in GGA functionals. This suggests that the trends

in Pauli+Disp energies produced by the semilocal meta-GGA functionals (in both alkali

ion−water and halide−water dimers) would not be explained by the delocalization error,

which would mean that intermediate-range dispersion interactions also play a role in the

observed trends. Finally, we point out that these trends exist in all dimers, despite the

accuracy of the GGAs degrading with increasing alkali ion size (section 3.2), indicating that

the inclusion of nonlocal terms is necessary for an XC functional to be able to correctly

reproduce Pauli+Disp energies in alkali ion−water dimers.

As a direct consequence of the delocalization error in DFT, it was found that CT energies

in halide−water dimers calculated with GGA functionals are more attractive than those

calculated with meta-GGA functionals, which are more attractive than those calculated

with hybrid functionals.20 The same trends seen in halide−water dimer CT energies can

also be seen in the alkali−water dimers, but to a smaller extent. For example, while the

difference in mean CT energies calculated with GGA and hybrid functionals was found to be

2.4 kcal/mol in F−(H2O), the largest difference in mean CT energies between the GGAs and

the hybrid functionals in the alkali−water dimers is 0.4 kcal/mol in Cs+(H2O). This is likely

due to differences in electron diffusivity in the anionic halide ions compared to the partial

negative charge on the water oxygen, the primary electron donors in the halide−water and

alkali ion−water dimers, respectively.

Polarization appears to be the contribution that behaves most consistently between the

halide−water dimers and alkali ion−water dimers, having the smallest deviation among XC
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functionals for all ions. The variance in the POL energy among functionals decreases with

increasing alkali ion size, likely reflecting the trend in variance of the ELEC energy. The

variance in the POL energies was also found to decrease with increasing halide ion size in

the halide−water dimers.20

It was found that there is a correlation between the total 2B interaction energies and total

2B ALMO-EDA frozen energies of halide−water dimers predicted by various XC function-

als.20 It was suggested that this correlation might be due to the similarity in the definitions

of these two energies (see eqs 12 and 10).20 As shown in Figure 6, we find a similar correlation

in alkali ion−water dimers as well. Two best-fit lines are shown for each dimer, one is fitted

to all functionals from all classes, and the other is fitted to the hybrid functionals. Based on

each of these best-fit lines, estimates for the total frozen energies (the y-intercepts of each

line, where the interaction energy error is 0.0) are also shown in horizontal dotted lines. As

was the case for halide−water dimers, the correlation apparently improves with increasing

ion size. Additionally, the two sets of best-fit lines tend to converge for alkali ion−water and

halide−water dimers with increasing ion size.

Figure 5 also shows energy decompositions calculated with the three PEFs studied here.

As was mentioned in section 3.3, we find here that the AMOEBA 2B POL energies are

relatively similar to those calculated with ALMO-EDA, whereas TTM-nrg and MB-nrg 2B

POL energies tend to be larger in magnitude (i.e. more attractive) than the corresponding

ALMO-EDA 2B POL values, particularly for Li+(H2O) and Na+(H2O). It can be seen,

however, that the TTM-nrg and MB-nrg 2B POL energy agrees with the ALMO-EDA 2B

POL energies for Cs+(H2O), while the AMOEBA 2B POL energy is smaller in magnitude

(less attractive) than those from ALMO-EDA. This finding that the TTM-nrg 2B POL

energies are consistently more attractive than the AMOEBA 2B POL energies across the

alkali ion−water dimers agrees with the plots of the 2B POL energies scanned along the

water−oxygen−ion distance (as described in section 2.1) in panels b, d, and f of Figure 7

which show that the AMOEBA 2B POL energy is more damped than the TTM-nrg 2B POL
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Figure 6: Total frozen energy from ALMO-EDA plotted against interaction energy deviations
(relative to CCSD(T)) for M+(H2O) dimers with M = Li (a), Na (b), K (c), Rb (d), Cs (e),
for each XC functional, demonstrating the correlation between the two quantities. The best
fit lines with respect to all functionals are shown as red solid lines, and the best fit lines with
respect to all hybrid functionals are shown as black solid lines. The y-intercepts for each
best fit line are also shown, giving an estimate of the “most accurate” total frozen energies
for each dimer.
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Figure 7: ELEC and POL energies calculated with each of the three sets of PEFs analyzed
in this study, and the ωB97M-V functional (from ALMO-EDA) along the scans described in
section 2.1 for the Li+(H2O) (panels a and b), Na+(H2O) (panels c and d), and Cs+(H2O)
(panels e and f) dimers.

energy.

Figure 5 shows that the ELEC energies of the minimum energy alkali−water dimers

calculated with each of the tested PEFs are similar to those calculated with ALMO-EDA.
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This is in contrast with the ELEC energies of halide−water dimers calculated with the

PEFs, which were consistently less attractive than those calculated with ALMO-EDA. Panels

a, c, and e of Figure 7 shows that the PEF ELEC energies converge to the ALMO-EDA

(ωB97M-V) ELEC energies at long range, but remain less attractive than the ALMO-EDA

ELEC energies as the water−oxygen−ion distance decreases. This divergence between the

two sets of ELEC energies is due to the lack of attractive charge penetration interactions

in the PEFs, which employ (damped) partial atomic charges. The fact that PEF ELEC

energies agree with ALMO-EDA ELEC energies in the minimum energy alkali ion−water

dimers indicates that these structures have oxygen−ion distances that lie outside the onset of

charge penetration effects. Additionally, it should be noted that a divergence in the ELEC

energies are not seen in the Li+(H2O) scans because charge penetration effects occur at

smaller Li+−oxygen distances due to the small radius of Li+.

The only difference between decompositions of the TTM-nrg and MB-nrg 2B interac-

tion energies is in their Pauli+Disp terms, for which TTM-nrg uses pairwise Born-Mayer

functions, while MB-nrg uses the 2B PIPs (section 2). As seen in Figure 5, MB-nrg

Pauli+Disp energies are more repulsive than the TTM-nrg Pauli+Disp energies in Li+(H2O)

and Na+(H2O), but are less repulsive in the other three dimers. Given that MB-nrg predicts

2B interaction energies that are on average the most consistent with the CCSD(T) reference

2B energies, it is clear that the PIPs provide accurate quantum corrections to the underlying

long-range classical (TTM-nrg) potential.

4 Conclusions

We have analyzed the ability of (implict and explicit many-body) analytic PEFs as well as

various XC functionals selected across the hierarchy of DFT approximations to describe alkali

ion−water interactions through the decompositions of interaction energies calculated with

each model into their fundamental physical contributions. Interaction energy decompositions
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of the XC functionals have been carried out within the ALMO-EDA scheme. The accuracy

of the various models at the 2B and 3B levels have been assessed through comparisons

with the corresponding CCSD(T) reference energies. Our analysis indicates that analytic

PEFs, which use simple classical representations of intermolecular interactions, are unable

to correctly capture close-range effects such as charge transfer and Pauli repulsion. The

decomposition of 2B energies predicted by XC functionals indicates that all models yield

consistent polarization energies for all dimers, and consistent permanent electrostatic energies

for all dimers except for Li+(H2O), likely due to the small distance between Li+ and the

water-oxygen. We also find that the combined Pauli repulsion + Dispersion term is the most

reflective of the differences between XC functionals (for all dimers except for Li+(H2O)) which

was also found to be the case in halide−water interactions (note that Li+ has no isoelectronic

counterpart in the halides). Finally, comparisons between GGA and hybrid functionals,

as well as comparisons between GGA and meta-GGA functionals in alkali ion−water and

halide−water 2B ALMO-EDA, suggest that the differences in Pauli repulsion + Dispersion

terms between functionals is a result of the delocalization error in GGA functionals, which

leads to spurious Pauli repulsion, and the inability of functionals without dependence on the

electronic kinetic energy density to reproduce intermediate-range dispersion interactions.

Supporting Information Available

Cartesian coordinates of low-lying isomers of M+(H2O) and M+(H2O)2 complexes, with M

= Li, Na, K, Rb, and Cs, deviations of each tested model with respect to CCSD(T) for all

M+(H2O)2 complexes, 2B and 3B ALMO-EDA statistics for alkali ion−water interactions,

and 2B ALMO-EDA statistics for halide−water interactions taken from J. Chem. Theory

Comput. 2019, 15, 2983–2995.

31



Acknowledgement

This research was supported by the National Science Foundation through grant no. CHE-

1453204. All calculations used resources of the Extreme Science and Engineering Discovery

Environment (XSEDE),92 which is supported by the National Science Foundation through

grant no. ACI-1548562, under allocation TG-CHE110009, the High Performance Computing

Modernization Program (HPCMP) through grant no. FA9550-16-1-0327 by the Air Force

Office of Scientific Research, and the Triton Shared Computing Cluster (TSCC) at the San

Diego Supercomputer Center.

References

(1) van Gunsteren, W. F.; Berendsen, H. J. C. Computer Simulation of Molecular Dynam-

ics: Methodology, Applications, and Perspectives in Chemistry. Angew. Chem., Int.

Ed. Engl. 1990, 29, 992–1023.

(2) Warshel, A. Computer Simulations of Enzyme Catalysis: Methods, Progress, and In-

sights. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 425–443.

(3) Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G. How Enzymes Work: Analysis

by Modern Rate Theory and Computer Simulations. Science 2004, 303, 186–195.

(4) Yamakov, V.; Wolf, D.; Phillpot, S. R.; Mukherjee, A. K.; Gleiter, H. Deformation-

Mechanism Map for Nanocrystalline Metals by Molecular-Dynamics Simulation. Nat.

Mater. 2004, 3, 43.

(5) Nielsen, S. O.; Lopez, C. F.; Srinivas, G.; Klein, M. L. Coarse Grain Models and the

Computer Simulation of Soft Materials. J. Phys.: Condens. Matter 2004, 16, R481.

(6) Markvoort, A. J.; Hilbers, P. A. J.; Nedea, S. V. Molecular Dynamics Study of the

32



Influence of Wall-Gas Interactions on Heat Flow in Nanochannels. Phys. Rev. E 2005,

71, 066702.

(7) Karplus, M.; Kuriyan, J. Molecular Dynamics and Protein Function. Proc. Natl. Acad.

Sci. U. S. A. 2005, 102, 6679–6685.

(8) Voth, G. A. Computer Simulation of Proton Solvation and Transport in Aqueous and

Biomolecular Systems. Acc. Chem. Res. 2006, 39, 143–150.

(9) De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and

Related Methods in Drug Discovery. J. Med. Chem. 2016, 59, 4035–4061.

(10) Tuckerman, M. Statistical Mechanics: Theory and Molecular Simulation; Oxford uni-

versity press, 2010.

(11) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Elec-

tronic Structure Theory ; Courier Corporation, 2012.

(12) Bartlett, R. J.; Musia l, M. Coupled-Cluster Theory in Quantum Chemistry. Rev. Mod.

Phys. 2007, 79, 291.

(13) Head-Gordon, M.; Artacho, E. Chemistry on the Computer. Phys. Today 2008, 61, 58.

(14) Mao, Y.; Demerdash, O.; Head-Gordon, M.; Head-Gordon, T. Assessing Ion–Water

Interactions in the AMOEBA Force Field Using Energy Decomposition Analysis of

Electronic Structure Calculations. J. Chem. Theory Comput. 2016, 12, 5422–5437.

(15) Schatz, G. C. The Analytical Representation of Electronic Potential-Energy Surfaces.

Rev. Mod. Phys. 1989, 61, 669.
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