Comment on 'Multilayered stable 2D nano-sheets of Ti₂NT_x MXene:

synthesis, characterization, and anticancer activity'

Yitong Guo, Qianku Hu, Libo Wang, Aiguo Zhou* School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China

Abstract

A recent article entitled "Multilayered stable 2D nano-sheets of Ti₂NT_x MXene: synthesis, characterization, and anticancer activity" published in Journal of Nanobiotechnology, claimed that two-dimensional Ti₂NT_x MXene could be synthesized by selectively etching Ti₂AlN in concentrated hydrofluoric acid at room temperature. However, the X-ray diffraction pattern of Ti₂NT_x MXene reported in that paper is completely different with those of other MXenes. In this comment, it is argued that the samples synthesized in that paper were NOT Ti₂NT_x MXene at all. Although carbide MXenes can be made by selectively etching A layers from MAX phase, it is very difficult or impossible to make nitride MXenes (Ti₂NT_x) by the same way.

Keywords: MXene, Ti_2NT_x , Selectively etching

Corresponding author: Aiguo Zhou, E-mail: zhouag@hpu.edu.cn

Background

The recent paper by Szuplewska et al. published in Journal of Nanobiotechnology [1] is on the synthesis of Ti₂NT_x MXene. MXenes are novel two-dimensional (2D) materials, which are prepared by selectively etching away A-site element from MAX (M_{n+1}AX_n) phase with hydrofluoric acid (HF) or fluoride salts solutions[2, 3], where M is an early transition metal, A usually belongs to groups IIIA and IVA, X is carbon and/or nitrogen. In general, MXenes are made from carbide MAX phases (e.g. Ti₃AlC₂)[4] or carbonitride MAX phases (e.g. Ti₃AlCN)[5]. It is very difficult to make MXene from nitride MAX. Ti₂AlN is the most common nitride MAX phase. If Ti₂AlN can be selectively etching, Ti₂NT_x MXene can be made and it is predicted to have excellent properties. However, there is only one report on the experimental synthesis of Ti₂NT_x MXene by Soundiraraju et al. at 2017[6]. In that report[6], it was claimed that Ti₂NT_x MXene was successfully made from Ti₂AlN by KF/HCl etching. However, as the authors know, there are no reports to repeat that work.

The commented paper published in 2019[1] is the second paper to claim the successful synthesis of Ti_2NT_x MXene from Ti_2AIN . The etching solution is HF. However, the X-ray diffraction (XRD) patterns of Ti_2NT_x MXene in the paper are completely different with that in the first paper in 2017[6]. Although the experiment in 2017 paper[6] has not been repeated, the XRD pattern of Ti_2NT_x MXene in that paper was similar with those of other MXenes ($Ti_3C_2T_x$ [7] or Ti_2CT_x [8]). The feature of MXenes' XRD patterns is that there is a very strong (002) peak and other peaks are very weak. However, the XRD pattern in the commented paper[1] is completely different with that in Ref. [6] and does not have the feature of MXenes' patterns. In addition, it was acknowledged in the paper [1] that the structure of Ti_2NT_x MXene was far from ideal. Moreover, in a recent work[9], it is theoretically indicated that Ti_2NT_x MXene cannot be successfully

synthesized in HF solution from Ti₂AlN, due to the fact that single layered nitride MXenes possess poor stability in the solution. Thus, we think that Ti₂NT_x MXene was not successfully synthesized in the commented paper.

Experiment and discussion

In order to prove this thought, the following experiment was carried out. 2 g Ti₂AlN (< 25 μ m, lab made) was immersed in two etching solutions with magnetic stirring. One solution was 20 ml hydrofluoric acid (HF, \geq 40.0 wt.%; Yantai Far Eastern Fine Chemical Company, China). The other was 2 g KF (>99 wt.%; Aladdin, China) + 40 ml 6 M HCl (36 ~ 38 wt.%; Yantai Shuangshuang Chemical Company, China). The suspension after etching was further ultrasonically treated at room temperature for 1 h. Thereafter etched powders were separated from the suspensions by centrifuge. The powders were dried under vacuum at 60 °C for 8 h.

The composition of samples were detected by an X-ray diffractometer (XRD; Rigaku, Samart-lab, Tokyo, Japan) with Cu K_{α} radiation, λ = 1.5406 Å.

The XRD patterns are shown in Figure 1. Figure 1(a) is the XRD pattern of Ti_3C_2 MXene in Reference [4]. Figure 1(b) is the XRD pattern of the sample etched in HF solution at 30 °C for 1 h. Figure 1(c) is the XRD patterns of the sample treated in KF+HCl solution at 60 °C for 24 h. Figure 1(d) is XRD pattern of commercial TiN powders (TiN, >99 wt.%; Macklin, China). The diffraction peaks of TiN from PDF card No. 65-0715 is shown in Figure 1(e). Figure 1(f) is the XRD pattern of Ti_2AIN powders before etching.

Figure 1(a) is a typical XRD pattern of MXene. All MXenes have similar XRD pattern with one strong peak at $2\theta = ~7^{\circ}$, corresponds the (002) plane. Figure 1(b) and Figure 1(c) are completely different with Figure 1(a), and are consistent with the XRD pattern of etched sample obtained by Szuplewska et al[1] (red line pattern in Figure 2(I) in that paper). Thus those etched samples cannot be Ti₂NT_x MXene. The XRD patterns of those samples in Figure 1(b-c) agree well with the pattern of commercial TiN in Figure 1(d). All the three patterns can be perfectly indexed by PDF card No. 65-0715 in Figure 1(e). Therefore, the etched samples in this paper and those in the commented paper [1] are TiN powders with cubic crystal structure. They are NOT Ti₂NT_x MXene.

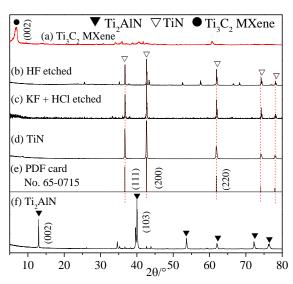


Fig. 1 XRD patterns of different samples

Conclusion

In summary, it is very difficult or impossible to make Ti_2NT_x MXene from Ti_2AIN by selective etching of HF solution or KF + HCl solution. The obtained products in the commented paper was cubic TiN compounds rather than the claimed Ti_2NT_x with 2D structure.

References

- Szuplewska A, Rozmyslowska-Wojciechowska A, Pozniak S, Wojciechowski T, Birowska M, Popielski M, Chudy M, Ziemkowska W, Chlubny L, Moszczynska D, Olszyna A, Majewski J A, Jastrzebska A M. Multilayered stable 2D nano-sheets of Ti₂NT_x MXene: synthesis, characterization, and anticancer activity. Journal of Nanobiotechnology. 2019;17(1): 114.
- Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. Acs Nano. 2012;6(2): 1322.
- 3. Wang B, Zhou A, Liu F, Cao J, Wang L, Hu Q. Carbon dioxide adsorption of two-dimensional carbide MXenes. Journal of Advanced Ceramics. 2018;7(3): 237-245.
- 4. Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A. Ti₃C₂ MXene-based sensors with high selectivity for NH₃ detection at room temperature. ACS Sensors. 2019;4(10): 2763-2770.
- 5. Mathis T, Alhabeb M, Gogotsi Y. Exploring the Capacitive Performance of the Transition Metal Carbonitride Mxene Ti₃CNT_x. Meeting Abstracts. The Electrochemical Society. 2017;(1): 76.
- Soundiraraju B,George B K, Two-dimensional titanium nitride (Ti₂N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano. 2017;11(9): 8892-8900.
- 7. Li Z, Wang L, Sun D, Zhang Y, Liu B, Hu Q, Zhou A, Synthesis and thermal stability of two-dimensional carbide MXene Ti₃C₂. Materials Science & Engineering B. 2015;191: 33-40.
- Liu F, Zhou A, Chen J, Zhang H, Cao J, Wang L, Hu Q, Preparation and methane adsorption of two-dimensional carbide Ti₂C. Adsorption. 2016;22(7): 915-922.
- Tsai H, Hsu C, Chi C, Wang Y, Liu F, Tang S, Tsai C, Ouyang H, Chueh Y, Liang J, Non-layered Ti₂N synthesized by plasma process for the anodes of lithium-ion batteries. Inorganic Chemistry Frontiers. 2019;6(1): 172-175.

Authors' Contribution

YG performed the experiments of the work concerning this manuscript and wrote the manuscript. QH analyzed the XRD data. LW guided the experiments and provided critical review. AZ designed the experiments and revised the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by National Natural Science Foundation of China (51772077), Program for Innovative Research Team (in Science and Technology) in the University of Henan Province (19IRTSTHN027), Natural Science Foundation of Henan Province (182300410228 and 182300410275).