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Abstract
Computational protein design remains a challenging task despite its remarkable success in the
past few decades. With the rapid progress of deep-learning techniques and the accumulation of
three-dimensional  protein  structures,  using  deep  neural  networks  to  learn  the  relationship
between protein sequences and structures and then automatically design a protein sequence for a
given protein backbone structure is becoming increasingly feasible. In this study, we developed a
deep neural network named DenseCPD that considers the three-dimensional density distribution
of protein backbone atoms and predicts the probability of 20 natural amino acids for each residue
in a protein. The accuracy of DenseCPD was 51.560.20% in a 5-fold cross validation on the

training set  and 54.45% and 50.06% on two independent test  sets,  which is  more than 10%
higher than those of previous state-of-the-art  methods.  Two approaches for using DenseCPD
predictions in computational protein design were analyzed. The approach using the cutoff of
accumulative probability had a smaller sequence search space compared to that of the approach
that  simply  uses  the  top-k  predictions and  therefore  enables  higher  sequence  identity  in
redesigning three proteins with Rosetta. The network and the data sets are available on a web
server at  http://protein.org.cn/densecpd.html. The results of this study may benefit the further
development of computational protein design methods.

mailto:yfqi@chem.ecnu.edu.cn
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Introduction
Computational protein design (CPD) aims to design a protein sequence that folds into a

given backbone structure, and has numerous applications in biology and chemistry. Over the past
three decades, CPD has been used in a wide range of design tasks, and remarkable successes
have  been  achieved,  including  the  design  of  novel  folds,1 novel  enzymes,2,3 vaccines,4-6

antibodies,7,8 novel  protein  assemblies,9-13 ligand/protein-binding  proteins,14-17 and  membrane
proteins.18-20 More  detailed  descriptions  of  the  successful  designs  are  provided  in  recent
reviews.21-24 Nonetheless,  accurate design of a protein structure and function is  still  a highly
challenging task.

Along with applications, the method that drives the design is also evolving.25 In many
methods, a scoring function is used to select the low-energy amino acid sequence that fits into
the desired structure.26,27 The scoring function usually contains physics-based terms, such as van
der  Waals  and  electrostatic  energy,  and  knowledge-based  terms.  For  example,  the  ref2015
scoring function in Rosetta28 includes attractive and repulsive Lennard-Jones energy, solvation
energy,  electrostatic  energy,  hydrogen-bond  energy,  and  knowledge-based  terms,  such  as
Ramachandran  preferences  and  sidechain  rotamer  preference.29 Other  flavors  of  recently
developed scoring functions include EvoDesign, which combines the evolutionary profile and
physical energy,30 and two statistical potentials ABACUS31-33 and SEEF.34

Recent years have witnessed a rapid increase of deep-learning methods in computational
chemistry and biology.35-37 Particularly in CPD, a number of studies have used deep learning to
tackle the sequence design problem. Zhou and coworkers developed the SPIN method to predict
the sequence profile of a protein given its backbone structure.38 SPIN was later improved on a
larger  dataset  with  a  neural  network  that  consisted  of  several  fully  connected  layers.39 We
developed a neural network to predict the probability of 20 amino acids for a given residue using
the geometric features of residue pairs in the input structure.40 Using the output of this neural
network as residue-type restraints in Rosetta28 improves the average sequence identity in the
redesign of three natural proteins. Chen and coworkers developed the SPROF method, which
uses the two-dimensional  map of the pairwise residue distance as the input,  and reached an
accuracy of 39.8%, representing a 5.2% improvement over that of SPIN2.41 Yu et al. used an
interesting approach that translates amino acid sequences into musical compositions and trained
a recurrent  neural  network to  generate  protein sequences.42 Greener  et  al.  used a  variational
autoencoder to generate protein sequences conditioned on protein structures.43 The autoencoder
was used to generate metal-binding sites and design a novel protein that was stable in molecular
dynamics simulations. In addition to these two generative models, a number of groups have also
developed  generative  models  for  various  purposes  in  protein  design  and  engineering.44-47

Recently, Zhang and coworkers proposed a convolutional neural network for protein sequence
design and reached a state-of-the-art accuracy of 42.2% on a test set that shared less than 30%
sequence identity with the training set.48

In  this  study,  we  aim  to  further  improve  the  accuracy  of  CPD  using  deep-learning
methods. To this end, we used a sophisticated neural network architecture named DensetNet that
adds  short  paths  between  layers  in  a  network  and  achieves  a  decent  accuracy  in  image
classification  tasks.49 The  network,  named  DenseCPD,  was  adapted  to  recognize  three-
dimensional data that were constructed from the distribution of backbone atoms around the target
residue to be predicted.  The accuracy of DenseCPD exceeds those of previous methods, and
strategies for using the predictions in conventional scoring function-based CPD are analyzed.



Results and Discussions

Input data and network architecture
The input of the CPD problem is the backbone structure of a protein. In this study, similar

to previous approaches,  we treat each residue separately and perform CPD by predicting the
probability of 20 amino acids on each residue given its neighbor residues. A nonredundant set of
protein structures with a sequence identity of 30% were prepared with PISCES50 from X-ray
structures in the protein data bank (PDB).51 Five hundred structures from the PISCES output
were randomly selected as an independent test set (T500). Additionally, the smaller test set TS50,
which contains 50 protein chains and has been used in a number of previous studies,38,40,48 was
also used. The target and neighbor residues are considered by calculating the distribution of the
backbone (N, C, Cα, O) and C atoms in a three-dimensional grid box, where the densities of
different atom types are stored in different boxes or channels (See the Methods for details). This
type of data representation  avoids  the requirement of feature engineering and has shown good
performance in combination with convolutional neural networks. Prior to calculating the density
distribution, the target residue is translated and oriented to a standard position, where its Cα atom
is located at  the origin and its  C atom is  on the positive z-axis.  To determine the size and
location of the grid box, we tested different sizes from 10 to 25 Å and varied the center of the
box on the z-axis from -6 to 6 Å. We found that using a box size of 20 Å and center at z=2 Å
covered 99.5% of the Cα atoms in residues that form contacts with the target residue, which is a
good compromise between data size and coverage (Table S1). We therefore used a box size of 20
Å with a grid size of 1 Å to calculate the atom distribution in this study (Fig. 1).

Figure 1. The 20×20×20 Å3 grid  box for  the Cα atom density that  was used  as  one of  the
channels in the input of DenseCPD. The densities of the Cα atoms around the target residue are
shown as volumes. Cα atoms are shown in spheres, and the Cα atom of the target residue is
colored blue. The grid lines are omitted for clarity.

The density data were then learned using DenseCPD, which adopts the network structure
of DenseNet and contains a number of dense blocks that are connected by a transition block (Fig.
2). Each dense block consists of a number of convolution blocks, and the output of a convolution
block is connected to the input of all subsequent convolution blocks in the same dense block. The
convolution  block  contains  a  bottleneck  operation,  followed  by batch  normalization,  ReLU



activation,  and  (3×3×3)  convolution.  The  bottleneck  operation,  which  consists  of  batch
normalization, ReLU activation and (1×1×1) convolution, is introduced to reduce the number of
input  feature  maps  and  improve  the  computational  efficiency.  The  transition  block  is  used
between the dense block to perform a pooling operation and reduce the number of feature maps.
Prior  to  pooling,  a  compression operation with a compression rate  of  0.5 is  included in the
transition block. The depth of the DenseNet can be tuned by the number of dense blocks and
convolution blocks, and the number of feature maps is determined by the growth rate, which is
the size of feature map in the output of a convolution block. In this study, we used 3 dense blocks
and 6 convolution blocks in each dense block and tested three growth rates of 15, 25, and 35. The
output of DenseCPD is 20 numbers that sum to one and can be interpreted as the probabilities of
20 amino acids at the target residue.
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Figure 2. Network structure of DenseCPD.

Accuracy and comparison with other methods
The accuracy of DenseCPD with growth rates of 35, 25, and 15 was 51.56%, 50.54%,

and 48.56%, respectively, in a 5-fold cross validation on the training set, suggesting that using a
higher growth rate is beneficial (Table 1). For the two independent test sets T500 and TS50, the
highest accuracy of DenseCPD was 54.45% and 50.06%, respectively, with a growth rate of 35,
which was >10% higher than that of previous methods. Comparison of the top-k accuracy of
DenseCPD, ProDCoNN, and SPROF suggests  that  DenseCPD also has  the highest  accuracy
when more than one prediction for each residue is allowed (Fig. S1). The following analysis was
based on the results with a growth rate of 35.

Table 1. Accuracy of DenseCPD and other methods.
Method Training set Test set

T500 TS50
DenseCPD (growth rate=35) 51.560.20% 54.45% 50.06%
DenseCPD (growth rate=25) 50.540.37% 53.28% 49.22%



DenseCPD (growth rate=15) 48.560.27% 50.96% 46.61%
ProDCoNN48 NA 42.20%a 38.71%
SPROF41 NA 40.25% 39.16%
SPIN239 NA 36.60% 33.60%
Wang’s model40 34.00% 36.14% 33.00%
SPIN38 NA 30.30%a 30.30%

aValues were from a different independent test set that contains ~500 protein structures in the original references of
the methods.

The distribution of the perstructure accuracy in the T500 set has a peak around 55% (Fig.
3A). However, two structures show much lower accuracies of 29.4% and 28.3% with PDB IDs
of 2G7O and 3UMH, respectively, both of which are helical proteins. 2G7O is a tetramer under
native  conditions,  but  the  structure  of  the  X-ray  asymmetric  unit  used  for  prediction  is  a
monomer (Fig. S2A).52 If the biological assembly is used, the accuracy improves to 45.6%. To
further evaluate the effect of using different oligomeric structures, we calculated the accuracy for
structures that have different oligomeric states in the asymmetric unit and biological assembly in
the T500 set and found that the accuracy for biological assembly is 2% higher, which highlights
the importance of using a biologically relevant structure for prediction. 

3UMH is the human amyloid precursor protein in complex with zinc ions (Fig. S2B).53

To examine the cause of the low accuracy of 3UMH, we calculated the structural and sequence
similarity of 3UMH with the training set using TM-score54 and BLAST.55 For comparison, the
same similarities were also calculated for two structures 2UVO and 3OEP, which have high
accuracies of 70.4% and 69.1%, respectively, in the T500 set. Interestingly, the distribution of the
TM-score suggests that  there is  no significant  difference between 3UMH and the two high-
accuracy structures  (Fig.  3B).  The BLAST search produces comparable E-values  for 3UMH
(0.74) and 3OEP (0.18) and finds no similar sequence for 2UVO (Table S2), which suggests that
the sequence similarity with the training set is not likely the cause of the variable accuracy. By
examining the sequences of the three structures, we observed that 3UMH has low Gly and Pro
contents, whereas more than 25% of the amino acids in 2UVO and 3OEP are Gly or Pro (Table
S2). We calculated the correlation between the perstructure accuracy and the GlyPro content and
found a positive Pearson correlation of  0.56 (Fig.  3C),  which is  rationalized in  the detailed
analysis below.

Figure 3. (A) Histogram of the perstructure accuracy of DenseCPD on the T500 test set. (B)
Distribution  of  the  TM score in  the  training  set  for  3UMH, 2UVO and 3OEP.  Numbers  in
parentheses are the accuracies of DenseCPD for each protein. (C) Correlation between the Gly-
Pro content and perstructure accuracy for the T500 set.



We next examined the amino acid-specific accuracy of DenseCPD and compared the
accuracy with those of ProDCoNN and SPROF (Fig. 4). Two measurements were calculated for
each amino acid, namely, recall and precision. Recall is the percentage of wild-type amino acids
that are correctly predicted (recovered), and precision is the percentage of the prediction that is
correct. Overall, all three methods perform very well for Gly and Pro due to the unique structural
features of the two amino acids, which explains the positive correlation between the perstructure
accuracy and the GlyPro content. DenseCPD has a comparable accuracy for Gly, Pro and Cys
with those of ProDCoNN and SPROF and a better performance for all other amino acids. The
improvement is especially remarkable for Gln, His, Met, Trp, and Tyr in terms of recall and Met,
Trp,  and Gln in terms of precision; some of these are difficult  amino acids with lower than
average accuracies in previous methods. 

 
Figure 4. Recall and precision for each amino acid in DenseCPD, ProDCoNN, and SPROF. The
values for ProDCoNN were taken from the original reference.

We  also  calculated  the  accuracy  of  residues  with  different  secondary  structures  and
solvent-accessible surface area (SASA,  Fig. 5). Overall,  α-helices and 3-10 helices had lower
accuracies, likely due to the low abundance of Gly and Pro in helices. The Naccess program56

was used to calculate the relative SASA value, which is defined as the absolute SASA divided by
the standard SASA of each amino acid. DenseCPD performs better for buried residues, which is
a desirable feature for protein design because buried residues are usually more important to the
stability of a protein. 



Figure 5. Accuracy of DenseCPD with respect to different secondary structures and the relative
SASA. The secondary structure was assigned using Stride57, and the code is I: π-helix, B: isolated
bridge, C: coil, T: turn, E: extended conformation, H: α-helix, and G:3-10 helix. 

Approaches to apply DenseCPD prediction in protein design
A  straightforward  application  of  DenseCPD  to  design  protein  is  to  take  the  top

predictions as restraints of amino acids for each residue. In general, there are two approaches to
use the top predictions. The first approach is simply to use the top-k predictions, and the second
approach is  to  use  the  top  predictions  whose  accumulative  probability  p is  above  a  certain
threshold (referred to as acc-p). The rationality of the acc-p approach is that when the predicted
probability is dominated by few amino acids, using only these amino acids instead of the top-k
predictions would likely reduce the searching space. On the contrary, when several amino acids
have equal probabilities, it is better to include all of them in the design. To compare the two
approaches, we varied the k and p values and calculated the sequence coverage, which is defined
as  the  maximal  possible  sequence  identity  for  a  protein  given  an  amino-acid  restraint.  It  is
obvious that with the increase of k and p, the coverage eventually increases to one. However, for
the same coverage, the number of candidates for each residue differs for the two approaches
(Fig. 6). At low coverage, the two methods are nearly identical. When the coverage is between
0.8 and 0.95, the acc-p method requires fewer amino acids to reach the same level of coverage.
For example, for a sequence coverage of 0.95, the top-k method requires ~9 amino acids per
residue, whereas acc-p requires only ~6, which could reduce the sequence combination by 1017

for a protein with 100 residues. Therefore, the acc-p method is clearly advantageous over the top-
k method.



Figure 6. Average number of candidate amino acids under different sequence coverage for the 
top-k and acc-p approaches.

We used the top-k and acc-p approaches to design three proteins, 2IGD, 2B8I, and 1QYS,
using the fixed-backbone design and the  ref2015 scoring function58 in Rosetta.28 The  k and  p
values were varied to  include different  number of  candidates  for each residue and therefore
different sizes of sequence search space for the protein. We compared the sequence coverage and
average sequence identity of 1000 Rosetta designs for each protein as a function of the sequence
space (Fig. 7).  With the same sequence coverage,  it  was possible to substantially reduce the
sequence search space with the acc-p approach. For example, to reach 90% sequence coverage in
2IGD, the top-k approach needs ~1051 sequence combinations, but acc-p only needs ~1033. The
average sequence identity of the Rosetta designs for the three proteins suggests that using the
top-k or acc-p restraints improves the similarities to the native proteins compared to the restraint-
free design that has the largest search space. Moreover, it is possible to obtain higher sequence
identity using the acc-p approach.



Figure 7. Comparison of the top-k and acc-p approaches for redesigning three proteins with
Rosetta. Sequence coverage is the maximal possible sequence identity under one restraint. The
error bars are the standard deviations of the sequence identity from 1000 Rosetta designs. 

Conclusions
In this  study,  we developed DenseCPD to predict  the amino acid probability of each

residue  for  a  given protein  backbone structure.  Due to  the  strong capability  of  the  network
architecture, the accuracy of DenseCPD exceeds 50%, which is more than 10% higher than that
of previous methods. The accuracy improves for most amino acids, and the improvement was
especially remarkable for amino acids that have previously been difficult to predict. We showed
that it is important to use the actual biological assembly of a protein as the input of DenseCPD.
Moreover, the perstructure accuracy is positively correlated with the contents of Gly and Pro due
to the superior performance of DenseCPD on these two amino acids, which originates from the
unique structural features of Gly and Pro. As a result  of the high accuracy on Gly and Pro,
DenseCPD has a lower accuracy for helices, which have lower contents of the two amino acids.
Nonetheless, a potentially beneficial feature of DenseCPD is that it performs better for buried
residues, which are generally more important to the stability of a protein. We further compared
two  approaches  to  utilize  the  DenseCPD  prediction  in  conventional  computational  protein
design. We found that the approach that uses an accumulative probability cutoff (acc-p) reduces
the search space under the same sequence coverage compared to the top-k approach. Redesigning
three proteins using Rosetta shows that with the same sequence search space, the acc-p approach



has  a  higher  sequence  coverage,  and  therefore,  it  is  possible  to  achieve  a  higher  sequence
identity. We hope the results of this study will pave the way for further development of CPD
methods. 

Methods
Datasets and input

The X-ray structures in PDB were first  culled with PISCES50 using a 2-Å resolution
cutoff,  0.3  R-value  cutoff,  and  30%  sequence-identity  cutoff,  which  yielded  11227  unique
structures. Membrane proteins listed in the OPM database59 and structures that share more than
30% sequence  identity  with  the  TS50 test  set  were  removed.  Five  hundred  structures  were
randomly chosen as an independent test set (T500) from the remaining entities, and the rest of
the structures were randomly separated into 5 sets for cross validation. The final training set
contained ~2.6 million residues, and the T500 test set contained 133,803 residues. The PDB IDs
of the training and test sets are available on the web server. 

For each PDB structure, all atoms except the N, Cα, C, and O atoms were removed, and
the C atom was built using a Cα–C bond length of 1.55 Å, C–Cα–C angle of 110.5°, and N–C–
Cα–C dihedral  of 122.55°,  similar  to that  of  ProDCoNN. Each target  residue along with its
neighboring residues were translated and oriented so that the Cα atom of the target residue was
located at (0, 0, 0), the C atom was on the positive z-axis, and the N atom was on the y=0 and
x<0 plane. The coordinates of the atoms were converted to a density distribution on a 20×20×20
Å3 grid box with a grid size of 1 Å and center at (0, 0, 2) Å. The purpose of centering the grid
box at (0, 0, 2) instead of (0,0,0) was to include more neighboring residues that have contacts
with the target residue. The density of an atom was distributed to its neighboring grids using a
Gaussian function  ρ=exp  (−d2/(2 r2)) , where  d is the distance between the atom and grid
center, and r is the radius of the atom, which was 0.755, 0.817, 0.817, 0.821, and 0.695 Å for N,
C, Cα, C, and O atoms. The radius was determined so that the density of each atom was 0.05 at
the van der Waals radius from the CHARMM36 force field.60 The density of each atom type was
stored in a separate grid box. Therefore, the data size of one target residue was 20×20×20×5.

Neural-network architecture and training
DenseCPD was constructed using the Keras library (http://keras.io).  Bottlenecks were

included in the convolution block, and a compression rate of 0.5 was applied in the transition
layer. A weight decay of 10-4 was used on the convolution layers. Training was performed for 20
epochs  using  the  categorical  cross  entropy  as  the  loss  function  and  the  Adam method  for
optimization with a learning rate of 0.001 and a batch size of 240. The training samples were
weighted as: Wi = Nmax/Ni, where Nmax is the maximal number of samples of all 20 residue types,
and  Ni is  the  number  of  samples  of  residue  type  i.  This  bias  would  balance  the  uneven
distribution of residue types in natural proteins and force the neural network to learn more from
the residue types that are underrepresented in the training set. The output of the neural network is
the probability of 20 amino acids for the target residue. The number of trainable parameters is
0.56M, 1.5M, and 3M for growth rates of 15, 25, and 35. 

Data availability

http://keras.io/


The DenseCPD network and the datasets are available on the web server 
http://protein.org.cn/densecpd.html
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