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Abstract 

A large proportion of the complexity and redundancy of LC-MS metabolomics data comes from adduct 

formation. To reduce such redundancy, many tools have been developed to recognize and annotate 

adduct ions. These tools rely on pre-defined adduct lists which are learned empirically from reverse phase 

LC-MS studies.  Meanwhile, hydrophilic interaction chromatography (HILIC) is gaining popularity in 

metabolomics studies due to better performance on polar compounds. HILIC methods typically use high 

concentration of buffer salts for improved chromatography performance. It is therefore necessary to 

analyze the adduct formation in HILIC metabolomics. To this end, we developed co-variant ion analysis 

(COVINA) to investigate the metabolite adduct formation. Using this tool, we completely annotated 201 

adduct and fragment ions of 10 metabolites. Many of the metabolite adduct ions are found to contain 

cluster ions of mobile phase additives. We further utilized COVINA to find the major ionization forms of 

metabolites. Our results show that for some metabolites the adduct ion signals can be >200-fold higher 

than the deprotonated form, offering better sensitivity for targeted metabolomics analysis. Finally, we 

developed the in-source CID ramping (InCIDR) method to analyze the intensity changes of the adduct and 

fragment ions of the metabolites. Our analysis demonstrates a promising method to distinguish the 

protonated/deprotonated ions of the metabolites from the adduct and fragment ions.   

 

Introduction 

LC-MS-based metabolomics aims at a comprehensive characterization of small molecule metabolites in 

biological samples. Modern mass spectrometry can offer both high sensitivity and high mass resolution, 

making it possible to detect hundreds or thousands of metabolites from a single biological sample.1–3 As 

a result, the raw data of LC-MS are highly complex. A typical 25-minute LC-MS run on an Orbitrap 

instrument may contain 4000 spectra, each has >500-1000 peaks in the mass-to-charge ratio (m/z) domain. 

To reduce the data complexity, untargeted metabolomics data analysis starts with the feature 

detection.4,5 Each LC-MS feature is a combination of an accurate m/z and a retention time. The features 

are expected to have a decent chromatographic peak shape in the time domain, and may correspond to 

actual metabolites, isotopic peaks, dimer ions of metabolites, adduct ions, in-source fragment ions or 

background matrix components. To facilitate the downstream metabolite identification and statistical 

analysis, this feature list needs to be optimized and annotated. The optimization step removes the 

duplicate and false positive features.6 The annotation step recognizes and annotates the adduct ions and 



natural isotopic ions.7–9 These data processing steps dramatically reduce the complexity of the 

metabolomics data. Mahieu et al. reported the analysis of an E. coli. metabolomics dataset in which 

25,000 features were reduced to fewer than 1,000 unique metabolites.10 This example highlights the 

complexity and redundancy of a typical metabolomics dataset.  

The majority of adduct ion annotation tools fall into two categories. One method is to calculate the 

correlation of peak intensities across samples from the feature list.6,8,11,12 The other approach is to read 

the extracted ion chromatograms (XICs) in the raw data and calculate the correlation of chromatographic 

peaks.7,9 Even though each of the tools has demonstrated its utility, the adduct ions in a metabolomics 

dataset are often insufficiently annotated. Glutamate, for example, was reported to produce more than 

100 spectral peaks, but many of the complex adducts did not have chemical annotation.10 Lin. et al used 

isotope labeled samples to facilitate the annotation of metabolites and their adduct ions. They observed 

ions which have a large m/z but very few carbon atoms. These ions were considered unreasonable and 

were filtered out in the annotation. In fact, these ions indicated the existence of large adducts.12 It is 

noteworthy that many adduct annotation tools rely on a pre-defined list to identify the adduct ions.13,14 

The incompleteness of adduct lists limit the performance of the adduct annotation tools. This limitation 

is further amplified in HILIC ESI-MS metabolomics studies. In recent years, hydrophilic interaction liquid 

chromatography (HILIC) is becoming a popular technique for metabolomics due to its resolving power of 

very polar cellular metabolites.15 HILIC typically involves the use of buffer salts to improve separation and 

peak shape.16,17 These salts have significant impact on the ionization of the metabolite molecules. Erngren 

et al. reported adduct ion formation that contains multiple sodium and potassium formate moieties.18 

These cluster ions are not included in the common adduct lists, making the adduct annotation difficult. 

We aim to further investigate the adduct ion formation under HILIC condition.   

In this work, we set out to analyze the adduct and fragment ion formation of metabolites in HILIC ESI-MS, 

for which we developed an algorithm named co-variant ion analysis (COVINA). Unlike existing tools that 

search co-eluting peaks in the extracted feature list, COVINA directly reads mzXML files. By doing so, 

COVINA can avoid false positives and false negatives in the feature extraction and mis-grouping in the 

peak alignment and grouping steps. Using this tool, we found a number of cluster adduct ions of the 

metabolites. To help assign the chemical identity of these adduct ions, the HILIC mobile phase was 

prepared with 2H-labeled acetic acid. Using this method, we have completely annotated 201 adduct and 

fragment ions resulted from 10 metabolites. We then used this new HILIC adduct list to annotate 

untargeted metabolomics datasets using existing tools and observed improved performance.  

We also developed the In-source collision induced dissociation (CID) ramping (InCIDR) method to help 

determine the neutral molecular mass of the metabolites. Adduct annotation tools implement heuristic 

algorithms to score hypotheses on metabolite neutral masses based on the detection of the expected 

adduct ions.9,19 InCIDR is a completely orthogonal approach that utilizes COVINA to analyze the intensity 

changes of the adduct and fragment ions under increasing in-source CID energy levels. In general, under 

a higher in-source CID energy level, the fragment ions will increase in intensity while the adduct ions will 

decrease in intensity. InCIDR monitors all the co-variant ions and detects such patterns to score the 

neutral mass hypothesis. Examples show that InCIDR is a robust and promising means of supplementing 

existing adduct annotation tools.  

 

Experimental 



Chemicals. LCMS-grade methanol (A456), acetonitrile (A955), acetic acid (A35) and water (ACROS 61515) 

were purchased from Fisher Chemicals (Pittsburgh PA). The 2H4-acetic acid (99.5% isotopic purity, DLM-

12) was purchased from Cambridge Isotope Laboratories (Tewksbury, MA). Other chemicals including 

ammonium hydroxide (09859), sodium pyruvate (P2256), sodium L-lactate (L7022), leucine (L8912), 

isoleucine (I5281), NAD hydrate (N7004), ATP disodium salt hydrate (A2383), D-glucose-6-phosphate 

dipotassium salt hydrate (G7375), D-fructose-6-phosphate disodium salt hydrate (F3726), L-malic acid 

(112577) and D-fructose-1,6-bisphosphate trisodium salt hydrate (F6803) were purchased from 

MilliporeSigma (Burlington, MA).  

Cell lysate preparation. L3.6 human pancreatic ductal adenocarcinoma cell line was obtained from ATCC.  

These cells were seeded in 100 mm dishes and were cultured in RPMI supplemented with 10% bovine 

serum (Fetal Clone III, HyClone), 100 units/ml penicillin and 100 µg/ml streptomycin. Cells were grown to 

~85% confluency for metabolite extraction. Before harvesting the cells, the media was aspirated, then 

quickly overlaid with 1ml 40:40:20 mixture of methanol:acetonitrile:water with 0.5% (V/V) formic acid.  

The plates were incubated on ice for 5 min, then 50 µl of 15% NH4HCO3 was added to neutralize the formic 

acid.  Cells were scraped into microfuge tubes, and centrifuged for 10 min at 15,000 x g at 4°C.  The 

supernatant was collected for LC-MS. 

Liquid chromatography. The HILIC separation was performed on a Vanquish Horizon UHPLC system 

(Thermo Fisher Scientific, Waltham, MA) with XBridge BEH Amide column (150 mm × 2.1 mm, 2.5 μm 

particle size, Waters, Milford, MA) using a gradient of solvent A (95%:5% H2O:acetonitrile with 20 mM 

acetic acid, 40 mM ammonium hydroxide, pH 9.4), and solvent B (20%:80% H2O:acetonitrile with 20 mM 

acetic acid, 40 mM ammonium hydroxide, pH 9.4). For the 2H4-acetic acid mobile phase experiment, the 

acetic acid in both mobile phase A and B was replaced with 2H4-acetic acid at the same concentration. The 

gradient was 0 min, 100% B; 3 min, 100% B; 3.2 min, 90% B; 6.2 min, 90% B; 6.5 min, 80% B; 10.5 min, 80% 

B; 10.7 min, 70% B; 13.5 min, 70% B; 13.7 min, 45% B; 16 min, 45% B; 16.5 min, 100% B and 22 min, 100% 

B. The flow rate was 300 μl/min. Injection volume was 5 μL and column temperature was 25 °C. The 

autosampler temperature was set to 4°C and the injection volume was 5µL. 

Mass spectrometry. The mass spectrometry analysis was performed on Thermo Q Exactive PLUS with a 

HESI source which was set to a spray voltage of -2.7kV under negative mode and 3.5kV under positive 

mode. The sheath, auxiliary, and sweep gas flow rates of 40, 10, and 2 (arbitrary unit) respectively. The 

capillary temperature was set to 300°C and aux gas heater was 360°C. The S-lens RF level was 45. The m/z 

scan range was set to 72 to 1000m/z under either positive or negative ionization mode. The AGC target 

was set to 3e6 and the maximum IT was 200ms. The in-source CID energy level was set to 0eV unless 

otherwise specified. The resolution was set to 70,000 unless using in-source CID ramping. In the data 

acquisition of InCIDR, each scan cycle is comprised of 8 scan events with in-source CID energy level 0eV, 

2eV, 4eV, 6eV, 8eV, 10eV, 15eV and 20eV. InCIDR uses 17.5k resolution to achieve scan rate of 2Hz.  

Co-Variant Ion Analysis (COVINA). COVINA is a targeted approach to search for the co-eluting ion species 

of the metabolite of interest in the raw mzXML files. When the m/z of a metabolite (base m/z) is specified, 

COVINA first looks for the scan at the apex of the corresponding XIC (Figure 1A). If multiple peaks exist in 

one XIC, the scan number can be specified to focus on the metabolite of interest. This selected scan is 

used as the reference spectrum. COVINA then builds XICs for all the m/zs in the reference spectrum.  The 

Pearson correlation coefficients between the XIC of base m/z and other XICs are calculate and ranked 

(Figure 1B, Table 1). The adduct, fragment and isotopic ions usually show very good correlation (R>0.9) 



with the base m/z. These co-variant ions plus the base m/z peak form the pseudo-spectrum of the 

metabolite (Figure 1C). All XICs in COVINA use scan number instead of retention time as the independent 

variable.    

Table 1. Pseudocode for COVINA 

Algorithm COVINA 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 

procedure COVINA(input parameters: mzXML file(s), m/z; optional parameters: scan.number, 
peak.width, mass.tolerance, intensity.threshold, correlation.threshold) 
 Use the first mzXML file to do 

XIC.Base ← XIC of m/z within mass.tolerance 
if scan.number is not specified then 

scan.number ← scan with highest signal in XIC.Base 
  end if 

scan.range ← scan.number ± peak.width 
mz.table ← all m/z values in the scan.number-th scan that are above 
intensity.threshold  
Base.Chromatogram ←  XIC.Base within scan.range 
for each value in the mz.table  

Query.Chromatogram ←  corresponding XIC within mass.tolerance and  
scan.range 
if correlation between Base.Chromatogram and Query.Chromatogram > 
correlation.threshold then 

   add this m/z value to the co-variant.ion.list 
  end if 
 end for 
end do 

 In each mzXML file do 
co-variant.ion.intensities ← Integrated peak area for each value in the co-
variant.ion.list within scan.range 

 end do 
 return co-variant.ion.list, co-variant.ion.intensities 
end procedure 

 



 

Figure 1. Co-variant ion analysis (COVINA). (A) The reference mass spectrum at the apex of the XIC of the 

base m/z. (B) The XICs of the base m/z and all other m/z in the reference spectrum. (C) COVINA 

generates a pseudo-spectrum containing the co-variant ions of the base m/z which are colored in blue.  

Code and example data availability.  COVINA is implemented in R (version 3.6.1). The code as well as the 

sample data is available at https://github.com/XiaoyangSu/COVINA. 

 

Results and Discussion 

Investigating adduct and fragment ion formation using COVINA 

A common approach to studying adduct formation is to inject the chemical standard to the mass 

spectrometer from a syringe pump, either coupled to the normal LC flow or not. This method is 

conceptually simple, but the adduct signals are mingled with background signals, making complete adduct 

annotation difficult.18 Instead, we utilize chromatography to analyze ion species that are co-eluted with 

the metabolite of interest. The adduct ions and fragment ions should be chromatographically correlated 

with their parental protonated/deprotonated metabolite ions. COVINA detects such co-elution 

correlation to filter out persistent background ions and generates high-quality co-variant ion lists.  

Another approach used by many common adduct annotation tools is to group related m/zs in the feature 

lists. The feature lists used by these annotation tools are generated from the peak picking algorithm such 

as centWave5 which produces thousands of features from a typical dataset. Despite significant 

improvement and refinement of the grouping algorithms, the feature grouping is usually insufficient to 

put all of the adduct and fragment ions in the same group with the parental metabolite ion. We have 

tested the grouping performance of CAMERA7 and CliqueMS9. Both tools put the adduct ions resulted 

from 10 metabolites into more than 20 different groups (Figure S1). In order to systematically study the 



patterns of metabolite adduct and fragment formation, it is necessary to optimize the detection of 

adducts and fragments in the data analysis process.  

Unlike other annotation tools, COVINA does not use a feature list generated from a peak picking algorithm. 

Instead, COVINA takes the input of the m/z value of a specific metabolite (base m/z) and builds the XICs 

of this m/z and all other m/z in the same spectrum, and calculates the chromatographic correlation 

between the XIC of base m/z and other XICs. In the output data, COVINA gives a list of highly correlated 

m/z that includes adduct and fragment ions and isotopic peaks.  

Using our COVINA algorithm, we studied the adduct formation of some key metabolites under negative 

ionization mode. COVINA revealed multiple adducts in each of these metabolites in our chemical standard 

mixture. For example, Figure 2A is showing the adduct occurrence of pyruvate, lactate, leucine, malate 

and glucose-6-phosphate (Glc6P). Interestingly, many adducts are showing common m/z differences 

(Δm/z, m/z of an adduct – m/z of [M-H]-), suggesting these adducts have the same chemical identities. 

Previous studies have shown that metabolites may form oligomer adducts ([2M-H]- or [3M-H]-) or 

heterodimer adducts ([M1+M2-H]-).20 These complex adducts are less frequently detected in our samples 

than the common adducts. The commonly observed Δm/z, 82.003 is an important one. This Δm/z is the 

only one observed in all five metabolites. Moreover, 82.003 is the common difference in some series of 

Δm/z, such as 82.003 / 164.006 / 246.009, 97.968 / 179.972 / 261.973 and 157.989 / 239.992 / 321.995 / 

403.999 (Figure 2A).  This observation suggests that some large adducts such as 321.995 and 403.999 may 

have repeating units of 82.003. We also calculated the pairwise m/z differences of all the co-variant ions 

detected in our standard mixture samples. The histogram of these Δm/z confirmed that 82.003 is the most 

common mass difference among co-variant ions (Figure 2B). Multiples of 82.00, such as 164.01 and 239.99 

are also common Δm/z values, again suggesting 82.003 represents a repeating unit in the adduct ions. 

 

Figure 2. Common adducts found by COVINA. (A) Heatmap showing intensity of the adduct ions relative 

to the intensity of [M-H]-. The Δm/z is calculated as the m/z(adduct)-m/z([M-H]-). The Δm/z values in the 

same arithmetic sequence are grouped together. (B) Histogram of Δm/z pairwise differences of all the co-

variant ions within each metabolite group. The most common Δm/z values are highlighted in the plot.   

The Δm/z 82.003 matches the mass of sodium acetate (NaAc, calculated mass 82.00253). While acetate 

is used in the mobile phase buffer, the sodium ions were not purposefully added to the mobile phase. 

Trace amounts of sodium may come from water, glassware or the impurity in the solvent additives. It is a 

surprising result to see NaAc but not NH4Ac that presents in many adduct ions. To confirm that NaAc is 

the repeating unit in many adducts, we prepared mobile phase with deuterium labeled acetate ([2H3]-Ac-). 

In this labeled mobile phase, many adducts show shifted m/z (Figure 3). Pyruvate has an adduct 

[M+157.989]- which shifted to [M+164.027] in deuterium labeled mobile phase showing that this adduct 



has 2 acetate moieties. Therefore, the chemical identity of this adduct can be determined as [M+CaAc2-

H]- (Table 2). The high mass accuracy of the Orbitrap mass analyzer lends great confidence to accurate 

adduct identification. For example, the formula [M+CaAc2-H]- matches the detected m/z with a mass 

accuracy of -1.1 ppm. An alternative formula [M+KAc2]- has a mass accuracy of -37.6 ppm and should, 

therefore, be ruled out. Pyruvate adducts [M+239.9918]- and [M+321.9952]- are shifted by 9.056 and 

12.075 Da suggesting they have Ac3 and Ac4 respectively. They are annotated as [M+NaCaAc3-H]- and 

[M+Na2CaAc4-H]-. [M+173.965]-did not shift in the deuterium labeled mobile phase and, therefore, do not 

contain an Ac in their adduct moiety. This adduct is annotated as [M+H6Si2O7-H]-. The use of deuterium 

labeled mobile phase helps to narrow down the possible adduct formulas and leads to confident 

identification. 

 

Figure 3. Using 2H-acetic acid to determine the chemical identity of the adducts. The upper panel is 

showing the adduct ions of pyruvate detected in normal mobile phase. The lower panel is showing the 

adduct ions of pyruvate detected in mobile phase prepared with [2H4]-acetic acid. Each acetate moiety in 

the adduct ion should result in a m/z shift of 3.018. The adduct ions m/z 244.9977, 327.0005 and 409.0039 

were shifted by 6.038, 9.056 and 12.075 respectively in the 2H-labeled mobile phase, suggesting that 2, 3 

and 4 acetate moieties are in these adduct ions respectively.  The m/z 260.9737 did not shift in the 2H-

labeled mobile phase. 

Similarly to previous reports, complex ions such as adducts of fragments are detected.21 For Glc6P, 

[M+37.948]- was detected. This m/z matches [M+Ca-3H]- with a mass accuracy of 2.2 ppm. However, this 

adduct shifted to [M+40.965]- in the deuterated mobile phase, indicating 1 Ac group. This adduct is 

essentially an adduct of erythrose-4-phosphate ([E4P+CaAc-2H]-), a known fragment of Glucose6P.22 

Another example of adduct of fragment is [NAD+57.921]-. The Δm/z 57.921 does not match any chemical 

formula as a simple adduct. Using the deuterated mobile phase, it was demonstrated that this ion has 2 

Ac groups, and is annotated as [NAD-nicotinamide+NaCaAc2-2H]-. The combined use of the COVINA and 

the deuterated mobile phase has led to the complete annotation of 201 ion co-variants produced from 

10 metabolites (co-variant ions of lactate are shown in Table 2, see Table S1 for the complete list). The 



complete adduct annotations were facilitated by mixed integer linear programming to find the 

combination for the cluster ions,23 and also involved manual inspection and curation. 

Table 2. Co-variant ions of lactate 

Observed 
m/z 

Relative 
Abundance 

Δm Chemical Annotation 
Calculated 

m/z 

Mass 
accuracy 

(ppm) 

Observed 
m/z In 
2H3-Ac  

89.0244 100.00% 0.0000 [M-H]- 89.0244 -0.7 89.0245 

90.0276 3.32% 1.0032 13C1-[M-H]- 90.0278 -2.2 90.0278 

91.0289 0.69% 2.0045 18O1-[M-H]- 91.0287 2.5 91.0287 

148.9905 0.40% 59.9661 [M+SiO2-H]- 148.9912 -4.8 148.9910 

171.0276 13.20% 82.0032 [M+NaAc-H]- 171.0275 0.6 174.0462 

172.0306 0.56% 83.0062 13C1-[M+NaAc-H]- 172.0309 -1.7 175.0496 

174.0020 36.30% 84.9776 [M+NaNO3-H]- 174.0020 0.0 174.0019 

175.0061 1.00% 85.9817 13C1-[M+NaNO3-H]- 175.0054 4.0 175.0052 

177.9570 0.44% 88.9327 [M+FeO(OH)-H]- 177.9570 0.1 177.9572 

185.0120 0.87% 95.9876 [M+H4SiO4-H]- 185.0123 -1.7 185.0123 

201.0387 6.43% 112.0143 [2M+Na-2H]- 201.0381 3.1 201.0381 

202.0426 0.43% 113.0183 13C1-[2M+Na-2H]- 202.0414 6.0 202.0415 

231.0369 0.92% 142.0126 [M+MgAc2-H]- 231.0361 3.7 ND* 

247.0135 5.70% 157.9892 [M+CaAc2-H]- 247.0136 -0.4 253.0513 

253.0312 1.09% 164.0069 [M+Na2Ac2-H]- 253.0306 2.6 259.0681 

262.9891 3.02% 173.9648 [M+H6Si2O7-H]- 262.9896 -1.8 262.9896 

313.0396 0.51% 224.0152 [M+NaMgAc3-H]- 313.0391 1.3 ND* 

329.0170 2.78% 239.9926 [M+NaCaAc3-H]- 329.0167 0.9 338.0732 

411.0196 1.37% 321.9953 [M+Na2CaAc4-H]- 411.0198 -0.4 423.0950 

493.0235 0.71% 403.9991 [M+Na3CaAc5-H]- 493.0228 1.3 508.1173 

* ND: Not detected. m/z 231.0369 and 313.0396 do not have their counterparts detected in 2H3-Ac mobile 

phase. They are annotated as Mg2+ containing adduct ions. Presumably the 2H-HAc has much lower level 

of Mg2+ so that these adduct ions were not formed.  

Our results suggest the adduct formation in HILIC metabolomics is largely affected by the solvent additives 

as well as other chemicals present in the system. NO3
- adduct, for example, may come from the nitric acid 

we used to clean the ion transfer tube of the mass spectrometer. Therefore we recommend using COVINA 

to generate an adduct list specific to each of the different HILIC conditions and instrument being utilized 

to run them. Nonetheless, we believe our adduct list is helpful to systems running a similar 

chromatographic condition to what we have evaluated. Using such adduct lists, we can greatly improve 

the adduct annotation rate in untargeted metabolomics annotation tools such as CliqueMS. From a L3.6 

human pancreatic ductal adenocarcinoma cell lysate sample, CliqueMS annotated 23.5% and 53.5% 

features as adducts using built-in adduct list and COVINA-generated list respectively (Figure S2). We have 

also manually inspected and confirmed a number of adduct ions detected from L3.6 human PDAC lysate 

samples. Our results show [M+NaAc-H]- is more common than [M+Na-2H]- (Figure 4A). 



Due to the use of a high concentration of salt in the HILIC metabolomics, some metabolites show higher 

ion counts in their adduct/fragment forms than in the protonated/deprotonated forms. This information 

is important especially in targeted analysis of metabolomcis data. Using COVINA, we investigated such 

cases in the L3.6 cell lysates. The signal of Acetyl-CoA in the divalent ion form [M-2H]2- is 8-fold higher 

than the [M-H]- form. The signal of phosphocholine is 350-fold higher in its acetate adduct form than the 

[M-H]- form. S-Adenosyl-L-Methionine (AdoMet) can be detected in several fragment forms that have 

signals higher than the [M-H]- of AdoMet, including methylthioadenosine (MTA, 8-fold higher), MTA 

acetate adduct (35-fold higher) and adenine (55-fold higher) (Figure 4B). These results provide better 

detection for key metabolites in the targeted metabolomics analysis workflow. 

 

Figure 4. Significant adduct ions and fragment ions of key metabolites in the L3.6 human pancreatic 

ductal adenocarcinoma cell lysate samples. (A) Comparison of the occurrence of adduct ions. The 

denominator is number of metabolites with at least one adduct ion detected. (B) Significant co-variant 

ions that are stronger than the molecular ions. Ion counts are shown as mean +/- standard deviation, 

n=3.  

In essence, COVINA informs us on how metabolite molecules ionize. For instance, if the m/z and retention 

time of the [M+H]+ are known, we can use COVINA to find all other ionized forms of M. However, not 

every metabolite has its [M+H]+ form easily detectable. Due to the pKa values, some metabolites are much 

easier to carry a negative charge than to carry a positive one, such as lactate and pyruvate. Therefore, the 

LC-MS metabolomics data acquisition is often done under both positive and negative ionization modes to 

maximize the metabolome coverage. It is possible, however, to detect carboxylic acids such as lactate 

under positive ionization mode with reasonable sensitivity. We modified COVINA to analyze alternating 

scans of negative and positive ionization modes (Figure 5A). The XIC of [M-H]- was used as the reference 

and all the XICs under negative and positive ionization modes were used to calculate the chromatographic 

correlation coefficients. Our results show that lactate can be detected under positive ionization mode as 

[M-H+2Na]+, which has roughly 15%  intensity of [M-H]- under negative mode (Figure 5B).  



 

Figure 5. COVINA with polarity switch. (A) Scheme of COVINA under polarity switch mode. The XICs are 

built separately under each polarity, and the correlation with the reference XIC can be calculated as the 

standard COVINA method. (B) Example result of lactate adduct ions. Lactate is mainly detected as [M-H]- 

under the negative ionization mode. The most abundant cation species of lactate is [M-H+2Na]+ which 

has a signal that is roughly 15% of the signal of [M-H]-.  

 

Finding the metabolite neutral mass using in-source CID ramping (InCIDR)  

For the untargeted metabolomics data processing, the goal of adduct annotation tools is twofold: 1) to 

identify the adduct ions and exclude them from further analysis and 2) to find the neutral masses of the 

true metabolites for the downstream structural elucidation and statistical analysis. To find the neutral 

mass of a metabolite out of many grouped co-eluting ions, the annotation algorithm searches the mass 



differences between co-eluting m/zs and matches the gaps to known adducts. The hypotheses of 

metabolite neutral masses are scored based on the matching results and optionally the empirical 

frequency of the adducts.9,19 From these scores the most plausible neutral mass is returned as the result. 

Our data suggest that the performance of such algorithms can be improved by having a more complete 

adduct list generated from COVINA (Figure S3). Nonetheless, because of the heuristic nature of these 

algorithms, the metabolite neutral mass may not be picked correctly. Other approaches to reinforce the 

metabolite neutral mass prediction are needed.    

Here we propose to use in-source CID ramping (InCIDR) to predict the metabolite neutral mass. Instead 

of using an empirical adduct list and matching the mass differences, InCIDR predicts the m/z of the 

protonated or deprotonated metabolite ion by analyzing the co-variant ion intensity change under 

ramping CID energy levels. InCIDR works on the assumption that when the in-source CID energy level goes 

higher the adduct ions will collapse and decrease in intensities while the fragment ions will increase in 

intensities. Lin et al. first described such trends for the fragment ions and used it to filter fragment ions 

from the feature list.12 Based on their work, we further extended this analysis to encompass the adduct 

ions and built the data acquisition and analysis method called In-source CID Ramping (InCIDR). Unlike the 

original method using different CID energy levels in repeated runs, the data acquisition of InCIDR is a series 

on alternating scan events with increasing in-source CID energy level (Figure 6A). In this way, there is no 

need to run the same sample repeatedly at different energy levels, saving instrument time. Second, the 

single run eliminates the ion intensity variations due to inconsistent injection or chromatography 

separation. Third, there is no need to group peaks by retention time. Rather, the peaks can be perfectly 

grouped by matching the scan numbers. 



 

Figure 6. In-source CID ramping (InCIDR). (A) The scan events of InCIDR. We use 8 scan events each cycle 

to examine the intensity change of the co-variant ions. (B) The trend of intensity change under ramping 

CID energy levels. (C-D) Example InCIDR results of Glc6P and NAD.  

We modified COVINA to work with InCIDR data. Similar to COVINA, InCIDR starts from an m/z of interest 

and finds all co-variant ions associated with it. This starting m/z can be any m/z in the group of co-variant 

ions.  InCIDR will analyze the intensity of the co-variant ions under all in-source CID energy levels and use 

the trends to predict which one of them is the protonated or deprotonated ion. To validate the basic 

assumption of InCIDR, we investigated the co-variant ions of Glc6P. As predicted, the m/z 96.9692, which 

is the [H2PO4]- fragment of Glc6P, increases in intensity when the CID energy level goes up. The m/z 

341.0255, which is the [M+NaAc-H]- adduct of Glc6P, decreases in intensity when energy level increases. 

The m/z 259.0223, which is the deprotonated ion of Glc6P also decreases in intensity when energy level 

increases due to increased fragmentation. To describe the intensity trend in quantitative terms, we 

calculated the rank correlation coefficient τ for each of the co-variant ion.  

𝜏 =
2

𝑛(𝑛 − 1)
∑ sgn(𝐼𝑖 − 𝐼𝑗)

𝑖<𝑗

 

In the above equation, n is the total number of the CID energy levels, which is 8 in this study. Sgn() is the 

sign function that takes value of 1, -1 or 0 if applied to positive number, negative number or 0 respectively. 

Ii and Ij are the ion counts of the co-variant ion under the i-th and j-th lowest CID energy level, 1≤i<j≤n. An 

adduct that strictly decreases in intensity under higher energy levels gets τ=1. A fragment ion that strictly 



increases in intensity under higher energy level gets τ=-1. For Glc6P, all co-variant ions with m/z smaller 

than [M-H]- have negative values of τ. All ions but 1 with m/z larger than [M-H]- have positive values of τ. 

Therefore, it is possible to use the patterns in τ values to find the m/z of [M-H]- out of all the co-variant 

ions. We can calculated the rank score for all the co-variant ions of Glc6P. For a specific m/z, the rank 

score is the sum of τ values of ions above this m/z minus the sum of τ values of ions below this m/z.  

𝑅𝑎𝑛𝑘 𝑆𝑐𝑜𝑟𝑒(𝑚/𝑧) = ∑ 𝜏≥𝑚/𝑧 − ∑ 𝜏<𝑚/𝑧 

We predict the [M-H]- should have the highest rank score out of all the co-variant ions. Indeed, the [M-H]- 

259.0223 showed the highest rank score. In another example, we investigated the co-variant ions of NAD 

using InCIDR. We observed abnormal adduct ions that increase in intensity when ramping up the in-source 

CID energy level, such as [M+Na-2H]- and [M-Nicotinamide+NaCaAc2-2H]-. The possible reason for the 

[M+Na-2H]- adduct ions increasing in intensity is that some even larger adduct ions decompose into this 

sodium adduct. The [M-Nicotinamide+NaCaAc2-2H]- is an adduct ion of a fragment of NAD, so the higher 

in-source CID energy level may promote the NAD fragmentation and formation of this ion. Nonetheless, 

the rank scores of the co-variant ions showed m/z 662.1017 has the highest one, which is [M-H]- of NAD. 

The rank correlation coefficients and the ranks scores for Glc6P and NAD are shown in Table S2. Using 

these two examples, we show that the calculation of rank correlation coefficients and the ranks scores 

gives InCIDR robustness in finding the deprotonated and protonated ions and therefore the neutral mass 

of the metabolites. 

Conclusion 

In this work, we investigated the metabolite ionization forms in HILIC-ESI-MS metabolomics. Using 

COVINA and a stable isotope labeled mobile phase, we have detected and annotated a number of adduct 

ions and fragment ions of the metabolites. HILIC metabolomics datasets contain a large number of adduct 

ions, especially cluster adduct ions. A complete HILIC adduct list greatly improves the performance of 

existing annotation tools such as CliqueMS.  We also investigated the intensity changes of adduct and 

fragment ions using InCIDR. We show that the prediction of the metabolite neutral mass is possible by 

scoring the intensity trends of the co-variant ions under ramping in-source CID energy levels.    
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