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Abstract 1 

Protein dynamics is a manifestation of the complex trajectories of these biomolecules on a 2 

multidimensional rugged potential energy surface (PES) driven by thermal energy. Today 3 

computational methods such as atomistic molecular dynamics (MD) simulations can describe 4 

thermal protein conformational changes in fully solvated environments over millisecond 5 

timescales. Despite these advances, a quantitative assessment of protein dynamics remains a 6 

complicated topic, intricately tied to issues such as sampling convergence and the identification of 7 

appropriate reaction coordinates/structural features to describe protein conformational states and 8 

motions. Here, we present the cumulative variance of atomic coordinate fluctuations (CVCF) 9 

along trajectories as an intuitive PES sensitive metric to assess the extent of sampling and protein 10 

dynamics captured in MD simulations. We first examine the sampling problem in model 1D and 11 

2D PES to demonstrate that the CVCF when traced as a function of the sampling variable (time in 12 

MD simulations) can identify local and global equilibria. Further, even far from global 13 

equilibrium, a situation representative of standard MD trajectories of proteins, the CVCF can 14 

distinguish different PES and therefore resolve the resultant protein dynamics. We demonstrate 15 

the utility of our CVCF analysis by applying it to distinguish the dynamics of structurally 16 

homologous proteins from the ubiquitin family (ubiquitin, SUMO1, SUMO2) and ubiquitin 17 

protein-protein interactions. Our CVCF analysis reveals that differential side-chain dynamics from 18 

the structured part of the protein (the conserved -grasp fold) present distinct protein PES to 19 

distinguish ubiquitin from SUMO isoforms. Upon binding to two functionally distinct protein 20 

partners (UBCH5A and UEV), intrinsic ubiquitin dynamics changes to reflect the binding context 21 

even though the two proteins have similar binding modes which lead to negligible (sub-angstrom 22 

scale) structural changes. 23 

 24 

 25 

 26 

 27 

 28 

 29 
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1. Introduction 1 

Atomistic molecular dynamics (MD) simulations provide the ability to describe the thermal 2 

motions of solvated biomolecules over the picosecond to millisecond timescales1–4. The scale of 3 

atomic motions captured in MD range from large scale dynamics such as protein folding5–10, 4 

assembly11–14, and translocation15–18 to more subtle structural changes associated with native state 5 

fluctuations19–21 and protein-protein interactions22–24.  However, a quantitative analysis of protein 6 

dynamics extracted from MD simulations remains challenging due to two primary bottlenecks. 7 

The first is the identification of atomic motions/reaction coordinates relevant for a particular 8 

functional or biophysical context which arises from the large number of coupled protein-solvent 9 

degrees of freedom.25,26 The second pertains to sampling the underlying rugged multidimensional 10 

potential energy surface (PES) of proteins. Recent studies have revealed that true convergence of 11 

PES sampling in unbiased MD simulations cannot be quantitatively assessed for even the simplest 12 

of biomolecules. As such, only self-consistency checks on sampling quality for a given trajectory 13 

can be carried out27–30. On the other hand, while biased sampling techniques can achieve full 14 

sampling along specific reaction coordinates, they rely on identification of relevant collective 15 

degrees of freedom and are therefore constrained by the first bottleneck mentioned above.31 Given 16 

the present challenges in understanding dynamics of solvated single proteins using MD, extending 17 

the technique to comparatively assess dynamics of different proteins and their complexes in 18 

functionally relevant contexts32–34 is seriously limited. From this perspective, it is useful to explore 19 

scalable new metrics and analysis schemes which can help extract more quantitative information 20 

and insights on protein dynamics from MD simulations and which have the potential to further the 21 

scope of applying MD to biologically relevant contexts.     22 

The variance of atomic coordinate fluctuations has long served as the basis for analyzing 23 

protein motions in MD trajectories35–41. For instance, in Principal Component Analysis (PCA), the 24 

variance-covariance matrix of atomic coordinate fluctuations from MD trajectories is diagonalized 25 

to yield orthogonal coordinates with zero covariance termed as principal components (PC). The 26 

PCs thus extracted can then be used to carry out quasi-harmonic analysis of MD trajectories 27 

yielding native state entropies35,42,43 and slices of the protein PES44–46. PCs have also been used to 28 

create reduced dimensional descriptions of protein conformational motions46. Notably, Hess has 29 

examined both the variance of atomic coordinate fluctuations and associated PCs as measures to 30 

assess sampling in model harmonic landscapes and biomolecules.41 In this study the promise of 31 
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variance to indicate convergence of biomolecular trajectories was noted but not explicitly 1 

demonstrated beyond the harmonic model potential. Other measures routinely used to analyze MD 2 

trajectories are Root Mean Square Fluctuations (RMSF) and Root Mean Square Deviations 3 

(RMSD) of atomic coordinates47–49. While the former is typically used to provide information on 4 

residue level mobility/dynamics at fixed trajectory lengths, the latter is used to track evolution of 5 

protein structure along an MD trajectory with respect to a reference structure. On a more 6 

quantitative footing, several other measures have been proposed to assess the sampling in MD 7 

trajectories such as number of clusters50, block covariance overlap41,51, configurational/structural 8 

decorrelation time52, cluster entropy29, conformational overlap30 and density overlap30. 9 

Independently, Monte Carlo (MC) optimization based approaches have been employed to 10 

elucidate the global PES of proteins, nucleic acids and atomic clusters. Here, biomolecular 11 

structures and atomic phases were enumerated and classified in terms of dis-connectivity graphs53. 12 

However, such approaches do not capture the dynamics of molecules. Since MD simulations 13 

present a complementary approach to capture biomolecular dynamics, it would be desirable to 14 

have dynamical metrics for this technique which can sense features of the underlying PES. Linking 15 

existing measures which assess sampling in MD simulations to the underlying PES is non-trivial 16 

as their readout typically relies on parameters external to the dynamical system of interest. For 17 

instance, measures such as cluster entropy or conformational overlap rely on a RMSD based 18 

structure clustering parameter. Thus, here we examine a variance based metric which has no 19 

tunable external parameters and can provide an assessment of sampling and dynamics captured in 20 

MD simulations.  21 

 22 

In this study, we introduce the Cumulative Variance of Coordinate Fluctuations (CVCF) along 23 

atomistic MD trajectories, as a dynamical metric to examine protein dynamics and sampling 24 

convergence in MD simulations. Using model 1D and 2D PES, we first show using MC 25 

simulations that CVCF, which traces over the fluctuations of protein atoms as a function of 26 

sampling coordinate (number of steps in MC and time in MD simulations), captures both local and 27 

global equilibria to distinguish the underlying PES of proteins.  For both model PES and protein 28 

trajectories, we compare the information content present in CVCF traces with that obtained using 29 

cluster based measures to reveal conditions under which a consistent interpretation of data can be 30 

obtained. We specifically show that the CVCF metric can assess Boltzmann statistics along a 31 
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sampling coordinate. The metric can therefore can be used to define equilibrium measures of 1 

protein dynamics (such as spring constants denoting protein flexibility) from MD trajectories when 2 

locally converged sections of the trajectory are available. More importantly, we show that 3 

independent of convergence to either local or global equilibrium, the values and features of the 4 

protein CVCF-trace can provide a comparative assessment of the ruggedness and curvature of the 5 

underlying PES sampled by the protein along MD trajectories. Trends in CVCF therefore enable 6 

us to compare features of the PES across multiple protein systems using MD simulations. Further, 7 

CVCF can be readily decomposed to examine the dynamics for selected subsets of atoms (protein 8 

backbone, sidechains, active sites, or atoms at the interface of protein complexes) or for specific 9 

coordinates (distances, angles, torsions). We demonstrate some of these attractive features of a 10 

CVCF based analysis on multi-microsecond (s) MD trajectories of structurally homologous 11 

ubiquitin family proteins which present a particularly striking example in nature wherein sequence 12 

changes and complexation which do not lead to prominent structural changes bring about dramatic 13 

functional consequences.  14 

 15 

Proteins from the ubiquitin family, which include ubiquitin (Ub) and the small ubiquitin-like 16 

protein modifier (SUMO), regulate diverse cellular processes ranging from proteasomal 17 

degradation to DNA transcription, replication, and repair in eukaryotes33,54–57. These molecular 18 

tags alter protein biological states primarily through reversible covalent attachment to substrate 19 

lysine residues via an isopeptide bond (ubiquitylation/SUMOylation). Central to the regulatory 20 

role of ubiquitin and SUMO proteins as molecular tags in the cellular machinery, is their highly 21 

conserved secondary structure and tertiary -grasp fold. Using a CVCF based analysis, we show 22 

that structurally homologous Ub and SUMO proteins can be distinguished on the basis of their 23 

distinct sidechain flexibilities in the conserved -grasp structural fold. Further, we demonstrate 24 

that the intrinsic flexibility of Ub changes when the protein is attached to a Ub recognition motif 25 

(UEV), which recognizes ubiquitylated cargo, or to a E2 ligase (UBCH5A) which attaches Ub to 26 

protein substrates. Surprisingly, we find the changes in Ub dynamics induced by binding to be 27 

context sensitive responding in distinctive ways to UEV and UBCH5A which have overlapping 28 

binding modes and produce minimal sub-angstrom structural changes in Ub. 29 

 30 

 31 
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2. Results 1 

2.1 CVCF captures both local and global equilibria in model PES 2 

We first illustrate the basic features of CVCF analysis using model 1-D and 2D PES which are 3 

sampled using a standard MC algorithm with a Boltzmann weight (sec. 5.1 in Methods). For the 4 

diffusion of a particle in a 1D harmonic PES in the high friction limit, an analytical expression 5 

(sec. S.1 of ESI) for the time evolution of CVCF can be derived 41. In this case, at short timescales 6 

as the particle samples the PES, the CVCF increases monotonically and ultimately saturates to the 7 

value of variance (Eqn. S7) associated with the curvature of the underlying PES (Fig. S1 in ESI). 8 

Thus a plateau in CVCF indicates convergence of sampling for a 1D harmonic well. Here, we will 9 

show that plateaus in CVCF also indicate convergence (either local or global) for multi-well 10 

anharmonic PES. First, we establish our MC protocol and associated CVCF-based analysis of 11 

sampling and systematic errors for a particle stochastically moving in a single harmonic well of 12 

spring constant k (in units of 𝑘𝐵𝑇/Å2)  for which the final (analytical) converged value of the 13 

CVCF, 𝜎𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
2 =

𝑘𝐵𝑇

𝑘
  is known (see sec. S.2.1, Fig. S2 A-E of ESI). For this PES, we carried 14 

out 5 independent MC runs with identical starting coordinate (x = 0 Å) and an MC step size 100 15 

times smaller than 𝜎𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑. The resultant MC runs were then aligned at the zeroth step to trace 16 

the evolution of the average CVCF <𝜎𝐶𝑉𝐶𝐹
2 > and standard deviation SDCVCF as a function of the 17 

number of MC steps. For the parameters chosen, we find that the  <𝜎𝐶𝑉𝐶𝐹
2 > plateaus to a value 18 

close to 𝜎𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
2  within sampling error (Fig. S2 B) after 109 MC steps. While the SDCVCF values 19 

reflect the sampling error for a given number of MC steps, the deviation of the final converged 20 

<𝜎𝐶𝑉𝐶𝐹
2 > from 𝜎𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

2  indicates the systematic error in the trajectory. The former depends on the 21 

sampling variable (steps in MC runs and time in MD simulations) whereas the latter depends on 22 

the resolution of sampling (MC step size or time-step in MD simulations). These basic relations 23 

can be easily demonstrated by repeating the analysis by varying the step size, the number of 24 

sampling steps, and the number of independent MC runs (sec. S.2.1 of ESI).  We next extended 25 

the same MC analysis for the sampling problem in an anharmonic 1D inverted Gaussian energy 26 

well (sec. S.2.1 of ESI). Here, we find again that the convergence of sampling is captured by a 27 

plateau in the <𝜎𝐶𝑉𝐶𝐹
2 >. However, the CVCF converges to a value (Fig S2) which lies intermediate 28 

to the variance for a harmonic fit to the surface (upper bound) and that corresponding to a second 29 

order (harmonic) truncation of the Gaussian PES (eqn. S14 of ESI) given by (𝜎𝐻
2) .  As in the case 30 
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of the 1D harmonic well, <𝜎𝐶𝑉𝐶𝐹
2 > and s SDCVCF for the anharmonic problem depend on MC step 1 

size and the number of MC steps.  For a reasonably small choice of MC step size (about an order 2 

of magnitude smaller than 𝜎𝐻), <𝜎𝐶𝑉𝐶𝐹
2 > lies within a ~20 % offset from 𝜎𝐻

2 which represents the 3 

curvature of the bottom of the anharmonic PES (Fig. S2 F-H in ESI).  4 

 5 

 We next examine the sampling problem for a 1D PES with three Gaussian wells (Fig. 1A 6 

and sec. 5.2 in Methods) to illustrate the features of an anharmonic landscape with multiple kinetic 7 

barriers produced in a CVCF trace. Here energy wells 1 and 2 have equal depth (-10 𝑘𝐵𝑇) whereas 8 

energy well 3 was placed relatively higher (-8 𝑘𝐵𝑇). Energy wells 1 and 2 were separated by a 9 

 
Fig-1: CVCF-trace analysis for 1-D 3-well model PES (A) Model PES depicting 2 closely 

spaced iso-energetic wells (1 and 2) with a kinetic barrier of ~6 kBT and a third energetically 

higher well 3 placed slightly further away from well 2 than well 1 with a higher kinetic barrier 

of ~9.5 kBT. (B-D) CVCF-trace is shown along with coordinate fluctuations as a function of MC 

steps at different resolutions along a specific trajectory. Sections of the trajectories producing 

distinct CVCF features are marked as regions i, ii, iii in panel B. In panels B and D LE indicates 

Local equilibrium which manifest as CVCF plateaus and are numbered according to their order 

of appearance during the MC run. In panel D GE denotes global equilibrium (E) Ratio of 

populations in the energy well 1 and 2 before it hops into energy well 3 during the initial section 

of the run attains an almost constant value ~1 as expected from Boltzmann statistics (black dotted 

horizontal line). (F) Ratio of population in the energy well 1 and 2 (blue) and that in 3 and 2 

(purple) evolves to reach a plateau concomitant with CVCF showing expected Boltzmann 

statistics (black dotted line). (G) CVCF-trace evolution from 5 independent MC runs each 

initiated at the same position x = 5 Å. Black curve represents the trajectory shown in B-F.  (H-I) 

Evolution of <𝜎𝐶𝑉𝐶𝐹
2 > and SDCVCF  captured across the set of 5 independent MC trajectories.  
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smaller energy barrier (~6 𝑘𝐵𝑇) and distance (10 Å) than that between 2 and 3 (~9.5 𝑘𝐵𝑇 barrier 1 

and 15 Å separation). For a particle thermally sampling this 1D PES, transitions between energy 2 

wells 1 and 2 should occur more frequently than that between energy wells 2 and 3. Therefore we 3 

expect that a local equilibrium within the PES section covering wells and 2 will be established, 4 

before global equilibrium is established between all three wells. We carried out 5 independent MC 5 

runs to sample the 1D PES all starting with an initial position of the particle in energy well 2 (x = 6 

5 Å). In Fig. 1B-D we follow one of these trajectories by monitoring the particle position and 7 

CVCF as a function of MC steps. Initially, in this trajectory the particle samples energy well 2 8 

(region i in Fig. 1B) producing coordinate fluctuations around x = 5 Å and a CVCF which quickly 9 

attains a plateau indicating local equilibrium (LE-1) within well 2. The particle then transitions to 10 

well 1 as seen by a change in the position value to x = -5 Å and a large change in CVCF (region ii 11 

in Fig. 1B). As the particle continues to sample well 1 the CVCF shows a gradual decrease which 12 

is a signature of local trapping in the well (region iii in Fig. 1B). Subsequently, the CVCF shows 13 

a slight rise as the particle transitions back to energy well 2. With increasing number of transitions 14 

between wells 1 and 2, the modulations in CVCF become progressively smaller until a second 15 

local equilibrium is attained (LE-2 in Fig 1C). The value of the CVCF at this second plateau 16 

corresponds to an effective curvature of the PES section covering wells 1 and 2 (Fig. 1A) and 17 

persists till the particle transitions to energy well 3 showing coordinate fluctuations around x = 20 18 

Å (Fig. 1C). The CVCF again senses the sampling of a new PES section (energy well 3) by 19 

producing a rise followed by progressively decreasing modulations as the particle samples all three 20 

wells (Fig. 1C). The CVCF ultimately tends to a third plateau which corresponds to the global 21 

equilibrium (GE) wherein all three wells are fully sampled (Fig. 1D). That each plateau in CVCF 22 

evolution indeed corresponds to either a LE or GE can be quantified by examining the time 23 

evolution of energy well populations along the MC trajectory to check if they follow Boltzmann 24 

statistics at the CVCF plateaus (Fig 1E-F). Since energy wells 1 and 2 have equal depth, their 25 

population ratio should be 1 according to Boltzmann statistics. For the given MC trajectory leading 26 

up to LE-2 (Fig 1E), the particle only samples energy wells 1 and 2 and the population ratio 27 

converges to 1 as the CVCF reaches the second plateau (the first CVCF plateau corresponds to 28 

equilibrium sampling of energy well 2). As sampling progresses further, the LE is destroyed by 29 

the discovery of energy well 3 which is indicated by a large change in CVCF (Fig. 1C). Finally, 30 

as the CVCF reaches the third plateau, population ratios of energy well 1/2 (blue curve in Fig. 1F) 31 
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and 3/2 (magenta curve in Fig. 1F) converge to values expected from Boltzmann statistics at GE 1 

(black dotted lines in Fig. 1E). This analysis shows that the CVCF trends as a function of sampling 2 

variable can provide an assessment of LE and discovery of new minima for a PES sampled in 3 

MC/MD trajectories. At this point it is useful to compare the information content obtained from 4 

CVCF analysis with that using other measures of sampling used for MD trajectories such as cluster 5 

number (Nc) and cluster entropy (Sc) 
29. For our model 1D PES, NC trivially indicates the number 6 

of energy wells sampled along a trajectory (Fig. S4 B-C in ESI) and Sc tracks convergence in 7 

sampling each cluster/well (Fig. S4 E-F in ESI) along the MD trajectory. As revealed by this 8 

analysis, Sc contains the same information as CVCF (Fig. S4 D in ESI) provided the cluster 9 

definitions (set by the the clustering threshold r) are compatible with the PES. In each of the MC 10 

trajectories, the 1st half and 2nd half occupancy comparisons show very similar cluster populations 11 

again indicating convergence in sampling for these cases (Fig. S4 G-K in ESI). Thus, while Nc and 12 

Sc are dependent on the clustering threshold r which can be trivially set for the model PES here 13 

but is unknown for proteins, the CVCF does not rely on cluster definitions which makes it an 14 

attractive metric for assessing sampling of protein PES.  15 

 16 

We next examine the heterogeneity in CVCF values generated under stochastic sampling 17 

conditions in Fig 1 G-I, using multiple MC trajectories. As for the case of single wells, we carried 18 

out 5 independent MC runs all initiated with identical positions of the particle (x = 5 Å). The CVCF 19 

evolution for each of the individual trajectories aligned at the first step is presented in Fig. 1G. The 20 

CVCF evolutions initially show a large sampling heterogeneity but ultimately converge to the 21 

same GE. Individual trajectories attain LE-2 at different number of MC steps and show plateaus 22 

of different lengths due to stochastic sampling of the underlying landscape (Fig. S3 in ESI). For 23 

instance, one of the trajectories (green line in Fig 1G) shows fairly steep CVCF increases with a 24 

relatively early transition from the LE-2 plateau as it starts sampling well 3 earlier than the other 25 

trajectories (Fig S3 of ESI). We note that such heterogeneities exist even for the sampling of 26 

simpler harmonic single well potentials (Fig S2 of ESI) and can be quantified (vide supra) in terms 27 

of systematic and sampling errors provided by <𝜎𝐶𝑉𝐶𝐹
2 > and SDCVCF monitored as a function of 28 

sampling variable for the 5 aligned trajectories. For instance, just before the earliest LE-2 transition 29 

we find <𝜎𝐶𝑉𝐶𝐹
2 > = 24.5 Å2 and SDCVCF = 1.2 Å2 (Fig. 1 H). Since <𝜎𝐶𝑉𝐶𝐹

2 > at this point along the 30 

trajectory attains a plateau, we can consider this to be the averaged LE-2 for the set of 5 trajectories. 31 



10 

 

Subsequently all trajectories are expected to show the same CVCF plateau at the GE and we obtain 1 

<𝜎𝐶𝑉𝐶𝐹
2 > = 50.5 and  SDCVCF = 3.5 Å2 at the endpoint of the MC runs (Fig. 1 I). The analysis 2 

presented here can be extended to multiple dimensions. For instance, we examine the sampling 3 

problem using multiple MC runs for a 2D PES with 3 wells (sec S.2.3 of ESI).  Here analogous to 4 

the 1D case (Fig 1A) the barriers are designed such that transitions between isoenergetic energy 5 

wells 1 and 2 are more frequent relative to that between either of energy wells 1/2 and the relatively 6 

higher placed well 3. Here again, the CVCF analysis of individual trajectories provides information 7 

on local as well as global equilibria as seen by tracking the evolution of coordinate and population 8 

ratios of energy wells as a function of MC step (Fig. S5 B-F of ESI). On the other hand, sampling 9 

heterogeniety and a collective view of the PES can be obtained by following <𝜎𝐶𝑉𝐶𝐹
2 >  and  SDCVCF 10 

along multiple trajectories aligned at the initial value of the sampling variable (Fig S5 G-H). 11 

 12 

In summary, the CVCF plotted as a function of the sampling variable in MC/MD trajectories 13 

produces characteristic features which can be linked to the underlying PES. Plateaus in the CVCF 14 

clearly indicate equilibrium (or at least locally complete) sampling of a PES whereas increases or 15 

changes in CVCF indicate transitions to (or incomplete sampling of) new minima in the PES. An 16 

increase in CVCF with number of steps indicates the discovery/sampling of new 17 

minima/conformational states whereas subsequent progressively smaller increase/decrease in 18 

CVCF indicates that a new equilibrium is being established. CVCF values at plateaus (Fig 1) can 19 

be related to physically meaningful measures such as spring constant values (vide infra) denoting 20 

the effective curvature of the section of PES sampled.   21 

 22 

2.2 CVCF distinguishes rugged energy landscapes of varying curvatures 23 

Here, we examine the ability of CVCF to distinguish rugged PES which possess multiple 24 

minima separated by varying kinetic barriers. As discussed in the last section, heterogeneity arising 25 

from stochastic sampling conditions and the incomplete sampling of the PES both present 26 

challenges in interpreting CVCF features. Our goal in this section is to inquire whether a CVCF 27 

analysis can provide useful insights even when both of the aforementioned limitations are present 28 

in a given set of trajectories. For this purpose, we constructed a PES combining 7 inverted Gaussian 29 

wells (see sec. 5.2 of Methods and sec. S.2.4 of ESI). The Gaussian wells all have equal width but 30 

are well separated and placed at different depths which vary quadratically as a function of the 31 
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position coordinate around the PES global minimum. The resultant PES can be viewed as a single 1 

harmonic well with rugged features created due to the presence of Gaussian modulations (Fig 2A). 2 

The curvature k of the PES controls both the equilibrium population ratios as well as the kinetic 3 

barriers associated with the energy wells (sec. 5.2 of Methods and sec. S.2.4 of ESI). Sampling 4 

this PES using MC, the CVCF-trace as a function of MC step should show a plateau at GE with a 5 

value of 1/k in the limit of zero systematic and sampling errors and sense changes in k with arbitrary 6 

precision. However, under realistic sampling conditions finite errors are expected to limit the 7 

resolution of CVCF. Ignoring  systematic offsets, the resolution in the CVCF estimate of spring 8 

constants is given by 𝜕𝑘 =  
𝜕𝜎𝐶𝑉𝐶𝐹

2

(𝜎𝐶𝑉𝐶𝐹
2 )2

 𝑘𝐵𝑇/Å
2 ,  where 𝜕𝜎𝐶𝑉𝐶𝐹

2  is the sampling error in CVCF (sec 9 

S.2.4 of ESI). For instance, using a set of 5 MC runs (108 steps each with a step size 0.1 Å) to 10 

 
Fig-2: CVCF can distinguish PES of varying curvature. (A) 1D rugged harmonic PES of 

the form given by eqn. 1.2. The overall curvature of the harmonic surface is tuned by the spring 

constant k=6  10-2 (cyan) to 8  10-2 (olive green) 𝑘𝐵𝑇/Å
2 with an resolution of 5  10-3  

𝑘𝐵𝑇/Å
2 while other parameters and the minima of the PES are kept fixed across the landscapes. 

(B) CVCF-trace and (C) RMSD evolution for particle positions sampled across 5 independent 

MC runs all initiated at the PES minima (colour-coded energy landscape wise). MC sampling 

is restricted within a range of -20 Å to + 20 Å (marked by black dotted line in A). (D) 2 PES 

are chosen which differ in their k by an order of magnitude (5  10-3 versus 5  10-2 𝑘𝐵𝑇/Å
2) 

(E-F) Individual CVCF-traces (color coded) obtained for 5 different MC runs to sample both 

the landscapes in panel D. (F-G) CVCF evolution distinguishes the PES in panel D at 6 × 105 

MC steps although for neither of landscapes GE has been attained. 
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sample the PES with  k = 6  10-2 𝑘𝐵𝑇/Å2 we obtained a CVCF plateau at GE of 15.4 ± 0.3 Å2 1 

(blue lines in Fig 2B), which lies within a 10 % offset from the  expected value (1/k = 16. 7 Å2) . 2 

For these MC and PES parameters, the CVCF can resolve PES with 𝜕𝑘 = 1   10 3 𝑘𝐵𝑇/Å2 at 3 

GE. We explicitly demonstrate the resolution of CVCF on a set of 4 PES with k values in the range 4 

6  10-2 to 8  10-2 𝑘𝐵𝑇/Å2 and differing by 5  10-3 𝑘𝐵𝑇/Å2 (Fig. 2A). A set of 5 MC simulations 5 

were performed for sampling each of the 5 PES and  <𝜎𝐶𝑉𝐶𝐹
2 > with SDCVCF across the 5 trajectories 6 

were plotted as function of number of MC steps. In each case, a CVCF plateau corresponding to 7 

GE is obtained after  108 MC steps and CVCF clearly distinguishes all the energy landscapes (Fig. 8 

2B), with <𝜎𝐶𝑉𝐶𝐹
2 > decreasing with increasing k (Eqn. 5). On the other hand, for a set of PES with 9 

k values differing by less than the threshold resolution (Fig. S6) set by the sampling error, the 10 

distribution of CVCF traces overlap and the underlying PES cannot be distinguished at these MC 11 

sampling durations (Fig. S6 of ESI). We note that in stark contrast, commonly used measures of 12 

equilibration such as RMSD fail to distinguish any of the set of PES and convey no information 13 

on extent of sampling (Fig. 2C and Fig S6 of ESI). 14 

 15 

We next examine the value of CVCF analysis far away from GE. As discussed in the previous 16 

subsection, the early MC step evolution of CVCF bears signatures of the ruggedness of the PES 17 

arising from Gaussian energy wells. We demonstrate this feature using sets of MC runs with 18 

varying step sizes (10-1 - 10-3 Å), to sample PES with  k values of  6  10-2  and 8  10-2 𝑘𝐵𝑇/Å2  19 

(Fig. S7 of ESI). For each of the cases, the individual CVCF traces are heterogenous showing 20 

multiple plateaus and rise/decay features which sense the LE and transitions between the multiple 21 

wells of the PES. Clearly the sampling heterogeneity in the CVCF traces far from GE is too large 22 

to be able to resolve the two PES.  However, the CVCF can distinguish PES at early timescale 23 

well before GE is attained if separation of k becomes large relative to the ruggedness present in 24 

the PES. For instance, sampling of two PES with k values differing by an order of magnitude (Fig 25 

2D) in short MC trajectories far from GE produces CVCF traces which are drifting to different 26 

extents and show differing amounts of sampling errors (Fig 2E-G). Nevertheless, these two CVCF-27 

traces are well resolved even for these MC trajectories which are far from attaining GE (Fig. 2E-28 

G). Thus, the CVCF traces can resolve PES curvatures far from GE and the resolution of the CVCF 29 

improves as the sampling approaches GE. 30 

 31 
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2.3 CVCF analysis reveals features of PES sampled in microsecond MD Trajectories of 1 

ubiquitin    2 

The CVCF analysis presented in previous two sections can be extended to MD simulations 3 

of proteins where the sampling variable is the trajectory time. To demonstrate this, we carried out 4 

10 independent 1 s NVT MD trajectories of ubiquitin (Ub) in water, all initiated from the same 5 

phase space point (same coordinates and velocities) following an initial equilibration protocol (sec. 6 

5.3 and 5.4 in Methods). In analogy with the analytical framework introduced for MC simulations, 7 

we plot the CVCF trace (<𝜎𝐶𝑉𝐶𝐹
2 > along with standard deviation SDCVCF) of all Ub heavy atoms 8 

captured along the 10 trajectories aligned at their initial time-points (Fig 3A). The trends in the 9 

CVCF are predictably heterogeneous revealing the complexity of the multi-dimensional PES even 10 

for small globular proteins such as Ub. Nevertheless, it is encouraging that the same features 11 

observed in MC trajectories of model PES are observed in the CVCF traces of Ub MD trajectories. 12 

While no two CVCF traces show completely overlapping trends, we note that 8 out of 10 13 

trajectories attain plateaus within 800 ns or earlier (trajectory i and trajectory set ii in Fig 3A). The 14 

 
Fig-3: CVCF evolution in protein MD trajectories: (A-B) Individual CVCF–traces (all heavy atoms in 

panel A and backbone heavy atoms in panel B) for 10 independent s MD trajectories of Ub. The 

dashed cyan line (labelled as i) represents CVCF evolution in the most stable section of the PES for the 

set of 10 trajectories and the black dotted line represents the average CVCF across 10 trajectories. (C) 

RMSD of protein structures (all heavy atoms) obtained along 10 independent s MD trajectories 

relative to their starting structures (first frame of each trajectory). (D) Evolution of Nc and (E) Sc along 

each of the set of 10 MD trajectories using a RMSD clustering threshold of r=1.7 Å. (G-I) Comparison 

of CVCF-trace evolution with that of Sc for 2 specific MD trajectories i and iii using 2 different values of 

the clustering threshold r .   

 

 

B
ac

kb
o

n
e

  
 
 
 
 

 

(Å
2 )

 (
x1

0
)

 
 

O
ve

ra
ll

  
 
 
 
 

 

(Å
2 )

 (
x1

0
2 )

B
ac

kb
o

n
e

  
 
 
 
 

 

(Å
2 )

 (
x1

0
)

B
ac

kb
o

n
e

  
 
 
 
 

 

(Å
2 )

 (
x1

0
)

D. E. F.

R
M

SD
 (Å

)

B
ac

kb
o

n
e

  
 
 
 
 

 

(Å
2
) 

(x
1

0
)

G.

B
ac

kb
o

n
e

  
 
 
 
 

 

(Å
2
) 

(x
1

0
) 

A. B. C.

H. I.

r = 1.7 Å r = 1.7 Å r = 1.7 Å, trj-i

r = 1.7 Å, trj-iii r = 1.9 Å, trj-iiir = 1.9 Å, trj-i

Time (μs)  Time (μs)  Time (μs)  

i

ii

iii
 
 

 
 

 
 

 
 

 
 

iv



14 

 

exceptions are trajectories iii and iv which initially show LE plateaus (for instance around 500 ns) 1 

but later show diverging CVCF traces indicating the discovery of new minima at the end of the 1 2 

s runs. At the other extreme, trajectory i shows a CVCF plateau which extends over the entire 1 3 

s indicating that the protein is trapped in a single deep well which represents the global minima 4 

for our set of 10 trajectories. All trajectories, barring trajectory i, exhibit multiple CVCF LE 5 

plateaus alternating with steep increases during the 1 s runs. For a similar CVCF-trace analysis 6 

of only the Ub backbone heavy atoms, we find that the variance drops by an order of magnitude. 7 

However, the backbone CVCF also displays heterogeneity with roughly 8 out of 10 trajectories 8 

attaining an LE plateau by 600 ns which persists for the rest of the trajectory.   In contrast, the 9 

commonly used RMSD of protein heavy atoms (with respect to their position in the first frame) 10 

over the same set of trajectories shows highly overlapping trends (Fig. 3C) which converge within 11 

the first few nanoseconds (ns). We next compared the Ub backbone dynamics as reported by CVCF 12 

with cluster analysis measures29,30 Nc and Sc (Fig. 3D-E and Fig. S8 of ESI) with RMSD clustering 13 

thresholds ranging from r=1.5-2.1 Å (see sec. 5.5 in ‘Methods’). In Fig 3D with r=1.7 Å the Nc 14 

values initially increase rapidly but later (after 800 ns) saturate to a value around 50 for all 10 MD 15 

trajectories. However, the interpretation of the Ub trajectories using the CVCF-analysis is seen to 16 

differ from that using the cluster measures with r=1.7 Å.29 For instance, the increase in Nc values 17 

over the first 800 ns indicates a continuous discovery of new clusters over this time period which 18 

is at odds with the CVCF plateau observed for trajectory i which suggests an LE during the same 19 

period (Fig 3B). Further, Unlike the case of our model PES calculations (sec 2.1) the CVCF 20 

evolution was not found to consistently mirror that of Sc captured for r=1.7 Å (Fig 3E). While 21 

CVCF has no tunable parameters, the trends in both Nc and Sc are sensitive to the clustering 22 

threshold r.  Even for an relatively modest increase for r in the range 1.5-2.1 Å, Nc values at the 23 

end of the 1 s drop from around 200 to 5 and the features of Sc change dramatically. In fact, the 24 

agreement between CVCF and Sc trends for individual Ub trajectories appear to be dependent on 25 

threshold r (Fig. S9-S12 of ESI). For instance, the best agreement (within the range of r values 26 

considered here) between the trends in CVCF and Sc for trajectory i is found at r = 1.7 Å, whereas 27 

for trajectory iii it is r = 1.9 Å (Fig 3F-I). We further quantified the extent of Ub conformational 28 

space self-consistently explored in the set 10 MD trajectories of Ub using conformational overlap 29 

(Oconf) and density overlap (Odens) measures as described by Nemec and Hoffman30. For clustering 30 

thresholds of r = 1.5-1.9 Å, more than 80 % conformational space of Ub has been explored at 1 μs 31 
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timescale as indicated by Oconf in Fig. S13 (left panel) of ESI. Further, for the range of clustering 1 

thresholds considered, the 10 trajectories cover the Ub conformational space (explored within the 2 

set) with a probability of 60-90 % as indicated by Odens in Fig. S13 (right panel) of ESI. While 3 

these trends convey reasonable fulfilment of the self-consistency checks within the set of 10 Ub 4 

trajectory, the sensitivity of the measures Nc, Sc, Oconf, Odens to r remains problematic. These 5 

metrics yield contrasting interpretations on the extent of sampling and self-consistency checks on 6 

a set of trajectories depending on the choice of r (Fig. S13).  In contrast, the CVCF offers a 7 

parameter free analysis of the set of 10 Ub trajectories, conveying the extent of sampling and 8 

heterogeneity associated with the underlying landscape over a specific (1 μs) MD timescale. 9 

 10 

The CVCF features captured in the multiple s trajectories for Ub (a rigid globular protein) 11 

demonstrate its sensitivity to the protein PES and enable us to propose intuitive yet robust measures 12 

of protein dynamics. Assuming all trajectories are initiated from the same equilibrated phase space 13 

point so that their time-points are aligned at the beginning of the production runs, a quasiharmonic 14 

spring constant (Eqn. 5) for a protein can be estimated from the <𝜎𝐶𝑉𝐶𝐹
2 > values (dotted black trace 15 

in Fig. 3A) computed over independent trajectories, provided consistent equilibria is attained over 16 

the set. As discussed above, the CVCF values at plateaus (vertical dotted lines in Fig 3A) denote 17 

LE (locally complete sampling) and therefore provide physically meaningful spring constant 18 

(𝑘𝑎𝑣𝑔) values denoting the effective curvature of the PES. For instance, at 500 ns we obtain a 19 

consistent set of LE plateaus (Fig 3A vertical dotted lines) for all Ub trajectories so that an average 20 

curvature can be defined at this timescale. On the other hand, most but not all trajectories show 21 

plateaus at 1 s which puts constraints on the interpretation of the <𝜎𝐶𝑉𝐶𝐹
2 >.  On the other hand, 22 

the SDCVCF values over a set of the trajectories indicate sampling heterogeneity and therefore 23 

provide a measure for the ruggedness of the PES sensed by MD over a specific timescale. We also 24 

note that independent of convergence to LE/GE, the values and features of protein CVCF provide 25 

an assessment of the ruggedness and curvature of the underlying PES sampled by the protein along 26 

MD trajectories (see sec 2.2). Trends in CVCF therefore, enable us to compare features of the PES 27 

across multiple protein systems as demonstrated in the following sections. Further, using CVCF 28 

for selected subsets of atoms or for specific coordinates (distances, angles, torsions), the dynamics 29 

of individual protein components (backbone, sidechain, active sites) can be readily decomposed 30 

and analyzed. In the following sections we demonstrate the utility of the CVCF analysis by 31 
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applying it to study how the flexibility of ubiquitin family proteins is altered by changes in protein 1 

sequence or complexation state. 2 

2.4 Sidechain Dynamics of the Structured -grasp Fold Distinguishes Ub and SUMO 3 

Proteins 4 

In this section, we assess the ability of CVCF to capture differences in dynamics of 5 

structurally homologous ubiquitin family proteins which include Ub, SUMO1 and SUMO2. The 6 

backbone structures of all three proteins are superimposable (RMSD ~ 3.4 Å), comprising of 5 β-7 

strands and a single α-helix arranged in a signature β-grasp fold (Fig. 4A). Interestingly, despite 8 

strong structural similarities, the Ub and SUMO proteins have low sequence identity (Fig. 4C), 9 

~20% between Ub and SUMO and ~50% between SUMO variants58,59, which could distinguish 10 

 
Figure 4: Structural properties and primary sequence information for Ub, SUMO1, and 

SUMO2. (A) Structures of Ub, SUMO1,SUMO2 and non-covalent complexes of Ub with two 

protein partners (UEV and UBCH5A). Backbone secondary structure representation shows 

the conserved -grasp fold for ubiquitin family proteins. Sidechains are shown using a surface 

representation. (B) 1D topology for Ub displaying the secondary structure elements: -sheets 

(arrows), coils (lines), and helices (cylinders) and the regions contacted by UEV (pink boxes) 

and UBCH5A (green boxes) along the sequence. (C) Sequence alignment and homology of 

the core 72 residues forming the -grasp fold(capitalized) in Ub (1-72), SUMO1 (21-92), and 

SUMO2 (17-88) based on residue identity (vertical black dashes represent residues that are 

identical in a pair of proteins) and similarity (boxes indicate residues that are similar across all 

three proteins). Additionally, amino acid codes in the sequences are colored based on type 

(green-hydrophobic, red-polar, and blue-charged).  

Ub SUMO1 SUMO2 Ub:UBCH5A Ub:UEV

(A)

14 %
ubiquitin

SUMO2

-MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRlrgg

| | | | | | | | | |

HINLKVAGQDGSVVQFKIKRHTPLSKLMKAYCERQGLSMRQIRFRFDGQPINETDTPAQLEMEDEDTIDVFQ-----

YIKLKVIGQDSSEIHFKVKMTTHLKKLKESYAQRQGVPMNSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQ
| | | | | | | | | | | |

SUMO1

YIKLKVIGQDSSEIHFKVKMTTHLKKLKESYAQRQGVPMNSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQ
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(C) hydrophobic polar charged
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their cellular role.  Recent single-molecule force spectroscopy (SMFS) experiments have 1 

suggested that sequence changes and ligand binding both impact the stability and flexibility of 2 

ubiquitin family proteins when probed along a specific (N-C termini) direction60,61. In this section, 3 

we demonstrate that the sequence variations across ubiquitin family proteins which produce 4 

minimal changes in structure lead to significant changes in protein dynamics. To this end, we 5 

carried out 10 x 1 s NVT simulations each for solvated SUMO1 and SUMO2 using the same 6 

protocol as that for Ub (sec 5.3 in Methods). 7 

As described in the previous sections, we aligned the MD trajectories of the Ub and the 8 

SUMO proteins at the same initial equilibrated phase space point and monitored the heavy atom 9 

<𝜎𝐶𝑉𝐶𝐹
2 > and SDCVCF  over the s timescale (Figure 5A and Fig S14). We find that the overall 10 

heavy atom SUMO1 CVCF is well-resolved and distinctly greater than that for Ub and SUMO2 11 

which show a large CVCF overlap. In contrast, the heavy atom CVCF of the conserved -grasp 12 

fold (structured segments excluding β4 as defined in Table S7 of ESI section S.8), show Ub to be 13 

distinctly less dynamic (lower CVCF) than the SUMO proteins (higher CVCFs which overlap) on 14 

s timescales (Fig. 5B). We further decomposed the structured region CVCF into backbone (Fig. 15 

5C) and sidechain (Fig. 5D) components. The CVCF of the protein backbone in the signature -16 

grasp topology is similar and indistinguishable for ubiquitin family proteins in terms of s protein 17 

dynamics. In stark contrast, the sidechain CVCF for the same -grasp topology cleanly 18 

 
Fig 5: Comparison of the flexibility of ubiquitin family proteins based on CVCF derived from 

10 independent s trajectories. We plot <𝜎𝐶𝑉𝐶𝐹
2 > and SDCVCF as a function of time across 10 

independent MD trajectories in panels A-D for different subsets of protein atoms. (A) Overall 

(heavy atom) CVCF, (B) Structured CVCF for heavy atoms in the structured -grasp region, 

(C) Structured backbone CVCF for backbone heavy atoms in the structured  -grasp region, 

(D) Structured sidechain CVCF for sidechain heavy atoms in the structured -grasp region.  

Plots of individual CVCF-traces for the set 10 trajectories of Ub and SUMO proteins are shown 

in the ESI Fig S14. Corresponding normalized CVCF trends in ESI Fig S15. 
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distinguishes Ub from SUMO proteins (Fig 5D). The trends shown in Fig 5B are preserved even 1 

when the CVCF is normalized with respect to number of atoms (ESI Fig. S15). A further 2 

examination (ESI Fig. S16) of CVCF trends from individual structured elements (β1, β2, β3, β5 3 

and α-helix) of Ub, SUMO2 and SUMO1 reveals that the dominant contributions to the structured 4 

region CVCF comes from the α-helix. In fact, the relative CVCF of individual secondary structure 5 

elements for ubiquitin family proteins vary, with only the α-helix and β2 motifs showing Ub to be 6 

less flexible than the SUMO proteins (ESI Fig. S16). To summarize, our CVCF analysis shows 7 

quantitatively that the poor sequence homology between Ub and SUMO proteins translates into 8 

distinctly different structured sidechain dynamics for these proteins. 9 

 10 

2.5 Protein-Protein Interactions with different Binding Partners Create Distinct Changes in 11 

Intrinsic Ub Dynamics    12 

Here we employ the CVCF analysis to investigate the extent to which Ub dynamics is 13 

modified by non-covalent interactions with other protein partners. To this end, we compared Ub 14 

dynamics in free form with that when bound to two protein partners (the UEV domain of TSG101 15 

and UBCH5A) which have distinct functional consequences. While the TSG101 UEV domain is 16 

a Ub recognition motif, recognizing ubiquitylated cargo, UBCH5A is an E2 ligase which attaches 17 

Ub to protein substrates. The Ub binding interface (Fig. 4A and 4B), RMSD changes, and solvent-18 

accessible surface area (SASA) changes upon complexation (ESI section S.8 Tables S8-S9) 19 

indicate similar modes of Ub binding for UBCH5A and UEV with minimal structural perturbation 20 

relative to free Ub. Binding to UBCH5A and UEV reduces Ub SASA by ~29% and ~38% 21 

respectively (ESI section S.8 Table S9). Ub backbone RMSD changes (< 0.6 Å) upon 22 

complexation are also less than 15% of differences among ubiquitin family proteins (ESI section 23 

S.8 Tables S9 and S10).  24 

 25 

Despite similar binding modes and negligible accompanying structural changes (Fig. 4), a 26 

CVCF analysis reveals distinct changes in Ub dynamics upon binding to UEV versus UBCH5A 27 

(Fig. 6). While the overall heavy atom dynamics of Ub distinctly reduces upon attachment to 28 
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UBCH5A (Fig. 6 A), it does not change upon binding to UEV (overlapping CVCF evolution in 1 

Fig 6 B). We next dissected the CVCF trends (Fig. 6 C-F) to examine the effect of UEV/UBCH5A 2 

attachment on the dynamics of interfacial (defined in ESI section S.14. Table S5) and non-3 

interfacial Ub heavy atoms. In Ub:UBCH5A, the dynamics of both interfacial and non-interfacial 4 

Ub atoms is distinctly lower than that of free Ub (Fig. 6C and 6E). In contrast, UEV binding 5 

induces very little change in the dynamics of Ub interfacial atoms and virtually no change in that 6 

for non-interfacial atoms (Fig. 6 D-F). The trends reported above are insensitive to variations in 7 

the definition of protein-protein interface (Fig. S17). Thus, UEV binding subtly changes 8 

equilibrium Ub dynamics only locally at the binding interface, while UBCH5A binding 9 

dramatically changes Ub dynamics globally throughout the protein. Notably, both dynamical 10 

responses in Ub to UEV and UBCH5A binding occur with minimal perturbation to Ub structure 11 

and compactness as indicated above.  12 

 
Fig 6: Ub <𝜎𝐶𝑉𝐶𝐹

2 > and SDCVCF changes upon binding to protein partners: (A-B) Overall (heavy 

atom) CVCF for free Ub, Ub:UBCH5A and Ub:UEV,  and (C-F) CVCF of Ub heavy atoms at 

(interfacial regions) and away (non-interfacial regions) from the binding interface in  

Ub:UBCH5A and Ub:UEV complexes. Panels A-F also show the <𝜎𝐶𝑉𝐶𝐹
2 > and SDCVCF  of the 

corresponding regions in free Ub (red). To generate the data shown, Ub atoms within 5.4 Å of 

the protein partner were considered to be part of the interfacial region (data for other cut-offs 

in ESI sec. S.5). (G) Normalized (per atom) contribution of interfacial Ub atoms to top 100 

lowest frequency PC modes from 10 independent s trajectories of free Ub. We plot 

contributions of interfacial atoms which are distinct (𝜒𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝐷

) in the UBCH5A and UEV 

complexes (sec S.8 Table S11). Corresponding plots for all interface atoms and for different 

interface definitions by varying the contact cutoff are shown in ESI Fig. S17 and Fig. S18  
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 1 

We hypothesized that the local versus global extent of changes in protein dynamics created 2 

upon binding should be determined by how well connected the binding interface is to the rest of 3 

the protein structure. To validate this hypothesis, we computed the contribution of the Ub interface 4 

(𝑁𝑜𝑟𝑚 𝜒𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝐷  , normalized with respect to number of atoms) with UEV/UBCH5A to the PC 5 

modes captured in s trajectories of free Ub (Fig. 6G and Fig. S18 of ESI). Our rationale is that 6 

protein atoms with global (long range) connectivity in the protein scaffold should also show 7 

significant contributions to the slowest (largest variance) PC modes of free Ub. Indeed, we find 8 

that the interface of Ub with UBCH5A is much better connected to the rest of the protein fold, 9 

showing larger projections on the global PC modes of free Ub, relative to the interface specific to 10 

UEV (Fig. 6G). Thus, Ub dynamics changes upon binding to UEV are expected to be more 11 

localized to the interface relative to that upon binding to UBCH5A. The trends in 𝑁𝑜𝑟𝑚 𝜒𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝐷  12 

remain unchanged by variations in the definition of protein-protein  interface (Fig. S18 of ESI).     13 

   14 

3. Discussion  15 

The ability of techniques such as MD simulations to quantitatively describe protein dynamics 16 

is inherently linked to how well they sample the underlying PES. In this regard, connecting metrics 17 

which assess sampling convergence to features of the underlying PES is useful. Further, it is 18 

desirable that such metrics be free of parameters extrinsic to the dynamical system as they impose 19 

constraints on the interpretation of the data. For instance, metrics such as Nc, Sc, Oconf, and Odens 20 

depend on the cut-off radius r used for RMSD-based clustering of protein structures. Trends in 21 

these metrics are sensitive to the choice of r (sec 2.3), which remains a system unknown30. The 22 

preceding sections showed that the CVCF is a parameter free dynamical metric which can be 23 

connected to features of the underlying PES. We have shown using model PES (sec. 2.1-2.3) that 24 

the plateaus (constant values) of a CVCF trace captured as a function of the sampling variable 25 

arise when Boltzmann statistics for populating the PES is complete indicating that equilibrium 26 

sampling (either LE or GE) has been attained. The CVCF values at such plateaus can be effectively 27 

related to the effective curvatures of the underlying PES. We have showed (sec 2.1) that for model 28 

PES, the CVCF contains the same information content as the cluster entropy measure Sc proposed 29 

by Sawle and Ghosh for assessing sampling in MD simulations if clusters definitions were 30 



21 

 

consistent with the minima in the PES (solid vs. dashed line in Fig. S4 D).29 Indeed, the CVCF 1 

values at plateaus should be viewed as a measure of system entropy captured after complete 2 

sampling of a section of PES is achieved. The correspondence is formally equivalent for the case 3 

of a PES with a single harmonic well, in which case the CVCF value obtained for a particle`s 4 

position coordinate after attaining equilibrium represents the width of the probability distribution 5 

of finding the particle in the well. Further, the CVCF is completely determined in terms of system 6 

properties and has no tunable parameters which makes it attractive as a transferrable and objective 7 

metric to assess the sampling of proteins. Using multiple trajectories, as assessment of the 8 

ruggedness of a PES can be obtained in terms of the heterogeneity observed in CVCF traces of 9 

trajectories aligned at their initial phase space point (sec 2.2). Furthermore, such collective CVCF 10 

traces can distinguish between two PES even when the sampling is far from GE provided the 11 

differences in their curvatures are resolved over the ruggedness of the PES (sec 2.2).  Thus, the 12 

CVCF-based analytical framework presented here can be used to assess differences in the 13 

dynamics of proteins/protein domains captured in MD simulations with an ability to easily tune 14 

the resolution and the scope of the analysis by altering the subsets of atoms.  These features are 15 

demonstrated by an explicit application of the CVCF based analysis to the ubiquitin family 16 

proteins to show how these proteins dynamically differ from each other and as they interact with 17 

protein partners.             18 

The  variance of atomic coordinate is a very conventional and commonly used measure for the 19 

analysis of protein dynamics and it is useful to compare the CVCF-based analysis with the 20 

routinely used mean-square-fluctuation (MSF) analysis of protein trajectories48. Essentially, the 21 

CVCF at a single time-point T in the trace of an MD trajectory is the same as the mean-square-22 

fluctuation for a given subset of atoms (𝜎𝐶𝑉𝐶𝐹
2 (t=T) = MSF(T)). However, the conventional MSF 23 

analysis places no rigorous constraints on T, which as can severely limit the utility of this analysis. 24 

For instance, typically, the MSF analysis is carried out on a single trajectory of arbitrary length T, 25 

decided often by the length afforded by computational expense. Sometimes, an averaging is also 26 

carried out over fixed time windows over the trajectory where again the duration of the time 27 

windows is a free parameter41. In addition to producing results which are sensitive to choice of T, 28 

the former analysis completely disregards the heterogeneity present in sampling the PES. The latter 29 

analysis, on the other hand averages over dynamics occurring on multiple timescales with 30 

ambiguous weights unless a firm link is established between the time windows and equilibrium 31 
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sampling. The CVCF analysis on the other hand indicates clear sections of trajectory, plateaus for 1 

single protein trajectories or durations of well resolved dynamics for multiple proteins, where a 2 

MSF analysis may add further meaningful value in terms of dissecting the information. We 3 

demonstrate this feature by a MSF analysis on trajectories of ubiquitin family proteins (Fig. S19- 4 

S21 of ESI). As in the case of conventional MSF analysis, we present the fluctuations as a function 5 

of residue number.  However, unlike the typical implementation which is C atom based, we 6 

present residue fluctuations which are summed over all atoms pertaining to the subset used in 7 

CVCF analysis (sec. 5.4 Methods). Further each set of fluctuations are presented at specific time-8 

points along the microsecond trajectories which provide further information on the dynamics of 9 

ubiquitin family proteins as discussed below. We propose this analytical framework as a 10 

systematic way to present MSF data for proteins.  11 

  Our CVCF–based analysis clearly establishes protein dynamics as a molecular metric 12 

which is exquisitely sensitive to both the sequence and the complexation state of ubiquitin family 13 

proteins. The data presented show that changes in protein flexibility can arise directly from 14 

changes in sequence rather than from differences of the conserved 3D protein fold.  A structural 15 

superposition of Ub and SUMO backbones (Fig. 4 and ESI section S.8 Table S10) reveals that the 16 

conserved -grasp fold in the proteins is similar but not identical (RMSD ~3.4 Å). However, these 17 

differences do not lead to distinct backbone flexibilities for the structured regions of Ub and 18 

SUMO (Fig. 5C). Rather differences in sidechain heavy atom flexibilities from the same structured 19 

region are able to cleanly resolve ubiquitin family proteins (Fig. 5D). Thus, the different sequences 20 

of these proteins provide a means to distinguish protein flexibility through the sidechain packing 21 

while preserving the overall secondary structure and tertiary fold which marks their cellular 22 

function as molecular tags.   23 

 Our results also provide clear evidence of the changes in intrinsic protein flexibility during 24 

protein-protein interactions which can be either local or non-local depending on the binding 25 

partner. In this study we have examined distinct protein-protein interactions (Fig. 4A) for Ub with 26 

activating enzymes (UBCH5A) and with protein domains which sense these molecular tags 27 

(UEV). The UEV domain of human TSG101 is a Ub binding domain (UBD) involved in both 28 

HIV-1 budding and vacuolar protein sorting (VPS) pathways where it interacts with Ub tagged 29 

proteins as they are sorted into vesicles that bud into multivesicular bodies (MVBs)62. Our CVCF 30 
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analysis (Fig. 6) shows that effect of UEV attachment on Ub flexibility is subtle and only restricted 1 

to binding region (Fig 5B-F). Indeed, UBD-Ub interactions are typically very weak (𝐾𝑑~10-500 2 

µM)63,64 serving to facilitate reversible UBD-Ub interactions and to prevent non-specific 3 

associations with the high cellular concentration (~10 µM for mammalian cells) of free Ub63,65. In 4 

contrast, for Ub interactions with the E2 enzyme UBCH5A which creates poly-Ub chains,66 our 5 

CVCF analysis reveals dramatic decreases in Ub flexibility globally over the entire protein 6 

structure (Fig 6A-E). Previously, Wlodarski and Zagrovic have carried out a comparative 7 

analysis67 between X-ray structures of Ub bound to protein partners and a reference 8 

“conformationally selected” free Ub structure from an NMR RDC-refined ensemble. The 9 

researchers found that the average RMSD of Ub atoms near the binding interface was larger than 10 

that of atoms in the rest of the protein which implies that the conformational changes were local 11 

to the binding interface67. In contrast, here we find both subtle local and dramatic global changes 12 

in intrinsic Ub dynamics, with negligible changes in protein backbone, upon binding with UEV 13 

and UBCH5A. We find that the Ub binding interface with the recognition motif UEV is weakly 14 

coupled (Fig 6G) with respect to the rest of the protein thereby influencing only Ub flexibility 15 

locally. In contrast, the Ub binding interface with the activating enzyme UBCH5A is strongly 16 

coupled to the rest of the protein structure leading to a global decrease in Ub flexibility.  17 

 18 

4. Conclusions 19 

We have introduced CVCF as a dynamical metric to monitor and assess sampling in MD 20 

simulations. Features of the protein CVCF-trace when monitored along a trajectory can provide 21 

an assessment of equilibrium sampling of a section of the PES or discovery of new regions of the 22 

PES. The CVCF-trace analysis depends only on system properties and does not rely on any tunable 23 

external parameters which makes it useful as an objective metric to study protein dynamics 24 

captured in MD simulations. Further, the resolution of the CVCF-based analytical framework can 25 

be easily tuned to assess comparative dynamics of arbitrary subsets of atoms within proteins and 26 

protein complexes. These features are demonstrated by an explicit application of the CVCF based 27 

analysis to the ubiquitin family proteins to show how these proteins dynamically differ from each 28 

other and as they interact with protein partners. Application of the CVCF-analysis on structurally 29 

homologous ubiquitin family proteins reveals that Ub differs from its SUMO homologs in terms 30 
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of sidechain dynamics arising from the structured -grasp region. Binding of Ub to two 1 

functionally distinct protein partners with very similar binding modes was found to produce very 2 

different changes in Ub dynamics as revealed by the CVCF-analysis.           3 

5. Methods 4 

5.1 Monte Carlo Simulations: For different model PES (Fig. 1 and 2), we used the Metropolis-5 

Hasting algorithm68,69 to sample the coordinate of a single particle starting with a well-defined 6 

initial coordinate within a minima in the landscape. At every MC step, the coordinates were 7 

changed randomly within a range corresponding to the MC step size. The energy difference 8 

between the new and old positions were compared using a Boltzmann criterion to either accept or 9 

reject the move. If the new energy of the particle (Eˊ) was lower than that at the old position (E) 10 

then the move was accepted otherwise the probability (p) of move acceptance was calculated as: 11 

𝑝 =  𝑒 (𝐸
′ 𝐸)/𝑘𝐵𝑇                                                    (1) 12 

If this probability was higher than a random number between 0 and 1 then the move was accepted 13 

otherwise it was rejected. Details of different model PES considered and choice of MC step size 14 

and MC trajectory lengths are described below. Further details of specific MC implementations 15 

are presented in sec 2.2 of ESI 16 

5.2 Model energy landscapes:  We considered 5 different 1D and 2D model PES to demonstrate 17 

the features of CVCF. Here we only discuss the PES corresponding to the data shown in the main 18 

MS (Figs 1 and 2). Other landscapes and associated MC simulation parameters are described in 19 

sec. S.2 of ESI. For the 1-D 3 well energy landscape (Fig. 1A and sec S.2.2 of ESI) the PES has 20 

the form 21 

E(x)  =  − ∑ 𝑎𝑖 ∗ e
  (

x−𝑥𝑖
σ𝑖

)
2

3
𝑖=1           (2) 22 

where, 𝑎1 = 𝑎2 = 10 𝑘𝐵𝑇, 𝑥1 = -5 Å, 𝑥2 = 5 Å, σ1= σ2 = √16  Å, 𝑎3 = 8 𝑘𝐵𝑇, 𝑥3 = 20 Å, σ3 = √16  23 

Å. Energy wells 1 and 2 were relatively closer (10 Å) and separated by small activation barrier (~ 24 

6 𝑘𝐵𝑇).  Energy well 3 is placed at x = 20 Å and separated by 15 Å from well 2 and a large 25 

activation barrier of ~ 9.5 𝑘𝐵𝑇. Hence, for these parameters, the transitions between energy wells 26 

1 and 2 are expected to be faster than that between wells 2 and 3. This PES was sampled with a 27 

MC step size of 0.1 Å which is ~70 times smaller than the width position distribution function of 28 

the particle in each well (sec. S.2.1 of ESI). Sampling was restricted to lie between x = - 9 Å and 29 
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x =+ 27 Å in order to avoid random diffusion of the particle on the flat surface away from the 1 

minima. A total of 5 independent MC simulations were carried out for this PES all starting from 2 

identical initial position of the particle at x = 5 Å (energy well 2). 3 

For the 1-D multi-well rugged energy landscape (Fig. 2A and sec S.2.4 of ESI) the PES has the 4 

form  5 

E(x)  =  − ∑ 𝑎𝑖 ∗ e
  (

x−𝑥𝑖
σ𝑖

)
2

7
𝑖=1                         (3) 6 

where, 𝑎𝑖 = (10 −
1

2
𝑘𝑥𝑖

2 ) 𝑘𝐵𝑇 and 𝜎𝑖 = 3 Å  for i=1-7 with 𝑥1 = 15 Å, 𝑥2 = 10 Å, 𝑥3 = 5 Å,  𝑥4 7 

= 0 Å, 𝑥5 = -15 Å, 𝑥6 = -10 Å, 𝑥7 = -5 Å,  8 

The PES has multiple (total 7) inverted Gaussian wells embedded within a harmonic surface. 9 

Hence, such a landscape has features of local ruggedness controlled by the width of the Gaussian 10 

wells and a global curvature tuned by the spring constant k of the harmonic surface. Here we varied 11 

only the global curvatures by changing k and generated multiple surfaces for our MC simulations. 12 

In all cases, an MC step size of 0.1 Å was used and 5 independent runs of 108  steps were carried 13 

out. The  𝜎𝐶𝑉𝐶𝐹
2  values obtained at 108 MC steps reproduces the global curvature of harmonic 14 

parabola (sec s.14 Table-S5). Sampling was restricted between - 20 Å to + 20 Å in order to avoid 15 

random diffusion of the particle on the flat surface away from the minimum.        16 

5.3 Molecular Dynamics Simulations: All atom Molecular Dynamics (MD) simulations were 17 

carried out using GROMACS version 5.070 and the CHARMM36 force field71,72 with an explicit 18 

solvent TIP3P water model70. Initial coordinates for Ub and SUMO2 proteins were from crystal 19 

structures in the protein data bank: PDB code: 1UBQ and 1WM3 respectively. As no apo SUMO1 20 

crystal structure was available, we derived SUMO1 coordinates from the crystal structure of the 21 

protein in complex with a peptide (chain A from PDB code: 4WJQ). For the Ub:UEV complex we 22 

used crystal structure coordinates (Chains A and B of PDB code: 1S1Q) after mutating 23 

Selenomethionine residues in both chains to methionine. Finally, for Ub:UBCH5A, we used 24 

crystal structure coordinates of a complex (Chains A and C of PDB code: 3PTF) which contains 2 25 

Ub and 2 UBCH5A molecules non-covalently bound in the unit cell. Although the second 26 

UBCH5A molecule (chain B) also makes contact with the Ub molecule considered, this interaction 27 

was found to be weak and to break quickly in short preliminary MD runs. We simulated the 76 28 

residue sequence (1-76) for Ub and the core 72 residue sequence for SUMO proteins (SUMO1: 29 
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21-92 and SUMO2:17-88). We added hydrogen atoms to the protein structures and immersed them 1 

in a cubic solvent box with 10 Å padding (minimum distance between protein surface atoms and 2 

solvent box edge) along the box edges. The system was then neutralized (by adding Na+ and Cl- 3 

ions) and the coordinates of solvent atoms, ions and hydrogens were optimized (protein heavy 4 

atoms coordinates were fixed) using the steepest descent algorithm until the maximum force on 5 

atoms was less than 1000 kJ/mol/nm. Periodic boundary condition (PBC) were employed with the 6 

Particle Mesh Ewald (PME) method for long range electrostatic interactions73. A 1.0 nm short 7 

range van der Waals cutoff and 1.0 nm short range electrostatic cutoff were used in the subsequent 8 

equilibration and simulation steps. During equilibration, we first optimized the solvated protein 9 

systems, while keeping protein heavy atoms fixed, for 10000 steps using the steepest descent 10 

algorithm. Then the systems was equilibrated at 300 K temperature (heat equilibration) with 11 

protein heavy atoms fixed for 100 ps using the Nosé-Hoover74,75 thermostat with a 0.5 ps relaxation 12 

time constant. Optimization and heat equilibration were repeated again with harmonic constraints 13 

of 25 kcal/mol/Å2 on protein heavy atoms followed by NPT equilibration at temperature 300 K 14 

and Parrinello-Rahman76 isotropic pressure coupling (relaxation time constant 2.0 ps) at 1 bar 15 

pressure for 150 ps. The NPT equilibration step was repeated two more times with harmonic 16 

constraints of 10 kcal/mol/Å2 and 5 kcal/mol/Å2 on protein heavy atoms successively. Finally, 17 

unconstrained NPT simulations were performed for 1 ns. The solvated protein coordinates and 18 

velocities obtained at the end of this step were used to seed 10 independent μs NVT production 19 

runs for each of the 5 protein systems (Ub, SUMO1, SUMO2, Ub:UEV, and Ub:UBCH5A) with 20 

the aforementioned temperature coupling method. Production trajectories sampled coordinates 21 

every 20 ps and were analyzed using VMD 1.9.177.  22 

 23 

5.4 Calculation of CVCF and Quasi-Harmonic Spring Constants: The Cumulative Variance 24 

of Coordinate Fluctuations (CVCF) is an intuitive descriptor of protein dynamics which is highly 25 

sensitive to the underlying PES sampled by a protein in MD trajectories. The MD simulation 26 

trajectory provides coordinate of protein atoms as a function of time (snapshots/frames).  If 𝑥𝑖(𝑡) 27 

is ith atomic coordinate at snapshot t along the MD trajectory, then the cumulative variance of 28 

coordinate fluctuations (CVCF) sampled in TS snapshots/frames in a trajectory is defined as: 29 

                      𝜎𝐶𝑉𝐶𝐹
2 (𝑇𝑆) = ∑

∑ (𝑥𝑖(𝑡) 〈𝑥𝑖(𝑡)〉)
2𝑇𝑆

𝑡=1

𝑇𝑆 1

𝑁
𝑖=1  =  ∑

1

𝑇𝑠 1
∑ (𝑥𝑖 − 

1

𝑇𝑠
∑ 𝑥𝑖
𝑇𝑠
𝑖=1 )

2
𝑇𝑠
𝑖=1

𝑁
𝑖=1            (4) 30 
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where the index i runs over a subset of N protein atoms of interest (for instance subsets of heavy, 1 

backbone, and sidechain atoms, or interfacial and non-interfacial atoms in protein complexes) from 2 

the core 72 residue sequence of ubiquitin family proteins. For the two Ub complexes (Ub:UEV 3 

and Ub:UBCH5A), while atomistic simulations of entire complexes were carried out, the CVCF 4 

analysis was restricted to Ub atoms (residues 1-72 discarding the last 4 C terminal tail residues). 5 

For all protein systems (Fig. 1A) in the study, the CVCF was computed for specific subset of atoms 6 

as a function of TS (sampling time ranging from 100ns to 1 µs). While applying Eqn. 1 for a given 7 

subset of atoms, rigid body translation and rotational motions were eliminated by aligning the 8 

coordinates of the subset in each frame of the trajectory to their positions in the first frame (t=0 9 

timepoint). If the subsets of atoms for which CVCF is computed differs from that for alignment of 10 

frames in the MD trajectory, the resulting variance may include rigid body translations and 11 

rotation. While such inconsistent choices of alignment and analysis set do not seem to significantly 12 

impact the results presented here for ubiquitin family proteins (Fig S22-S23), it may be an issue 13 

for flexible protein systems. In the standard CVCF-trace analysis presented here, we plot average 14 

CVCF values along with their standard deviation from 10 independent µs timescale MD simulation 15 

trajectories (Fig 5A-D, and 6A-F). In the case of MC simulations of model PES (Figs 2 and 3) the 16 

CVCF simply represents the variance of a single coordinate (see ESI section S.2 for details).  17 

The thermal fluctuations of a given subset of protein atoms along an MD trajectory can be 18 

described in terms of a single effective quasi-harmonic spring according to the equipartition 19 

theorem. Quasi-harmonic spring constants can be derived from the average CVCF values across 20 

multiple trajectories at specified time-points where the sampling was locally complete (dotted 21 

black lines at CVCF plateaus in Fig 3A).   22 

                                                         𝑘𝑎𝑣𝑔(𝑇𝑆) =  
𝑘𝐵𝑇

〈𝜎𝐶𝑉𝐶𝐹
2 (𝑇𝑆)〉

  (5) 23 

 Where T is temperature (set to 300 K in this study) and 𝑘𝐵 is the Boltzmann constant. The average 24 

variances 〈𝜎𝐶𝑉𝐶𝐹
2 (𝑇𝑆)〉 can be computed across multiple independent µs trajectories at time-points 25 

𝑇𝑆  where consensus LE is attained (black dotted vertical lines in Fig. 3A for Ub). Trajectories for 26 

our protein systems showing least standard deviation of CVCF values (among the set of 10 27 

trajectories) which sample the most stable sections of the PES accessible in our simulations are 28 

highlighted in various figures (Trajectory i in Fig 3A and thick purple lines in ESI Fig. S14).  29 

 30 
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5.5 Cluster analysis: For MC sampling of model 3 well PES in Fig. 1A, we demarcated 3 clusters 1 

associated with energy wells 1, 2 and 3. The coordinate evolution in each MC trajectory was 2 

examined and population of each energy well was counted (criteria: x lies within 2 Å around the 3 

energy minima) as a function of increasing MC steps cumulatively. The cluster entropy 𝑆𝐶 =4 

∑ 𝑝𝑖log (𝑝𝑖)
𝑁𝐶
𝑖=1  was computed as a function of MC steps (TS) where 𝑁𝐶 is the total number of 5 

clusters (here 3) and 𝑝𝑖 is the probability of the ith cluster located by sampling up to TS  steps29. In 6 

case of Ub MD trajectories, we performed the computation of 𝑁𝐶 and 𝑆𝐶 using a python code 7 

provided by Nemec and Hoffman30 considering protein heavy backbone atoms (no hydrogens) 8 

only. For each trajectory, we carried out cluster analysis with different values of the RMSD 9 

clustering threshold parameter (r) and the GLOBAL partitioning scheme. Here, two structures 10 

belong to the same cluster if their RMSD is less than r. For each trajectory, we carried out cluster 11 

analysis at four different value of r : 1.5 Å, 1.7 Å, 1.9 Å and 2.1 Å. In addition to 𝑁𝐶, and 𝑆𝐶, we 12 

also computed the conformational overlap (𝑂𝑐𝑜𝑛𝑓)30 and density overlap (𝑂𝑑𝑒𝑛𝑠)
30 using the same 13 

python code provided by Nemec and Hoffman30. Using this code, for every (reference) trajectory 14 

frame ĸ ∈ K the number of structures (𝑒𝑟,ĸ𝑙) of a certain trajectory l ∈ L within the r-neighbourhood 15 

was monitored in EventCurves. Effectively, the events 𝑒𝑟,ĸ𝑙 count the number of neighbours for 16 

the reference frames ĸ. With r as the threshold with RMSD(ĸ, x) ≤ r , which is used to count the 17 

number of events, which have an RMSD value smaller than or equal to r between the reference 18 

trajectory frame ĸ and any other simulation frame x of the corresponding trajectory l. 19 

𝑂𝑐𝑜𝑛𝑓(𝐾, 𝐿;  𝑟) provide information on the number of reference frames ĸ ∈ K for which one can 20 

find at least one occurrence of all trajectories, normalized by the total number of reference frames 21 

𝑛ĸ (𝑂𝑐𝑜𝑛𝑓 ∈ [0, 1]).       22 

                 𝑂𝑐𝑜𝑛𝑓(𝐾, 𝐿; 𝑟) =  
1

𝑛ĸ
∑ 𝛿(𝛱l ∈ L𝑒𝑟,ĸ𝑙)ĸ ∈ K  ,   δ(x) =   

1 𝑓𝑜𝑟 𝑥 ≠ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                           (6)        23 

𝑂𝑑𝑒𝑛𝑠(𝐾, 𝐿;  𝑟) estimates how similar the probability density is for the r-neighbourhoods of 24 

different reference frames for different trajectories in the set L  with 𝑂𝑑𝑒𝑛𝑠 ∈ [0, 1]. This metric 25 

can be defined by the average of the ratio between minimal and maximal events (𝑒𝑟,ĸ𝑙) over each 26 

reference frame ĸ for each reference trajectory k ∈ K separately. The value for all reference 27 

trajectories K is then the sum over all overlap values for all individual reference trajectories k ∈ K 28 

normalized by the number of reference trajectories 𝑛ĸ.  29 
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                                      𝑂𝑑𝑒𝑛𝑠(𝐾, 𝐿; 𝑟) =  
1

𝑛ĸ
∑ 〈

min {𝑒𝑟,𝑘𝑙 ; l ∈ L}

max{𝑒𝑟,𝑘𝑙 ; l ∈ L}
〉𝑘ĸ ∈ K                                     (7) 1 

 For the set of 10 trajectories L the  𝑂𝑐𝑜𝑛𝑓(𝐿, 𝐿, 𝑟) and 𝑂𝑑𝑒𝑛𝑠(𝐿, 𝐿, 𝑟) measures were computed for 2 

five r values of 1.1, 1.3, 1.5 Å, 1.7 Å and 1.9 Å and for different durations of the sets of MD 3 

trajectories (ranging from 100 ns to 1 μs with an interval of 100 ns). Specifically, for a given time 4 

duration and r value, 𝑂𝑐𝑜𝑛𝑓 and 𝑂𝑑𝑒𝑛𝑠 were computed for all possible pairs ((
10
2
) = 45) of the set 5 

of 10 MD trajectories of Ub of the specified duration with averages and standard deviations 6 

computed across possible trajectory pairs.             7 

 8 

5.6 Principal Component Analysis: For an N atom system, Principal Component Analysis (PCA) 9 

yields a set of 3N-6 orthogonal principal components (PC eigenvectors) and their variances (the 10 

eigenvalues) by diagonalizing the 3Nx3N variance-covariance matrix of atomic coordinates with 11 

elements 𝜎𝑖𝑗
2(𝑇𝑆) =

∑ (𝑟𝑖(𝑡) 〈𝑟𝑖(𝑡)〉)(𝑟𝑗(𝑡) 〈𝑟𝑗(𝑡)〉)
𝑇𝑆
𝑡=1

𝑇𝑆 1
 78,79. Here < > indicates an average over the MD 12 

trajectory and    is the position vector of the ith protein atom. The set of PC eigenvectors  = {1, 13 

2 …. 3N-6} were sorted in descending order of their corresponding eigenvalues (variances i) : 1 14 

> 2 >……3N-6. We carried out PCA of protein heavy (non-hydrogen) atom fluctuations sampled 15 

in 10 independent 1 s trajectories for bound Ub (Ub:UEV and Ub:UBCH5A). Only protein 16 

residues 1-72 from the conserved ubiquitin fold were included in the PCA. We used PCA of free 17 

Ub trajectories to estimate the connectivity of interfacial amino acid heavy atoms of Ub in the 18 

complexes Ub:UEV and Ub:UBCH5A to the rest of the protein matrix. Interfacial amino acids 19 

(lists provided in ESI sec S.8 Table S11) of Ub were defined in terms of a distance cut-off (ranging 20 

from 3.4-7.4 Å) for sidechain-sidechain contacts in the complex crystal structures. We define the 21 

connectivity of Ub atoms interfacing with protein partners (UBCH5A and UEV) to the rest of the 22 

protein structure in terms of their contributions to the slow PC modes from MD trajectories of free 23 

Ub which is obtained as follows: For a given MD trajectory of a N atom protein system an 24 

eigenvector/PC mode can be represented as an N-dimensional vector  
𝑖
= (

𝑖1
 
𝑖2

 ……
𝑖𝑁

), 25 

where 
𝑖𝑗

 is the jth atomic coefficient in PC eigenvector i. We determined the total contribution of 26 

the Ub interfacial atoms in complexes to the ith PC mode as 𝜒𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑖) = ∑𝑘𝑖
2

, where the 27 

summation index k runs over the sets of interfacial atoms. In our calculations, these we considered 28 
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the normalized (with respect to number of atoms) contributions of 𝜒𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝐷  from sets of 1 

interfacial atoms (highlighted in ESI section S.8 Table S11) which are distinct for complexes of 2 

ubiquitin with UBCH5A and UEV (Fig. 6G and ESI Fig. S18).  3 
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