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The efficient selection of representative configurations that are used in high-level elec-

tronic structure calculations needed for the development of many-body molecular models

poses a challenge to current data-driven approaches to molecular simulations. Here, we

introduce an active learning (AL) framework for generating training sets corresponding to

individual many-body contributions to the energy of a N-body system, which are required

for the development of MB-nrg potential energy functions (PEFs). Our AL framework is

based on uncertainty and error estimation, and uses Gaussian process regression (GPR)

to identify the most relevant configurations that are needed for an accurate representation

of the energy landscape of the molecular system under exam. Taking the Cs+–water sys-

tem as a case study, we demonstrate that the application of our AL framework results in

significantly smaller training sets than previously used in the development of the original

MB-nrg PEF, without loss of accuracy. Considering the computational cost associated with

high-level electronic structure calculations for training set configurations, our AL frame-

work is particularly well-suited to the development of many-body PEFs, with chemical and

spectroscopic accuracy, for molecular simulations from the gas to condensed phase.
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I. INTRODUCTION

Computer simulations provide fundamental insights into the properties and behavior of molec-

ular systems.1–3 Since both accuracy and predictive ability of a molecular model are primarily

limited by the computational cost associated with the model itself, developing cost-effective sim-

ulation approaches is key to studying increasingly more complex systems. It has recently be-

come possible to perform molecular dynamics (MD) simulations of aqueous systems, from the

gas to the condensed phase, retaining high accuracy in the description of the underlying molecular

interactions.4 This is achieved by employing many-body potential energy functions (PEFs) derived

from high-level electronic structure data that are carried out on selected molecular configurations

representative of the corresponding global many-body potential energy surfaces (PESs).5–13 An

optimal approach to the development of many-body PEFs would require identifying a minimal

pool of configurations that can guarantee an accurate description of the system under exam and, at

the same time, computation time is not lost on calculations on redundant configurations describing

similar regions of the many-body PES.

Efficient sampling of the configuration space is challenging due to the high dimensionality of

the associated molecular configurations. In principle, a regular grid search would provide a homo-

geneous representation of all regions of the many-body PES. This approach, however, becomes

unfeasible as the number of degrees of freedom increases. To reduce the size of the configuration

space, it is common practice in the development of many-body PEFs to apply biases on the rel-

ative translations and rotations of the individual molecular species constituting the system under

exam.9,10,12,13 Although of practical use, this approach can lead to redundant training sets contain-

ing several molecular configurations representing similar regions of the target many-body PES.

While algorithms designed to remove geometrically similar configurations exist, it is not guaran-

teed that screening based on structural similarity is sufficient for identifying only configurations

necessary for a faithful description of the target many-body PES.

The success of machine learning (ML) in many areas of molecular sciences (e.g., see Refs. 14–

29) makes it a promising tool for efficiently screening large pools of molecular configurations for

the development of many-body PEFs. Most common ML approaches rely on supervised learning,

which, however, requires large set of known labeled data to train a model capable to accurately

predict the labels of previously unseen data.30–32 Active learning (AL) provides a potential solution

to the need for constructing beforehand large training sets by interactively generating training
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configurations at runtime. AL schemes are thus particularly appealing when using large training

sets is prohibitively expensive either because of the high cost associated with determining the data

labels or because of the high computational cost of the training stage.

In this study, we investigate the application of AL to generating representative training sets of

molecular configurations necessary for the development of many-body PEFs, with a specific focus

on two-body (2B) and three-body (3B) contributions to the Cs+–water interaction energies. Our

AL framework consists of a finite pool of molecular configurations (i.e., Cs+(H2O) dimers for

the 2B pool and Cs+(H2O)2 trimers for the 3B pool) whose energies are unknown, a training set

with configurations selected from the pool, a predictive model (predictor) thirsting for the training

set, and a learner that actively selects configurations from the pool. We assume that the size of

the pool is beyond awareness of the learner and only a subset of the configurations (referred to

as candidates) in the pool are available to the learner at each iteration. Through the application

of our AL approach, we demonstrate that the size of the original pool of configurations used to

develop the Cs+–water MB-nrg PEF can be greatly reduced without compromising the accuracy

with which the new MB-nrg PEFs describe Cs+–water interactions, from small clusters to aqueous

solutions.

II. METHODS

A. MB-nrg potential energy functions

The total energy of a system containing N (atomic or molecular) monomers (“bodies"), can be

rigorously expressed through the many-body expansion (MBE) of the energy,33

VN =
N

∑
i

V 1B
i +

N

∑
i< j

V 2B
i j +

N

∑
i< j<k

V 3B
i jk + . . .+V NB (1)

where the V 1B
i corresponds to the energy required to distort monomer i from its equilibrium ge-

ometry. Therefore, V 1B(i) = 0 for atomic monomers, and V 1B(i) = E(i)−Eeq(i) for molecular

monomers, where E(i) and Eeq(i) are the energies of monomer i in distorted and equilibrium

geometries, respectively. All higher n-body (nB) interaction terms (V nB) in Eq. II A are defined

recursively through
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V nB(1, . . . ,n) = En(1, . . . ,n)−∑
i

V 1B(i)−∑
i< j

V 2B(i, j)− . . .

− ∑
i< j<···<n−1

V (n−1)B(i, j, . . . ,(n−1))
(2)

Within the MB-nrg framework, the water–water interactions are described by the MB-pol

PEF,9–11 which has been shown to correctly reproduce the properties of water34,35 from small

clusters in the gas phase,36–48 to bulk water,49–52 the air/water interface,53–56 and ice.57–59 The

interactions between Cs+ ions and water molecules are described through the MBE of Eq. II A.

Specifically, the Cs+–water MB-nrg PEF includes explicit 2B Cs+–H2O and 3B Cs+–(H2O)2

terms, with all higher-order interactions being implicitly taken into account through a classical

many-body polarization term.13,60 The 2B term includes three contributions,

V 2B =V 2B
short +V 2B

T T M +V 2B
disp (3)

where V 2B
disp is the 2B dispersion energy, and V 2B

T T M is the 2B classical polarization contribution

described by a Thole-type model.61 V 2B
short in Eq. 3 describes 2B short-range contributions repre-

sented by a 5th-degree permutationally invariant polynomial (PIP) in variables that are functions

of the distances between the Cs+ ion and each of the six sites of the MB-pol water molecule.13

Similarly, the 3B term of the Cs+–water MB-nrg PEF includes two contributions,

V 3B =V 3B
short +V 3B

T T M (4)

where V 3B
T T M is the 3B classical polarization contribution described by the same Thole-type model

as in V 2B
T T M, and V 3B

short describes 3B short-range contributions that are represented by a 4th-degree

PIP in variables that are functions of the same distances as in V 2B
short .

60 The coefficients of both

2B and 3B PIPs were optimized using Tikhonov regression (also known as ridge regression)62 to

reproduce reference interaction energies obtained from high-level electronic structure calculations.

B. Interaction energies, fitting procedure, and MD simulations

The 2B and 3B reference energies were taken from Refs. 13 and 60 where MOLPRO (ver-

sion 2015.1) was used to carry out electronic structure calculations at the coupled cluster level of

theory using single, double and perturbative triple excitations, i.e., CCSD(T), the “gold standard"

for chemical accuracy.63 In Ref. 13, the 2B CCSD(T) energies were calculated in the complete
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basis set (CBS) limit that was achieved through a two-point extrapolation64,65 between the values

obtained with the correlation-consistent polarized valence triple zeta (aug-cc-pVTZ for H,O, and

cc-pwCVTZ for Cs+) and quadruple zeta (aug-cc-pVQZ for H,O, and cc-pwCVQZ for Cs+) basis

sets.66–69 In Ref. 60, the 3B CCSD(T) energies were calculated using the aug-cc-pVTZ basis set

for the O and H atoms, and the cc-pwCVTZ basis set for Cs+, and were corrected for the basis set

superposition error using the counterpoise method.70 In both 2B and 3B energy calculations, the

ECP46MDF pseudopotential was used for the core electrons of Cs+.71

The original 2B training set consisted of Cs+(H2O) dimer configurations generated on a uni-

form spherical grid, with the Cs+–O distance in the 1.6 - 8 Å range.13 For the present study, dimer

configurations with interaction energies larger than 100 kcal/mol were removed since they were

found to be not necessary for representing Cs+(H2O) configurations sampled in MD simulations

at ambient conditions. The 2B pool was then further reduced to 13525 dimer configurations after

randomly removing 1547 configurations for the 2B test set.

Due to the larger number of degrees of freedom, the original 3B training set was generated in

Ref. 60 by extracting Cs+(H2O)2 trimer configurations from MD simulations of a single Cs+ ion

in liquid water at 298.15 K. For the present study, the original 3B set of Ref. 60 was reduced to a

3B pool of 34441 configurations after randomly removing 4480 configurations for the 3B test set.

The MD simulations presented in Section III D were carried out in the isobaric-isothermal

(NPT) ensemble for a box containing a single Cs+ ion and 277 H2O molecules. The equations

of motion were propagated using the velocity-Verlet algorithm with a timestep δ t of 0.2 fs. The

temperature of 298.15 K was controlled by Nosé-Hoover chains of 4 thermostats attached to each

degree of freedom while the pressure of 1.0 atm was controlled following the algorithm described

in Ref. 72. All MD simulations were carried out using an in-house software based on DL_POLY

2.0.73

C. Active learning

An AL framework based on uncertainty and error estimation was used to generate optimal 2B

and 3B training sets with the goal of reducing the number of dimers and trimers necessary to de-

velop Cs+–water MB-nrg PEF, without compromising accuracy. The major difficulty faced by the

active learner in generating optimal 2B and 3B training sets is represented by the need to deter-

mine the relevance of candidate dimer and trimer configurations before knowing the associated
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2B and 3B energies.74 It is apparent that the more accurate the active learner is, the more precise

its assessment of a molecular configuration is. In addition, for efficiency purposes, the energy

estimation made by the learner should be computationally inexpensive compared to the energy

determination performed by the predictor.

In this context, Gaussian process regression (GPR) provides a general approach to assessing the

relevance of a candidate configuration by accurately estimating the associated energy.75 GPR im-

plies a correlation between the unknown energies of the candidate configurations and the energies

determined for configurations that are already in the training sets. The correlation is expressed by

the covariance matrix between known and unknown values of the energies, with the elements of

the covariance matrix being calculated by a kernel function. GPR assumes that both known and

unknown energies are distributed according to a multidimensional Gaussian distribution and then

uses the covariance matrix to predict the conditional probability distribution of the unknown en-

ergies given the known energies. The ability of GPR to interpolate between known energy values

makes it a good model for local uncertainty prediction. It should be noted that a similar approach

is exploited by Gaussian Approximation Potential (GAP) models that have been developed to

represent interatomic interactions.76

Our AL framework, shown in Fig. 1, consists of a pool of an unknown number of molecular

configurations, corresponding to Cs+(H2O) dimers for the 2B pool and Cs+(H2O)2 trimers for the

3B pool, a predictor, and a learner that, based on feedback from the predictor, selects configura-

Data Pool

Training Set

Predictor

Learner

Candidates

Data

Criteria Update

FIG. 1. Schematic representation of the AL framework introduced in this study.
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tions from the pool and adds them to the training set. The complete AL protocol is summarized

below:

• At each iteration t, the pool S sends a subset of configurations with unknown energies (Ct =

{x j}t ⊆ S) to the learner as training set candidates.

• Depending on the iteration index t, a training set Tt is formed:

– At t = 0, all configurations in C0 are added to the training set T0 and their actual

energies are determined.

– For t > 0:

∗ The training set Tt−1 from the previous iteration is divided into clusters {τt−1,k}

containing a fixed number of molecular configurations, independent of the training

set size.

∗ A cluster label k j is predicted for each candidate configuration x j in Ct (i.e., each

candidate configuration x j is assigned to one of the clusters {τt−1,k}).

∗ The uncertainty ∆E j on the energy of the candidate configuration x j is estimated

as the GPR variance calculated for the entire cluster τk, k = k j.

∗ The error Err j on the energy of the candidate configuration x j is defined as the

average error associated with the energies predicted by the model for all the con-

figurations in the cluster τk, k = k j.

∗ A selection probability Pt(x j), proportional to the weighted sum of the energy

uncertainty and the energy error, is assigned to each candidate configuration x j in

Ct ,

Pt(x j) ∝ [w∆E ∗∆E j +wErr ∗Err j] (5)

∗ A subset of configurations {x̂i}t ⊆Ct is selected and, after determining the asso-

ciated actual energies εi, added to the training set, Tt = {(x̂i,εi)}t ∪Tt−1.

• The model M is trained on the training set Tt .

• The errors associated with the energies predicted by the model for all configurations in the

training set Tt are updated

• The cycle is stopped when the gradient of the test error becomes lower than a predefined

value.
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The division into clusters {τt−1,k} of equal size reduces the computational cost associated with

GPR, which typically scales as O(n3).75 Since a radial basis function (RBF) kernel, which is based

on the L2 distance, is used to determine the similarity between two configurations, it follows that

configurations close to the candidate configuration play a central role in the GPR process. The use

of the RBF kernel function allows interpolation with GPR only between configurations that are

in the same cluster as the candidate, which, in turn, helps reduce the computational cost without

losing predictive accuracy. As shown in Eq. 5, the learner selects configurations based on the

weighted sum of uncertainty and model error. This procedure ensures a balanced exploration of

the configuration space, exploiting the decision-making process. At each iteration, a small subset

(5%) of candidates is selected and added to the training set to improve the reliability of the learner.

It should be noted that a similar method based on Pearson correlation has recently been pro-

posed for the generation of training sets for interatomic potentials.77 This method exploits the

correlation between atomic features to build a probability distribution that is then used to select

new candidates but does not consider the feedback provided by the fitting model which allows our

AL framework to adapt continually to changes in the training set after each iteration.

In this study, we used the KMeans module available in the Scikit-learn Python package, version

0.21.3, to cluster both the Cs+(H2O) dimers and the Cs+(H2O)2 trimers in the corresponding 2B

and 3B training sets and the cluster size was fixed at 50 configurations. For GPR we used the class

GaussianProcessRegressor and the RBF kernel available in the same Python package.

Both GPR and KMeans require a vector representation of the 2B and 3B structures in the high-

dimensional configuration space. For this purpose, we used the many-body tensor representation

(MBTR) of atomic environments.78 MBTR defines a structural descriptor that is easily computable

and well suited to calculate the kernels for both GPR and KMeans. The MBTR descriptor is

constructed by storing the terms of the Coulomb matrix15 associated with each pair of the Ne

chemical elements constituting the molecular system of interest into an Ne×Ne×d tensor, where

d is the largest number of unique pairs of the same two chemical elements. The MBTR descriptor

thus takes the form

fk(x,z) =
Na

∑
i

wk(i)D(x,gk(i))
k

∏
j=1

Cz j,Zi j
, (6)

where z ∈ Nk are atomic numbers, i = (i1, . . . , ik) ∈ {1, . . . ,Na} are index tuples, k runs over

the number of atoms, D is a broadening function, C is the element correlation matrix, and gk is

a function that assigns a scalar to the k atoms based on a k-body physical feature. The MBTR
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descriptor is then discretized and rearranged in the form of a vector.

We used the Python package qmmlpack for the vector representation of the 2B and 3B config-

urations in their respective training sets. The broadening function D was chosen to be the normal

distribution with k = 2,3. The inverse of the distance, r−1, and the angle, θ , were used as gk for

k = 2,3, respectively. The number of bins and the width of the normal distribution were tuned to

guarantee the efficiency of the MBTR calculations, without compromising accuracy.

III. RESULTS

The results of our AL framework are presented in the following three subsections. First, we

discuss the learning curves for the 2B and 3B energies, and comparisons are made between our AL

framework and a generic approach based on a random selection (RS) of molecular configurations.

Second, we introduce sketch-maps79 of different 2B and 3B training sets generated through our

AL framework and discuss the corresponding distributions of 2B and 3B energies. Third, we

analyze the interaction and many-body energies of small water clusters as well as the Cs+-oxygen

radial distribution functions (RDFs) of liquid water calculated using different 2B and 3B training

sets generated through our AL framework.

A. Learning curves of 2B and 3B energies

Figs. 2 and 3 show the learning curves for the 2B Cs+–H2O and 3B Cs+–(H2O)2 energies,

respectively, calculated for the training (left panels) and test (right panels) sets as a function of the

training set size. Learning curves obtained using both our AL framework (blue) and RS approach

(magenta) are shown.

The training root-mean-square errors (RMSEs) associated with the RS approach increase as a

function of the training set size for both 2B and 3B energies while the corresponding AL curves

display steeper increases for smaller training sets, reach a maximum, and then decrease. The test

RMSEs show different trends, with the curves obtained with our AL framework displaying a sig-

nificantly faster decrease as a function of the training set size. Since our AL framework specifically

targets configurations with higher uncertainties and neighborhood training errors, these configu-

rations are selected more frequently by the learner and added to the training set. It follows that

the configurations that are left in the pool after each iteration are associated with progressively
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smaller uncertainties and training errors. This implies that, when added to the training sets in sub-

sequent iterations, these configurations necessarily lead to a decrease of the training RMSEs and

only negligible variations in the test RMSEs as shown in in Figs. 2 and 3.

Based on the analysis of both training and test RMSEs obtained with our AL framework, the

optimal numbers of configurations in the 2B and 3B training sets for the Cs+–water MB-nrg PEFs

were determined to be 5000 Cs+(H2O) dimers and 10000 Cs+(H2O)2 trimers, respectively.

B. Sketch-maps

Sketch-maps have been shown to be useful tools for representing high-dimensional configu-

ration spaces with lower-dimensional projections that are easily interpretable in terms of well-

defined structural features.79–81

To provide structural insights into the composition of the 2B and 3B training sets, with varying

sizes, obtained with our AL framework, MBTR was used to generate the sketch-maps shown in

Figs. 4 and 5, respectively. Panel a) of Fig. 4 is a representation of the entire 2B pool projected onto

a 2-dimensional space. Each point on the map corresponds to a Cs+(H2O) dimer configuration

and the associated color indicates the corresponding CCSD(T) reference 2B energy. Since the 2B

pool was generated on a grid by varying the Cs+-O distance and distorting the water molecule,

these features are reflected in the resulting sketch-map where points cluster together, in an orderly
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FIG. 2. RMSEs (in kcal/mol) associated with the 2B training (left) and test (right) sets displayed as a

function of the training set size. Blue and magenta curves correspond to AL and RS learning curves,

respectively. The dashed line indicates the optimal training set size as determined in this study.
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FIG. 3. RMSEs (in kcal/mol) associated with the 3B training (left) and test (right) sets displayed as a

function of the training set size. Blue and magenta curves correspond to AL and RS learning curves,

respectively. The dashed line indicates the optimal training set size as determined in this study.

fashion.

Panel b) of Fig. 4 shows a sketch-map of the energy differences between the reference 2B

energies and the corresponding values predicted by the MB-nrg PEF trained on the full 2B pool

(13525 configurations). This comparison shows that the the MB-nrg PEF provides an accurate de-

scription of the overall 2B energy landscape, with deviations larger than 0.5 kcal/mol only found

for Cs+(H2O) dimers with associated binding energies larger than 40 kcal/mol, and deviations on

the order of 0.04 kcal/mol for Cs+(H2O) dimer configurations with lower binding energies (less

than 40 kcal/mol). It should be noted that dimer configurations with larger binding energies are

unlikely to be visited in MD simulations at ambient conditions and are included in the 2B training

sets to guarantee that the PIPs representing short-range interactions within the the MB-nrg PEF are

well-behaved at short Cs+–water distances. Panels c-f) show sketch-maps of the differences be-

tween 2B energies predicted by the MB-nrg PEF trained on the full 2B pool and the corresponding

values predicted by MB-nrg PEFs trained on progressively smaller training sets containing 10000,

8000, 6000, 4000 configurations generated using our AL framework. As expected, systematically

reducing the training set size introduces progressively larger errors, with training sets with fewer

than 4000 dimer configurations leading to overfitting. This analysis shows that our AL framework

allows for significantly reducing the original 2B Cs+–H2O training set without compromising the

overall accuracy of the resulting MB-nrg PEF. In this context, it should be noted that the areas
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of the sketch-maps in panels c-f) that display larger deviations from the original MB-nrg PEF

of Ref. 13, as the training set size decreases, correspond to dimer configurations for which the

original MB-nrg PEF also shows larger deviations from the CCSD(T) reference data (panel b).

Similar conclusions can be drawn from the analysis of the sketch-maps of the 3B training sets

shown in Fig. 5. Since the original 3B pool was generated by extracting Cs+(H2O)2 trimers from

MD simulations of a single Cs+ ion in liquid water, the resulting sketch-map (panel a) displays a

more uniform distribution in the 2-dimensional space compared to the corresponding sketch-map

obtained for the 2B pool. Depending on the associated CCSD(T) reference 3B energies, trimer

configurations broadly cluster in two areas, with the “dividing surface" being between -5.0 and

-3.0 kcal/mol. Also in this case, the original MB-nrg PEF closely reproduces the CCSD(T) ref-

erence 3B energies over the entire configuration space of the 3B pool. As for the 2B energies,

progressively smaller training sets of 20000, 15000, 10000, 5000 configurations, generated using

FIG. 4. Sketch-maps of the 2B configurations. The map in in a) represents the reference CCSD(T) energies

while the map in b) represents the difference, ∆E, between the reference CCSD(T) energies and the energies

predicted by the MB-nrf PEF trained on the full pool of 2B configurations. The maps in c) to f) represent

the difference, ∆E, between the energies predicted by the MB-nrg PEF trained on of the full training set

and the corresponding values predicted by MB-nrg PEFs trained on the reduced-size training sets of 10000,

8000, 6000, and 4000 configurations generated using the AL framework, respectively).
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FIG. 5. Sketch-maps of the 3B configurations. The map in in a) represents the reference CCSD(T) energies

while the map in b) represents the difference, ∆E, between the reference CCSD(T) energies and the energies

predicted by the MB-nrf PEF trained on the full pool of 2B configurations. The maps in c) to f) represent

the difference, ∆E, between the energies predicted by the MB-nrg PEF trained on of the full training set

and the corresponding values predicted by MB-nrg PEFs trained on the reduced-size training sets of 20000,

15000, 10000, and 5000 configurations generated using the AL framework, respectively).

our AL framework and analyzed through the sketch-maps shown in panels c-f), lead to progres-

sively larger deviations from the original MB-nrg PEF. It should be noted thart, on average, the

deviations remain smaller than 0.06 kcal/mol even for the smallest training set (5000 trimer con-

figurations).

C. Clusters analysis

To assess the relative accuracy of the various training sets generated using our AL framework

and determine how the associated differences in the representation of 2B and 3B energies affect

the ability of the resulting MB-nrg PEFs to reproduce the properties of water from the gas to the

condensed phase, deviations from the reference 2B and 3B energies of low-lying isomers of the

Cs+(H2O)n=1−3 clusters are analyzed in Fig. 6. This analysis is carried out for several MB-nrg

PEFs generated from fits to various combinations of the 2B and 3B training sets shown in Figs. 4
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FIG. 6. Schematic representation of the errors associated with the 2B and 3B energies of low-lying iso-

mers of Cs+(H2O)n=1−3 clusters. The dashed black circles represent the difference between the reference

CCSD(T) energies and the corresponding values obtained with the MB-nrg PEF trained on the full 2B and

3B pools. The other solid circles represent the differences between the energies predicted by the MB-nrg

PEF trained on the full 2B and 3B pools and the corresponding values predicted by MB-nrg PEFs trained

on 4000 2B configurations and 5000 3B configurations, with blue and magenta corresponding to the AL

and RS training sets, respectively.

and 5. In particular, we consider the performance of three MB-nrg PEFs that use the smallest

2B training set (4000 dimer configurations) and the full 3B training set, the full 2B training set

and the smallest 3B training set (5000 configurations), and the smallest 2B and 3B training sets,

respectively. Also shown for comparison are the deviations obtained with the corresponding com-

binations of the same training sets generated from random selection. In all cases, the differences

between the 2B and 3B energies predicted by the different MB-nrg PEFs are comparable for all

clusters, and often smaller than the corresponding differences between the original MB-nrg PEF
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fitted to the full 2B and 3B training sets and the CCSD(T) reference data. This analysis thus indi-

cates that the reduction of the training set sizes does not affect the ability of the resulting MB-nrg

PEFs to correctly represent 2B and 3B energies in small water clusters. It should be noted that this

is true for both families of MB-nrg PEFs derived from training sets generated through AL and RS.

This similarity can be attributed to the intrinsic low dimensionality of the Cs+(H2O) dimers and

Cs+(H2O)2 trimers that make up the corresponding 2B and 3B training sets, which allowed for

extensive sampling of the relevant configurations for the development of the original training sets

in Refs. 13 and 60 . However, while no appreciable differences exist in the performance of the two

sets of MB-nrg PEFs, AL clearly provides a more efficient approach to the selection of the train-

ing set sizes as demonstrated by the significantly higher variability associated with the learning

curves obtained with the RS approach. The efficiency of the AL framework thus becomes par-

ticular important when, differently from the present case of the Cs+–water MB-nrg PEF, no prior

information on training sets is provided. This aspect of our AL framework will be the subject of a

forthcoming study.

D. Radial distribution functions

To investigate the effects of training set reduction on modeling the properties of bulk solutions,

the Cs+–O RDFs calculated using different MB-nrg PEFs obtained from fits to different com-

binations of 2B and 3B training sets generated using AL (left panels) and RS (right panels) are

analyzed in Figs. 7 and 8. The effects of the 2B training set is first assessed in Fig. 7 by analyz-

ing the performance of five MB-nrg PEFs generated by fitting the 2B term to 2B training sets of

various sizes (full, 10000, 8000, 6000, and 4000 dimer configurations) while fitting the 3B term to

the full 3B training set for training the 3B term (34441 trimer configurations). The resulting RDFs

calculated from MD simulations with the resulting MB-nrg PEFs generated from both AL and RS

training sets are shown in the top left and right panels of Fig.7, respectively. As discussed in more

detail in Ref. 60, the Cs+–O RDF displays a narrow peak, corresponding to the first hydration

shell, at 3.16 Å, and a broader peak, corresponding to the second hydration shell, at ∼6 Å. No

appreciable differences are found between the RDFs obtained using MB-nrg PEFs with progres-

sively smaller 2B training sets. This is further evidenced by the curves shown in the bottom panels

of Fig. 7 representing the differences between the RDFs calculated with each of the MB-nrg PEFs

trained on reduced 2B training sets and the RDF calculated with the MB-nrg PEF trained on the
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full 2B training set.

Similarly, the effects of the 3B training set size reduction are investigated in Fig. 8 through

the analysis of five MB-nrg PEFs generated by fitting the 3B term to 3B training sets of various

sizes (full, 20000, 15000, 10000, and 5000 trimer configurations) while fitting to the 2B term to

the full 2B training set. In this case, reducing the 3B training set size to less than 10000 trimer

configurations results in small differences in the Cs+–water RDF for distances larger than 5.0 Å,

which lead to a shift of the second hydration shell to slightly larger distances. However, as shown
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FIG. 7. Top panels: Cs+-O RDFs calculated from MD simulations with MB-nrg PEFs trained on progres-

sively smaller 2B training sets (in the range of 10000-4000 dimer configurations) generated through AL

(left) and RS (right), and the full 3B pool. Bottom panels: Differences between the RDF calculated with

the MB-nrg PEF trained on the full 2B and 3B pool and the corresponding RDFs calculated with MB-nrg

PEFs trained on the reduced-size AL (left) and RS (right) 2B training sets, and the full 3B pool.
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FIG. 8. Top panels: Cs+-O RDFs calculated from MD simulations with MB-nrg PEFs trained on progres-

sively smaller 3B training sets (in the range of 20000-5000 trimer configurations) generated through AL

(left) and RS (right), and the full 2B training set. Bottom panels: Differences between the RDF calculated

with the MB-nrg PEF trained on the full 2B and 3B pool and the corresponding RDFs calculated with

MB-nrg PEFs trained on the reduced-size AL (left) and RS (right) 3B training sets, and the full 2B pool.

in the bottom panels of Fig. 8, these differences are barely noticeable and do not lead to any

qualitative change in the hydration structure of Cs+ in liquid water.

Overall, the analysis of both cluster and bulk properties demonstrates that the application of our

AL framework to the original pools of 2B and 3B configurations of Refs. 50 and 60, respectively,

leads to significantly smaller training sets, without loss of accuracy, which, in turn, largely reduces

the cost associated with the development of CCSD(T)-level MB-nrg PEFs.
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IV. CONCLUSIONS

In this study, we introduced an AL framework for generating representative training sets needed

for the development of MB-nrg PEFs.12,13 Our AL framework is based on uncertainty and error

estimation, and consists of a pool of an unknown number of molecular configurations, a predictor,

and a learner that, based on feedback from the predictor, selects configurations from the pool

and adds them to the training set. The selection process relies on Gaussian process regression and

clustering of the configurations in the training set, which allows for efficiently identifying the most

relevant configurations needed to accurately represent the target many-body PES.

The application of our AL framework to the development of a Cs+–water MB-nrg PEF chosen

as a case study led to significantly smaller training sets than those found necessary for the develop-

ment of the original MB-nrg PEF. Analyses of the interaction and many-body energies calculated

for small Cs+(H2O)n cluster as well as the Cs+-oxygen RDF calculated from MD simulations of

a single Cs+ ion in water demonstrate that the new MB-nrg PEFs derived from the reduced-size

training sets generated through AL display the same accuracy of the original MB-nrg PEF derived

from the full 2B and 3B pools.13,60

Given the computational cost associated with reference CCSD(T) calculations of individual

many-body energies, our AL framework is particularly well-suited to the development of many-

body PEFs, with chemical and spectroscopic accuracy, which can then be used in MD simulations

of the target molecular system, from the gas to the condensed phase.
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