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Abstract 
 

Here, we report an application of Artificial Intelligence techniques to generate novel chemical 

reactions of the given type. A sequence-to-sequence autoencoder with bidirectional Long 

Short-Term Memory layers was trained on the USPTO reaction database. Each reaction in this 

database was converted into a single Condensed Graph of Reaction (CGR), followed by their 

translation into on-purpose developed SMILES/GGR text strings, which are then fed as such 

to the autoencoder. The autoencoder latent space was visualized on the two-dimensional 

generative topographic map, from which some zones populated by Suzuki coupling reactions 

were targeted. These served for the generation of novel reactions by sampling the latent space 

points and decoding them to SMILES/CGR. Among generated reactions many displayed 

reaction centers not seen in training set reactions. These pertinent suggestions can be critically 

analyzed by the expert, cleaned of chemically irrelevant functional groups in order to be 

experimentally attempted and validated (or discarded), herewith enlarging the synthetic 

purpose of popular synthetic pathways. 
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Introduction 
The discovery of new organic reactions has always been in the focus of synthetic organic 

chemistry. Each new reaction enriches the arsenal of synthetic tools and opens new horizons 

in the development and optimization of new drugs and materials. Such reactions are often given 

the names of their discoverers, which is the highest recognition of their contribution to organic 

chemistry. Most of the new reactions have been discovered by plain luck, and it has been up to 

the chemists to notice the discovery and apply their “chemical intuition” to study it in detail.1 

The beginning of a systematic approach to the search for new reactions was laid in 1967 by 

Balaban, who applied the graph theory for systematical enumeration of pericyclic reactions 

proceeding through a 6-membered transition state.2 In the 1970s, these studies were 

significantly expanded by Hendrickson3, Arens4–6, Zefirov, and Tratch7,8 who considered 

various formal schemes describing bonds redistribution for different types of pericyclic 

reactions. Another approach implemented in the IGOR1,9 and IGOR210 programs concerned 

the algebraic model of constitutional chemistry developed by Dugundji and Ugi11. This 

approach supports the hierarchical representation of organic reactions and deals explicitly with 

heteroatoms and charges, keeps track of rings in molecules.10 Its application led to the 

discovery of previously unknown reactions: the thermal decomposition of α-formyl-oxy 

ketones,1,9 and the formation of a cage molecule from N-methoxycarbonyl homopyrrole and 

tropone.10 Then, an alternative method based on the generation of the complete sets of non-

isomorphic spanning subgraphs of a given graph was suggested. With the help of this approach, 

new carbene reaction12 and two new elimination reactions leading to the formation of 

synthetically important dienes 13 were discovered. The formal-logical approach to organic 

reactions 7 implemented in the SYMBEQ14 and ARGENT15,16 software was used to discover 

substituted furans.14  

Despite great expectations, no significant progress in computer-aided reaction design 

was achieved; approaches, algorithms, and software tools reported so far have not found any 

widespread popularity among organic chemists. The work with those tools required both 

extensive knowledge in synthetic organic chemistry and a well-developed intuition in order to 

turn abstract schemes of bonds redistribution into specific chemical reactions with particular 

reagents, catalysts, and experimental conditions. This explains why all reactions 

computationally discovered so far were relatively simple (mainly thermal pericyclic reactions). 

 We believe that real progress in the discovery of new chemical reactions can be 

achieved with the help of deep learning methods supported by big data.17 Recently, Segler et 

al. reported a chemical synthesis planning system based on the use of the deep neural networks 

and symbolic AI trained on a big collection of known synthetic reactions.18 This tool, however, 

implements automatic extraction of transformation rules (patterns) from known chemical 

reactions and therefore, in principle, cannot lead to the discovery of new chemical reactions. 

New reactions might, in principle, be discovered using template-free approaches in which 

reaction products are directly related from reactants or vice versa. Such template-free 

approaches were successfully implemented in recurrent neural networks operating in sequence-

to-sequence mode,19 in which SMILES of products were directly predicted from SMILES of 

reactants 20,21 and vice versa 22,23. This approach, however, is narrowly aimed at predicting 
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reactants for given products or products for given reactants, and, therefore, can hardly be used 

in the discovery of new types of chemical reactions. 

Generative models based on recurrent deep neural networks are successfully used to 

generate novel chemical structures.24–31 Recently, we have demonstrated that the structures of 

molecules possessing desirable properties could be generated using a combination of 

autoencoder with Generative Topographic Map built on the latent vectors. 26 In order to apply 

this approach to chemical reactions, the latter must be encoded by SMILES strings. However, 

conventional reaction SMILES can hardly be used because: (i) they are too long and have more 

complicated semantics since every atom is present in both reactants and products; (ii) 

introduction of atom-to-atom mapping (AAM) needed to the identification of the reaction type 

makes this semantics even more complex. In this case, the autoencoder needs to learn not only 

semantics and syntax of SMILES but also the AAM rules. 

Earlier, we have demonstrated that processing information on chemical reactions 

complexity can significantly be simplified by the Condensed Graph of Reaction (CGR) 

approach,32 in which the structures of reactants and products are merged into a single molecular 

graph (Figure 1). The CGR edges correspond either to standard chemical bonds or to “dynamic” 

bonds describing chemical transformations. In such a way, one can consider a CGR as a 

pseudomolecule for which some types of molecular descriptors can easily be computed 

followed by their application in data analysis and statistical modeling tasks.33 Thus, this 

approach was successfully applied to similarity searching in reaction databases,32,34 building 

quantitative structure-reactivity models,35–38 assessment of tautomer distributions,39,40 

prediction of activity cliffs,41 classification of enzymatic transformations,42 prediction of 

reaction conditions,43,44 etc. Here, for the first time, we describe dedicated SMILES strings 

encoding CGRs (SMILES/CGR). Unlike the canonical reaction equation, each atom in CGR 

is present only once, which significantly reduces the length of the string. Moreover, the CGR 

(and, hence, SMILES/CGR) contains information about the reaction center and its close 

neighborhood45. The conventional reaction equation can be easily derived from CGR. 

The key idea of the present paper is to perform the generation of chemical reactions by 

generating their CGRs using methods commonly used for generating chemical structures. The 

plan of the article is the following. First, we describe the methodology of CGR, CGR-based 

SMILES representation for reactions, and implementation of the autoencoder model. Then, we 

analyze and discuss the reactions generated this way. We focused on the generation of Suzuki 

coupling reactions because of their importance and popularity in chemical synthesis. 
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Figure 1. Example of Suzuki coupling reaction (top) and related Condensed Graph of Reaction (CGR, 

bottom). Reaction SMILES and SMILES/CGR are given under reaction equation and CGR, 

respectively. Reaction SMILES consists of three parts corresponding to reactants (highlighted in 

orange), reagents (such as catalysts or solvent, in blue), and products (in purple). Here, atom-to-atom 

mapping is not included in the reaction SMILES. SMILES/CGR contains special features to label 

dynamic bonds and atoms characterizing chemical transformations. Thus, broken single bonds are 

encoded as [->.] (in red), while the created C-C bond is encoded as [.>-] (in green). The CGRTools 

library represents aromatic bonds as a colon (:) in both formats. 

 

Results and discussion 

Modeling and postprocessing workflows  

 

The modeling workflow included a sequence-to-sequence neural network with Bidirectional 

Long Short-Term Memory layers trained on special SMILES strings for Condensed Graph of 

Reaction (SMILES/CGR). Generative Topographic Mapping (GTM) was used to visualize the 

autoencoder latent space on the two-dimensional map on which the areas mostly populated 

with Suzuki coupling reactions were detected (Figure 3). Then, the targeted map zone was used 

to generate virtual chemical reactions by sampling associated latent space points and decoding 

them to SMILES/CGR. Recently, a similar workflow was successfully used for the generation 

of novel molecular structures possessing desirable biological activity 26. 

The SMILES/CGR strings were prepared using the in-house CGRtools library45. Unlike 

conventional reaction SMILES strings, SMILES/CGR depicts a pseudo-molecule with 

extended features corresponding to dynamic bonds and dynamic atoms, see Figure 1. A 

detailed description of SMILES/CGR features is given in the Methods section. 
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Figure 2. The modeling workflow used in this work.  

 

A set of 2.5 million reactions, extracted and curated from USPTO database 46, was 

transformed to CGRs and then into SMILES/CGR strings used to feed the autoencoder.  The 

latter was trained on 2 M reactions and validated on 0.45 M reactions. The reconstruction rate 

was 98.4% and 97.8% at the training and validation stage, respectively.   The latent vectors for 

100 000 randomly selected reactions were used to construct a Generative Topographic Map 

(GTM) using in-house software 47. Then the entire USPTO database was projected onto the 

map, on which several zones predominantly populated by Suzuki reactions were identified, as 

it is shown in Figure 3. Random latent vectors were sampled from one of these zones with the 

highest relative population of Suzuki reactions. As expected, the sampling procedure led to 

virtual transformations of similar type. 

 

 

Figure 3. Generative Topographic Map of USPTO reactions encoded by the autoencoder latent 

variables. Larger transparency levels correspond to smaller data density.  The color code characterizes 

different classes of reactions. Thus, zones in dark blue are exclusively populated by Suzuki reactions, 

zones in brown are exclusively populated by other types of reactions; in yellow, green, etc zones, the 

Suzuki reactions 

Other reactions 
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mixed population is observed. The white circle indicates a zone from which virtual Suzuki reactions 

were sampled. More  

 

In total, 10,000 text strings have been generated, 7226 (72.2%) of which were valid 

SMILES/CGR. Valence and aromaticity checking procedures implemented in CGRtools.v3 

reduced this number to 1099 structurally correct reactions, out of which 466 “novel” reactions 

were found (Figure 4).  

 

 

 
Figure 4. Postprocessing workflow for the SMILES/CGR generated by the trained autoencoder. This 

included: (i) SMILES validation consisting of the check for SMILES string errors (unclosed cycles, 

bonds not terminating with atoms, etc.) (ii) valences check including aromaticity verification, (ii) in- 

and aromaticity check, and (iv) the novelty detection procedure. Steps (i)- (ii) were performed with the 

help of the CGRtools.v3 library. 

 

Reaction Novelty Analysis  

The main interest of reaction generation is the detection of novel reactions among those 

generated by the model. However, unlike individual compounds, where novelties can be 

identified as unique scaffolds or particular structural motifs26, the definition of reaction novelty 

was not discussed in the literature. The most descriptive part is the reaction center (RC), i.e. 

atoms and bonds directly involved in the transformation. Thus, we consider two types of 

reaction novelty: (i) the reaction center is unknown (not present in training set); (ii) reaction 

center is known, but its closest neighborhood (1st atoms and bonds near the RC, RC+1) is new. 

The latter can be extended to a more distant neighborhood (n atoms and bonds away, RC+n), 

but in this work, we only focus on the reaction center and the closest neighbors. To decide 

whether a reaction is novel, these substructural reaction motifs are encoded by a hashing 

function as reaction signatures and are compared to all signatures extracted from the initial 

dataset.  

 

Initially generated: 

10000 text strings 

CGR SMILES validation: 7226 entities

Valenсes check :  1278 reactions 

In- and out-of-ring aromaticity check: 
1099 reactions

Novelty detection :
436 new RC, 30 new RC+1
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Analysis of generated reactions. 

Among 1099 reactions selected using the post-processing workflow (Figure 4), 436 contain 

new reaction center RC and 30 reactions contain known RC but with new first neighborhood 

RC+1. Some generated reactions have two or more distinct reaction centers, i.e. represent 

multistep transformations. Note that “novelty” defined as absence from the training set data is 

per se meaningful, as an illustration of the “creativity” of this Artificial Intelligence, i.e the 

ability of the tool to “extrapolate” to configurations that are formally correct – i.e. to generate 

really original configurations which can be submitted for empirical feasibility assessment to 

human experts. Unfortunately, “novelty” as absence from both the training set and public 

reaction databases is not easy to interpret, for it may both mean that (a) such reactions were 

tried, but fail and thus were not published or (b) reactions were never explored, thus represent 

a real asset of innovation. The choice not to publish failed reactions is a major drawback in 

training reactivity models 44. 

 

Reactions with new reaction centers 

Three interesting “Suzuki-like” subtypes of reactions with new reaction centers (RC) have been 

suggested by the tool: 

1. C-Si coupling reactions (1-4, Table 1). The substrate in reaction 1 has a Si = N bond 

experimentally observed by Wiberg et al 48. This may not be of direct synthetic interest, 

for such compounds are very unstable, but it has the merit illustrate the “creativity” of the 

tool, in the above-mentioned sense. Substrates in 2 and 3 have Si-Br bond. A similar 

reaction with the Si-Cl bond was mentioned in the patent by Kim et al 49 (Figure ).  

 

 
Figure 5. Example of Suzuki reaction with the substrate bearing Si-halogen bond 49 

Although a substrate in reaction 4 bearing RP(H)(O)=O group looks unstable due to easy 

oxidation, we found in Reaxys more than 5000 compounds with a similar functional groups. 

 

2. Suzuki coupling reactions with unconventional leaving groups, reactions 5-7 (Table 1). In 

these reactions, fluorine is a leaving group, while no examples of such reactions were 

present in the initial dataset. Suzuki reactions with fluorine as a leaving group 51 are known, 

however, Cl and Br are clearly more reactive Note that in some cases the proposed reaction 

suggests the substitution of F even though more reactive halogens exist elsewhere in the 

species. This not unexpected from a stochastic navigator focused on a generic “Suzuki-

like” zone of the reaction space, not including any chemical “intelligence” beyond 

whatever could be learned from the training pool of reactions (where F-substitutions were 

absent altogether). Given the focus on the latent space zone, suggested CGRs should 

display Suzuki-like (but occasionally original) reaction centers. The RS(H)(R)(R)(=O) 

group in reaction 6 apparently including a hexacoordinated S atoms makes sense if it is 
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interpreted as the (hypothetic) conjugated acid of (putatively real) sulfoxonium compound 

(the error of the decoder being the failure to add formal charges). On the other hand, 

reactions leading to products with RSi(O-)(OH)H group (reaction 7) were reported in the 

literature.52  

3. Reaction 8 (Table 1) represents a typical error in the generated reactions: an incorrect 

placement of the substituent in the product which leads to two separate reaction centers 

(formally, the -Cl “migrates” from ortho to para position with respect to the pyridine N, 

prior to reaction). This reflects a common error of aromatic atoms assignment for Suzuki 

reactions in atom-to-atom mapping.  For this reason, in some training set reactions, two 

reaction centers instead of a single-center one were detected. This shows the impact of 

AAM on the generation of valid reactions. 

 

Table 1. Selected virtual reactions with a new reaction center. 

 

N Reaction Reaction center SMILES 

1 

 

BC.[Si]Br>>C[Si].Br.

B 

2 

 

BC.[Si]Br>>C[Si].Br.

B 

3 

 

BC.[Si]Br>>C[Si].Br.

B 

4 

 

BC.[Si]Br>>C[Si].Br.

B 

5 

 

BC.CF>>B.CC.F 
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6 

 

BC.CF>>B.CC.F 

7 

 

BC.CF>>B.CC.F 

8 

 

BC.C>>CC.B  

and 

CCl>>C.Cl 

 

It should be noted that most of problems related to reactions 1-7 are related to the presence of 

reactive groups in organohalide substrate. However, if one focuses just on the reaction center, 

generalized equations for reactions 1-4 and 5-7 look quite reasonable (Figure 6).  Several 

examples of these types of reactions were found in SciFinder Scholar. 

 

 

 

 
 

Figure 6. Generalized equations of reactions 1-4 (on the top) and 5-7 (on the bottom) in Table 1 

 

 

Reactions with a new environment of known reaction centers (RC+1) 

 

Following the novelty detection procedure, 30 reactions that have known reaction centers but 

an original first environment (RC+1) were detected. Among those, seven reactions have a 

single reaction center (Table 2). All these reactions can be divided into 4 groups: 
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1. Suzuki reaction with iodine in an unconventional environment. Reaction 1 looks 

reasonable, except for an unstable iodoformate group. However, examples for compounds 

with common formula RCOC(=O)I were found in the Reaxys and PubChem databases and 

the compound CC(C)(C)COC(=O)I is commercially available (Achemica, “carboniodidic 

acid, 2,2-dimethylpropyl ester”).  

2. Suzuki reaction with bromine in an unconventional environment. In reaction 2, the 

BrC(=O)R group is involved. Reaction 3 involves bromine attached to an unusual 

heterocycle with charged nitrogen. The latter, however, was described in the literature.53  

3. Suzuki reaction with substitution of O-R group. Generally, such reactions are well studied. 

Reactions 4-5 are correct from a formal point of view but unfeasible since both leaving 

groups can hardly be cleaved, 3-hydroxypyridine derivative can serve as a weak leaving 

group in reaction 4 but methylate in reaction 5 is too weak. Regioselectivity is also 

unfavorable: the substitution will likely occur on I (reactions 4 and 5) than involve sp3-C 

(reaction 4) and replace methylate (reaction 5).  

4. Generated structures look unstable or even impossible. Thus, reaction 6 involves a 

sterically hindered 9-membered ring. In reaction 7, RO-F bond is extremely unlikely for 

organic compounds.  

 

Table 2. Examples of generated Suzuki reactions with the RC found in the training set. All 

examples are divided into 4 types: (1) substitution of Iodine; (2) substitution of Bromine; (3) 

substitution of O-R group; (4) reactions involving reactants with irrealistic structure. 

 

N Structure Type 

1 

 

1 

2 

 

2 

3 

 

2 
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4 

 

3 

5 

 

3 

6 

 

4 

7 

 

4 

 

 

Reactions with known RC and  RC+1. 

All reactions with known RC and  RC+1 belong to the Suzuki coupling type, as exemplified in 

Table 3. For them, the percentage of unstable structural moieties was much lower than for 

novel reactions. Classical -Cl and -Br substitutions present in the training data are sufficiently 

well represented for the neural network to tentatively learn selectivity rules. Unlike with the 

original outputs proposing F substitution (vide supra), in the presence of concurrent groups (Br 

and Cl in Reaction 1, 3 and 4) the preferred regioselectivity is predicted correctly.  
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Table 3. Examples of generated reactions with reaction centers and their first environment 

present in the training set.  

N Reaction Reaction center 

1 

 

BC.CBr>>CC.B.Br 

 

2 

 

BC.CBr>>CC.B.Br 

 

3 

 

BC.CBr>>CC.B.Br 

 

4 

 

BC.CBr>>CC.B.Br 

 

 

Conclusions 
Here we present the first attempt to generate new chemical reactions using a combination of 

Condensed Graph of Reaction, Generative Topographic Mapping, and sequence-to-sequence 

autoencoder. In order to feed the autoencoder, special reaction SMILES strings 

(SMILES/CGR) were suggested. Among generated Suzuki coupling reactions, some species 

have particular structural motifs (reaction center solely of the reaction center with its close 

environment) which don’t occur in the training set reactions. These reactions look feasible for 

real synthesis.  

The generative model’s “creativity” depends on the training set. If the latter contains erroneous 

structures or its size is not big enough, the model may produce wrong or unstable structures. 

Even if a SMILES/CGR syntax is correctly learnt, the model is not able to capture important 

information about chemical reactivity. The latter also leads to generation of synthetically 

unfeasible species. However, if one focuses not on exact reaction equations, but on the 

novelties like new reaction center or reaction center with its environment, this opens a way to 

discover new types of chemical reactions. 
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Method  

Datasets and data curation 

The dataset we use in this project comes from United States Patents and Trademark Office 

database (1976 to 2016) extracted by Lowe46. It contains about 3.5 million reactions. The initial 

dataset was preprocessed with in-house scripts based on the CGRtools library.45 The curation 

includes the standardization (aromatization and functional group standardization), removal of 

empty reactions (those where the products and reactants are exactly the same, or no reactants 

or products are recorded) and reactions with valence errors. For curated reactions, atom-to-

atom mapping (AAM) was performed using the ChemAxon Automapper tool which is a part 

of the JChem toolkit.54 Mapped reactions were converted into CGRs and their reaction centers 

were extracted with the CGRtools. In total, 165 879 different reaction centers were obtained. 

Since AAM errors lead to incorrect reaction centers, which are usually rare, only highly 

populated reaction centers were selected. Thus, the resulting dataset consisted of some 2.5 

million reactions (approximately 70% of the initial dataset) which corresponds to 300 most 

frequent reaction centers.  

 

Reaction data treatment 

CGRtools library (version 3)45 was used for the reactions cleaning, their transformation to 

CGRs, conversion of CGRs into SMILES/CGR and processing of generated SMILES/CGR 

back into reactions.  

 

SMILES/CGR notation 

Generally, SMILES/CGR follows the OpenSMILES rules55. Unlike regular Daylight SMILES, 

in OpenSMILES, the ring closure number is given after bond order – it gives an opportunity to 

easily operate with more than 9 rings and has two-digit ring closure symbols. In the given 

version of SMILES/CGR, instead of specification of aromatic atoms in lowercase, we used 

colon for aromatic bonds; the aromatic atoms are given in uppercase. It reduces the diversity 

of symbols and is much more convenient for the specification of aromatic atoms involved in 

reaction centers in CGR, especially in cases when aromatic atoms are changed to aliphatic or 

vice versa. 

Upon SMILES/CGR generation, the following convention is used: any expression given in 

squared brackets is considered one symbol. Thus, two symbol atoms (e.g. [Co]), charged atoms 

[N+], etc. are considered as special types of atoms. This convention is used by the tokenizer, 

and it also reduces the complexity of SMILES/CGR generation by autoencoder.  

Dynamic bond labels and dynamic atoms are also specified within squared brackets. Dynamic 

bonds in CGR have special labels representing changes in bond orders. The list of available 

dynamic bond labels corresponding to bond order changes is given in Erreur ! Source du 

renvoi introuvable.. Dynamic atom corresponds to change of formal charge or radical state of 

this atom in reaction. Their labels are also given in brackets, including the atom symbol and 

text keys for atomic property in reactant and product, separated by symbol >. The list of 

available text keys is given in Table 5. For a neutral atom A gaining a positive charge +n in 

reaction dynamic atom will be encoded as [A0>+n]. In the case of charges +1 and -1, the 

number 1 is omitted. Properties for charges and radicals may be combined consecutively within 
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one pair of brackets, e.g. [A0>-^>*] stands for an atom which becomes an anion-radical. An 

example of a Suzuki reaction encoded as SMILES/CGR together with the corresponding 

reaction is given in Erreur ! Source du renvoi introuvable.(b).  

 

Table  4. SMILES/CGR text representations for bonds. The corresponding bond type in reactants is 

shown in rows (From), and the bond type in products is in columns (Into). The main diagonal represents 

the non-dynamic bond text key for the corresponding bond type.   
 

Into  

From  No bond  Single bond  Double bond  Triple bond  
Aromatic 

bond  
Any bond  

No bond  .  [.>-]  [.>=]  [.>#]  [.>:]  [.>~]  

Single bond  [->.]  -1  [->=]  [->#]  [->:]  [->~]  

Double bond  [=>.]  [=>-]  =  [=>#]  [=>:]  [=>~]  

Triple bond  [#>.]  [#>-]  [#>=]  #  [#>:]  [#>:]  

Aromatic 

bond  
[:>.]  [:>-]  [:>=]  [:>#]  :  [:>~]  

Any bond  [~>.]  [~>-]  [~>=]  [~>#]  [~>:]  ~  
1 Usually omitted. 

 

Table 5. Text keys for properties of dynamic atoms in SMILES/CGR.  

Property Uncharged 
Positively 

charged 

Negatively 

charged 
Non-radical Radical 

Text key 01 +n -n ^ * 
1 Omitted for conventional atoms, used only for dynamic atoms. 

 

SMILES/CGR generation and parsing, including preparation of canonic SMILES/CGR, are 

implemented into CGRtools Python library 45. Since generation rules of molecular SMILES 

represent a subset of the SMILES/CGR rules, the same algorithm was used for SMILES and 

SMILES/CGR.  

 

Reaction generation algorithm 

The network architecture previously applied for molecular SMILES generation26 has been used 

in this study. It is based on the autoencoder architecture introduced by Xu et al.56. 

SMILES/CGR transformed into sequences of one-hot encoded characters with padding to 

constant length (256) were used to feed the encoder. Symbols within square brackets 

(conventional or dynamic atoms or dynamic bonds) were considered as a single symbol within 

tokenization. The encoder consists of two bidirectional Long Short-Term Memory (LSTM) 

layers (128 nodes each), while the decoder is composed of two forward LSTM layers (256 

nodes each). The bottleneck dense layer between the encoder and the decoder transforms the 

states of the encoder LSTMs into latent variables to subsequently feed them to the decoder; it 

consists of 128 nodes. Finally, the decoder outputs are transformed back to one-hot encoded 

characters via a single dense layer.  

To generate latent variable vectors for eventual decoding, we use the Generative Topographic 

Mapping method. It is a non-linear dimensionality reduction method that has been successfully 
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used for chemical space analysis,47,57–64 comparison of chemical libraries,65 building 

classification37,57–59,62,66 and regression67,68 models via activity landscapes, as well as for 

solving the “inverse” QSAR problem69. The GTM algorithm operates by embedding a 

nonlinear two-dimensional manifold into a D-dimensional descriptor space and calculating the 

distribution of objects of initial space on these two dimensions. In this work, we utilize the 

autoencoder’s latent vectors as an initial descriptor space. Once a map for the entire USPTO 

database was constructed, the zones corresponding to the desired reaction type (Suzuki 

reaction) were located, from which the latent vectors for virtual reactions were sampled. These 

new vectors fed the trained decoder resulting in new SMILES/CGR strings. 

 

Novelty detection 

Novelty detection is based on the comparison of hashed reaction signatures corresponding to 

reaction centers (RC) and their environment between the database of known reaction (here, 

USPTO database) and the reactions generated by the autoencoder (Erreur ! Source du renvoi 

introuvable.). Encoding chemical reactions by CGR significantly simplifies RC detection. 

Thus, substructural motifs involving the reaction center (RC, RC+1, RC+2, …) can easily be 

extracted from CGR (see Erreur ! Source du renvoi introuvable.). Since any operations with 

molecular graphs are time-consuming, each substructural motif was encoded by a unique hash 

code45 – a reaction signature uniquely identifying given transformation. In this case, the novelty 

detection is reduced to the comparison of signature (hash code) of a generated reaction with 

those of known reactions (Figure ). The suggested procedure assures fast and precise novelty 

detection. 

 

 

Figure 6. Reactions novelty detection workflow. Substructural motifs Sgen (RC, RC+1, RC+2, …) are 

extracted from the query CGR and compared with those for known reactions {Sknown}. In such a way, 

motifs belonging to novel reactions will easily be identified. 
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Figure 7. Preparation of a collection of reaction signatures as hash codes. From a CGR generated from 

a given reaction, substructural motifs containing reaction center (RC), or reaction center with n 

neighboring bonds and atoms (RC+n, here n=1) can be extracted. Each motif is encoded by a hashing 

function into a unique hash code – reaction signature. Ensemble of unique hash codes for all reactions 

in the database is stored in the hash table. 
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