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ABSTRACT: Flexible, small and strong alkyl ligations created upon external light stimuli 

can open new avenues for medicinal and biological research. Herein, we have found that 

NADH and analogues can drive photo-couplings without auxiliary photocatalysts. The time-

resolved alkyl photo-ligation between redox-active carboxylate derivatives and electron-poor 

olefins displays a surprising moisture and air-tolerance, and unusually high coupling rates in 

dilute conditions. This work sets the conceptual basis for further biocompatible C-C coupling 
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reactions promoted by visible-light in combination with NADH, the ubiquitous reductant of 

biological systems. 

 

 

 

Visible light is a prime stimulus to externally control complex systems. It can be used to 

unravel the mechanisms of life, for example, by altering the conformation of biomolecules 

(photo-switches),1 or activating specific substances (photo-decaging).1a,2 Photo-triggered 

coupling reactions can enable frontier research in medicine and biology,3 but their 

development is still challenging due to the exogenous systems required for light absorption, 

and their slower rate. Fast bioorthogonal reactions are not regulated by light, and create 

substantial heterocyclic footprints that can affect function.3-4 Current photo-regulated versions 

of these reactions are limited by UV irradiation, and the photocatalysts needed for visible 

light harvesting.5 Photo-crosslinking methods still demand unstable precursors like azirines or 

cyclopropanones.5a,6 Recent C–C coupling reactions using photo-biocatalytic systems are 

based in auxiliary photosensitizers and electron donors, which may be problematic in more 

complex settings.7 As such, developments in self-sensitized, time-resolved, and fast C–C 

photo-coupling between simple functionalities are still highly sought after (Scheme 1, A).8,9 

Aliphatic ligations are particularly attractive due to their small size, robustness, and 

flexibility, which maximizes the chances to obtain functional and metabolically-stable 

conjugates.8 

  



Scheme 1. Approach towards time-resolved alkyl ligation with native NADH bio-

photoreductants. 

 

 

Decarboxylative radical addition reactions (Scheme 1, B) have recently emerged as a prime 

tool to create aliphatic ligations in biomolecules.8-9 These methods take advantage of the 

abundance of carboxylic acids,8,10 and the various technologies available to install Michael 

acceptors.1b,11 Despite their success, these mild reactions are too slow (6-12 h) to be suitable 

for time-resolved coupling using visible light, and require additional catalysts, inorganic 

reducing suspensions, and/or additives that are not native to biological systems.8 The 
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abundance of endogenous carboxylic acids in bio-molecules pose a selectivity challenge for 

carboxylic acid substrates (1), due to their similar oxidation potentials.8c-e In contrast, the N-

hydroxyphthalimide (NHPI) esters (2) can be orthogonally activated in the presence of other 

carboxylates via single-electron reduction.8a,b,f-l 

 

During our synthetic studies with redox-active carbenes,12 we recognized that the coupling of 

redox-active esters and Michael acceptors8a,b,f-l could significantly expand its capabilities with 

a suitable biocompatible reductant (Scheme 1, C). The reduced nicotinamide adenine 

dinucleotide (NADH) would be ideal because it is a native component of biological systems. 

The redox potential of NADH and its analogs (Eox{5} = 0.57 V vs Ag/Ag+) is insufficient to 

activate redox-active esters (Ered{2} ~ –1.1 ± 0.1 V vs Ag/Ag+).13 However, they become 

potent single-electron reductants upon irradiation (Eox*{5} = –2.60 V vs Ag/Ag+),14,15  but the 

short lifetimes of their excited states in solution (τ{5*} ~ 0.7 ns)16 has limited their 

application as autonomous photoreductants.14,17-18 At the onset of our work, these reagents 

required additional (photo)catalysts8f-l,18-19 or enzymes20 under rigorously anhydrous and 

degassed conditions to drive reductive couplings. We reasoned that the short-lived excited 

states of these systems would have a minimal impact in their photoinitiation,21 and would 

avoid triplet-sensitization side-reactions in the presence of dioxygen. The transient generation 

of the powerful photo-reductant 5* would effectively circumvent the incompatibility with 

oxygen and moisture of other ground state super electron donors.22 Importantly, the expected 

by-products of the reaction would be the native biological co-factor NAD+ (or analogues 

thereof), CO2, and benign phthalimide (LD50{rat oral} > 5 g/kg).23 

 

Towards this end, the reaction of the NADH model BNAH (5) with the redox-active ester 2a, 

and the acrylate acceptor 3a was studied under blue light illumination (λ = 450 nm) without 



photocatalysts or additives (Scheme 2, A).8f-l To our delight, the desired decarboxylative 

coupling product 4a was observed, albeit only in moderate yield (entry 1). The solvent had a 

marked effect (entries 1-5), and DMSO proved optimal (entry 5), thus facilitating future 

applications in biological and medicinal research. The reaction was found to be surprisingly 

fast, reaching 66% yield after 5 minutes of illumination (entry 6). Given the importance of 

maximizing the reaction rate for its implementation at higher dilution,3-4,4c-i we explored 

related photo-reductants. It was found that the dihydronicotinamide moiety is essential for 

high activity (entry 7), as well as the appropriate substitution at the heterocyclic nitrogen 

(entries 8,9). The dihydropyridine 9 was found to promote the reaction, albeit it was slower 

and less efficient than the more biocompatible dihydronicotinamides (entry 10).24,25 

Interestingly, the N-alkyl dihydronicotineamide BuNAH (10), which is the closest structural 

homologue to NADH among the photoreductants 5,7-10, was found to be optimal both in 

terms of yield and rate (entry 11). This result can be rationalized by the slightly more 

reductive character of BuNAH (10)26 than the N-benzyl-, and N-aryl-dihydronicotinamides 

5,8. Moreover, BuNAH (10) is only marginally affected by the presence of oxygen and water, 

unlike other organic (photo)reductants.22a-c,24-25 This is evidenced by the minimal erosion of 

efficiency under open-flask conditions (entry 12), and the identical performance in the 

presence of 10% v/v H2O (entry 13), which is relevant in the synthesis of DNA-encoded 

libraries.8b Even with 50% v/v H2O the reactivity is considerable (entry 14, unoptimized), 

despite the limited solubility of the model substrates 2a,3a in this medium. Interestingly, 

BuNAH (10) can be prepared in multi-gram amounts, stored indefinitely as a solid, and 

handled for more than a week as a DMSO stock solution (see SI), thus enabling micro-dosing 

in high-throughput studies. 

  



Scheme 2. Discovery and kinetic evaluation of the photo-coupling promoted by BuNAH 

(10). 

 

a Determined by 1H-NMR using 1,1,2,2- tetrachloroethane as internal standard. 

 

The kinetic time-profile of the reaction was obtained using in situ no-D NMR monitoring.27 

Non-deuterated DMSO was used to prevent any potential artifacts due to solvent isotopic 

effects in the propagation of the radical chain. However, it was found that the reaction 

proceeds similarly in DMSO and DMSO-d6, without any solvent-derived by-products (see 

SI). This way it was possible to confirm that the reaction is complete in 4.3 minutes using 

BuNAH (10) without additional photocatalysts (Scheme 2, B; left).8f-l The stability of system 
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in the absence of light is crucial in biology studies to develop equilibria before triggering the 

C–C coupling event.3,5-6 Pleasingly, the reaction does not progress in dark, but is quickly 

completed upon illumination (Scheme 2, B; center). Importantly, the kinetic profile of the 

reaction after the long dark period is identical to the standard reaction (Scheme 2, B; right), 

thus evidencing the absence of static deactivation. 

 

We set out to explore the scope of the photo-coupling with a series of model systems (Scheme 

3). Various Michael acceptors bearing electron-withdrawing groups such as ester (4a,b), 

amide (4c),11c aldehyde (4d), ketone (4e), nitrile (4f) or sulfone (4g) were accommodated. The 

maleimide scaffold (4h) that is common in bioconjugation reactions1b,5e,11a,b was found to be 

very efficient using BuNAH (10), which is clearly superior to the artificial dihydropyridine 

9.24-25 The branched methacrylate ester (4i) can also be used effectively. High yields and fast 

reactions also occur across a wide range of redox-active esters. Tertiary sites are coupled 

efficiently, thus allowing interesting cores to be derivatized, including bicyclic (4j), tricyclic 

(4k), cyclopropane (4l), oxetane (4m), piperidine (4n), and a pharmaceutical (4o). Secondary 

radical precursors are equally effective in the reaction (4p-r). Interestingly, the products 4r,r' 

display that the norbornenyl-nortricyclyl radical equilibrium28 can be established before 

capture by the Michael acceptor. Primary carboxylate derivatives led to the products (4s-u) 

featuring small and flexible alkyl-ligations. These include the cross-coupling of indole (4s), 

fatty acid (4t), and pyridine (4u) derivatives. Moreover, the reaction has proven useful in the 

late-stage functionalization of natural products, including the peptide model derived from 

alanine (4v), and various densely-functionalized terpenes (4w-z) with unprotected, ketone, 

enone, olefin, diene and alcohol functions. 

  



Scheme 3. Scope study. 

 

Conditions: 2 (0.1 mmol; 100 mM), 3 (150 mM), 10 (150 mM), 450 nm LED, DMSO, 20°C 

(thermostatic). a Dihydropyridine 9 was used instead of BuNAH (10) for comparison; b 15 

min reaction time; c isolated yield 4s,v is 30% and 36%, respectively; d 2 h reaction time; e 25 

min reaction time; f 20 min reaction time. 

 

UV/VIS spectroscopic studies (Scheme 4, A) revealed that the light absorption of BuNAH 

(10) is analogous to BNAH (5),16 featuring a strong band at 350 nm that extends into the 

visible region with low molar extinction (Scheme 4, A, left). In the presence of the redox-

active ester 2a, which only absorbs below 350 nm, the absorption increases marginally at the 

reaction concentration (12% increase at 450 nm and 0.1M; Scheme 4, A, right), which may 

indicate the formation of a donor-acceptor complex (EDA).29,30 While EDA complexes are 

known to be affected by changes in the substrate, solvent, dilution and/or temperature,29 
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molecular chromophores are robust, and independent of these factors. Photo-excited 

dihydronicotinamides are known to reduce simple alkyl halides,17b without the π-acceptor 

moiety that is common in EDA interactions.29,30 Moreover, diluting 10-fold (10 mM) and 

even 100-fold (1 mM), which should disfavor EDA formation, results in a surprising rate 

acceleration (Scheme 4, B). These facts and the marginal absorption of the EDA complex 

seems to disfavour its implication in the photoactivation of this system.24 Remarkably, the 

reaction is completed in just 80 seconds at 1-10 mM with identical efficiency. Fast kinetics 

are also obtained at high concentration (100 mM) using a thinner reactor (1.25 mm diameter), 

thus demonstrating that the acceleration stems from the attenuation of the inner filter effect.31 

Lastly, the expected intermediacy of free-diffusing alkyl radicals is evidenced by the different 

ratios of the products 4aa,aa' that were obtained using the 5-hexenyl radical clock precursor 

2aa at different initial concentrations (Scheme 4, C). 

 

The mechanistic proposal for this reaction (Scheme 4, D) comprises the electron-proton-

electron transfer manifold that is typical in radical reductions mediated by 

dihydronicotinamides,14,17,32 and the mechanistic experiments discussed above (Scheme 4, A-

C). Photo-induced electron and proton transfer from dihydronicotinamide 10 to the redox-

active ester (2) produces the carbon centered radical 11, a nicotinyl radical 12, phthalimide 

(13) and CO2. The radical 11 adds to the olefin 3 to produce the radical 14, which after 

concerted8g or step-wise (via 15)32 hydrogen atom transfer yields the coupling product 4 and 

the nicotinyl radical 12.8g The latter could reduce the redox-active ester (2) to produce the 

pyridinium salt 16, CO2, and a propagating alkyl radical chain (see 11).8g The formation of 

the pyridinium salt 16 and their kinetic correlation with the formation of the product 4 has 

been evidenced by in situ NMR studies (see SI). 

  



Scheme 4. Mechanistic studies. 

 

 

The results on the photo-coupling using the model dihydronicotinamide BuNAH (10), 

allowed to evaluate the performance of NADH, the native reductant in biological systems 

(Scheme 5). This compound has additional challenges due to its shorter excited state lifetime 

(τ{NADH} ~ 0.4 ns), and more complex photophysics given the interaction between its 
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dihydronicotinamide and adenine moieties.33 To our delight, the redox-active esters 2 were 

coupled with Michael acceptors 3 using commercial NADH disodium salt (17) under blue 

light illumination. The product 4ab was obtained in 92% yield with fast initial rate (see SI; 

>80% yield in less than 25 minutes). These results are remarkable considering the dilute 

conditions (20 mM), and that only 1.5 equivalents of the acceptor 3a, and natural NADH (17) 

were used. In analogy with the model system, it was confirmed the expected formation of 

NAD+ and phthalimide as by-products by in situ NMR analysis (see SI). Moreover, the 

reaction is general across a variety of primary, secondary and tertiary redox-active esters, 

including imide (4h), alkene (4t,y), cyclopropane (4l), alcohol (4y) and heterocyclic functions 

(4p,ab), which were incorporated in good yields. The variety of Michael acceptors that can be 

used in this coupling compares well with our findings in the model system, and include 

acrylate (4t,o,y,ab), vinylsulfone (4l,p) and maleimide (4h) alike. This reaction is suitable for 

the coupling of polar biomolecules, as evidenced by the successful photo-biotinylation of a 

sugar derivative (4ac).34 As far as we are aware, these are the first C–C coupling reactions 

driven by direct photo-excitation of NADH (17), they prove its autonomy to drive fast and 

efficient electron transfer,20 and set the stage for future biocompatible photo-ligation 

protocols. 

  



Scheme 5. Alkyl photo-ligation with NADH. 

 

Conditions: 2 (0.05 mmol; 100 mM), 3 (1.5 equiv.), NADH (17; 1.5 equiv.), 450 nm LED, 

DMSO, 20°C, 75 min. Yields determined by 1H-NMR using 1,1,2,2-tetrachloroethane as 

internal standard. a Reaction concentration 20 mM. 

 

In summary, herein we report that NADH and other dihydronicotinamides promote time-

resolved C–C coupling of redox-active esters and Michael acceptors upon illumination with 

blue light. These reactions do not require external photocatalysts or additives, has no 

detectable background reactivity, tolerates air and moisture, and has an unusually high rate 

even at low concentration. The system is driven by the robust excitation of the native 

reductant that is present in all biochemical systems, NADH. These results pave the way for 

future development of space- and time-resolved biocompatible alkyl photo-ligation protocols, 

which our group is currently developing. 
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