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Knowledge of the oxidation state of a metal centre in a material is essential to

understand its properties. Chemists have developed several theories to predict the

oxidation state on the basis of the chemical formula. These methods are quite suc-

cessful for simple compounds but often fail to describe the oxidation states of more

complex systems, such as metal-organic frameworks. In this work, we present a data-

driven approach to automatically assign oxidation states, using a machine learning

algorithm trained on the assignments by chemists encoded in the chemical names in

the Cambridge Crystallographic Database. Our approach only considers the immedi-

ate local chemical environment around a metal centre and, in this way, is robust to

most of the experimental uncertainties in these structures (like incorrect protonation

or unbound solvents). We find such excellent accuracy (> 98 %) in our predictions

that we can use our method to identify a large number of incorrect assignments in the

database. The predictions of our model follow chemical intuition, without explicitly

having taught the model those heuristics. This work nicely illustrates how powerful

the collective knowledge of chemists actually is. Machine learning can harvest this

knowledge and convert it into a useful tool for chemists.
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Main

Oxidation states are a concept every chemist learns, at the latest, in their first days as

undergraduates. Their history goes back to the early days of chemistry when Lavoisier

coined the word oxidation and Wöhler the expression “oxydationsstufe” (old German

spelling for the term oxidation number)1;2. Oxidation states are central to balance redox

reactions3, for chemical nomenclature4, and above all to help chemists to systematise

and reason about (redox) reactivity as well as spectroscopic properties5–7. The concept of

oxidation states plays such an important role in the fundamentals of chemistry that some

have argued that the oxidation numbers should be represented as the third dimension

of the periodic table8.

Every chemist also experienced that assigning oxidation states is not trivial. The In-

ternational Union of Pure and Applied Chemistry (IUPAC) defines oxidation states as

“. . . the charge of this atom after ionic approximation of its heteronuclear bonds . . . ”9;10.

This definition is, however, too generic and cannot be readily translated into a recipe to

determine the oxidation state of any given compound. Therefore, in practice, chemists

fall back to formal electron counting rules. For molecules, this approach gives satisfac-

tory results for most cases. For crystalline materials, however, these electron counting

rules often fail as they are based on bonds and bond orders, which are ill-defined for

crystalline materials11.

Therefore, for crystalline materials the oxidation state is often estimated using the

bond valence sum method12. This method, which dates back to Linus Pauling13, ap-

proximates all bonds as fully ionic, and the oxidation state is estimated by summing up

all bond valence sums, which are calculated based on a parametrization of an exponen-

tial function of metal-ligand bond lengths. There is an ongoing effort in tuning the bond

valence sum method to being able to automatically evaluate the entries in the Cam-

bridge Structure Database (CSD)14;15, which is the largest collection of metal-organic

crystals.
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The bond valence sum method is, however, far from ideal as it has many ambigui-

ties. First, one needs to assign bonds between the atoms, for which there is no unique

procedure for crystalline materials11;16. Second, a large number of different parame-

ter sets exist which are derived for different classes of materials, e.g., metal oxides or

metal-organic complexes12. There is little insight, if any, in the transferability of these

parameters to novel classes of materials, e.g., metal-organic frameworks (MOF). Yet,

these parameters are often mixed to cover chemical space12, and different groups may

use different parameters for the same set of materials.

Finally, the functional form for the bond valence method might sometimes be too

rigid as it is based solely on bond lengths. This can cause fundamental problems for

a number of systems, e.g., in the case of non-innocent ligands for which the electron

donation count depends on the coordination geometry, in sterically constrained systems

for which bond lengths can be outside the expected range, or for less well-defined

coordination polyhedra17–19.

In this context, it is important to note that quantum chemical calculations are of

limited use. From a fundamental point of view, one could argue that a state-of-the-art

quantum chemical calculations would give us the total energy for the different oxidation

states, and hence it would be straightforward to determine the oxidation state that gives

the lowest energy. Unfortunately, for most MOFs the unit cell is so large that one has to

use density functional theory (DFT), which tends to favor compounds with lower d or-

bital occupancy and leads to non-integer oxidation states for multivalent compounds,

like magnetite (Fe3O4), due to the self-interaction error (in the generalized gradient ap-

proximation (GGA))20;21. Other computational techniques have been developed that are

based on charge-partitioning schemes, but as the charge on an embedded atom is not

well defined, and subject to charge-transfer interactions with the ligands8;22, also these

methods are not able to remove the ambiguity in the assignment of oxidation states.

Because of these difficulties, most, if not all, quantum calculations on MOFs and other
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materials with unit cells that have a large number of atoms, in fact, require a “guess” of

the oxidation state as input, rather than giving us insight in the actual oxidation state.

In summary, there is a need for a new approach towards the assignment of integer

oxidation states that is able to capture the intricacies of chemistry—to provide starting

points for DFT calculations and to support chemical reasoning.

In this work, we propose to use the collective knowledge of chemists to assign oxida-

tion states, replacing the rule-based deductive approach of formal counting rules and

the bond valence method with a fully inductive one. Our approach harvests the collec-

tive knowledge of thousands of chemists to create a consensus assignment of oxidation

states, which to our knowledge has not been explored to provide a simple solution to

this important practical question.

In our approach, we parsed the chemical names in the CSD for oxidation states of

metal centres, numerically encoded the local chemical environment, and trained an

ensemble of machine learning (ML) models to classify the oxidation state. We chose

to focus on MOFs as their experimental structures are archetypal examples for many

of the reasons deductive techniques might fail to assign oxidation states: Unbound

solvent molecules are present in many experimental MOF structures, and sometimes

the structures also contain charge compensating counterions. Moreover, our model is

challenged by problems like missing or incorrect protonation as well as atomic disorders.

Even if our main focus in this work is on predicting the oxidation state of metal centres

in MOFs, we also demonstrate that our model that was trained only on MOFs is able to

transfer to other types of chemistry.

Results and discussion

To create our data set of oxidation states for metal centres in MOFs, we leveraged the

fact that the chemical names of nearly half of all entries in the CSD23 contain oxidation
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Fig. 1 |Schematic representation of the featurization approach. The local chemistry
features are based on statistics of elemental properties. The local geometry is captured
by measuring the similarity of the actual coordination environment to ideal coordination
environments.

states in parentheses following the metal names (as it is recommended in the guidelines

for inorganic nomenclature, the IUPAC red book)4. This assignment can be based on dif-

ferent arguments: chemical intuition, founded on knowledge of the chemical literature

and experience with similar reactions and compounds, some computing protocol (e.g.,

the bond valence method), or spectroscopic evidence. Even if these oxidation states are

not assigned with a unique and well-defined protocol, several chemists (at least the au-

thors and the editor at the CSD) consider this assignment to be correct23;24. The central

assumption in this work is that individual assignments might be wrong but if enough

chemists work on similar systems the collective knowledge will be right.

Encoding local environments and machine learning

In this work, we use a ML model to capture the collective knowledge of chemists on the

oxidation state. To be able to train ML models, one has to encode the local environment

as a vector of numerical descriptors (“features”). This is commonly known as featuriza-
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tion, and the success of any ML model crucially depends on selecting features that are

able to describe the problem at hand25—ideally in a physically meaningful way26. We

based our featurization approach on the locality approximation in which we consider

only the immediate local environment around a metal centre in a structure (cf. Fig. 1 for

an illustration). This is also reflected in Pauling’s principle of local charge neutrality27,

as well as the nearsightedness principle of electronic matter, which describes that the

density change caused by a potential change far an away is small28. In addition to being

physically meaningful, this approximation allows us to create a large training set that

enables powerful similarity-based reasoning. This realization reflects Pauli’s parsimony

principle which states that the number of unique local environments is limited. Us-

ing the locality approximation, we can also consider structures with unbound solvent

molecules and missing, or incorrect, protonation as those solvent molecules or missing

protons are typically outside the local environment of a metal centre.

Our feature vector combines the three aspects chemists have identified as key to the

oxidation state: the metal type, the chemical environment, and the geometry of the

coordination environment (see Fig. 1). We used the first two values of the feature vector

to identify the position of the metal in the periodic table, i.e., its row and group number.

The column encodes the well-known principle that elements in the same group share

similar chemistry, and the addition of the row makes the encoding of the metal position

in the periodic table unique. We further added the number of electrons in the different

shells as additional features for the metal centre.

The next elements of our feature vector recognise that there is a deep relationship

between coordination geometry and the electronic configuration. Prime examples for

this relationship are the ligand field splittings for different coordination environments

and the Jahn-Teller distortion for degenerate electronic configurations. To encode these

effects numerically, we use order parameters, which measure the similarity of the coordi-

nation environment to a collection of ideal coordination environments (e.g., octahedral,
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tetrahedral, bent linear). In this way, we capture heuristics like “square-planar Pt is

usually d8” which experienced chemists can rely on but which are difficult to compre-

hensively encode in a deductive approach. Importantly, our featurization does not

explicitly depend on bond lengths, which makes it more robust and interoperable—e.g.,

we can use the same model on DFT optimized and experimental structures.

The key insight on which formal counting rules are built upon is that different ligands

are thought to donate a different number of electrons. We attempted to encode this

more flexibly by calculating statistics, like the electronegativity differences, of elemental

properties between the metal centre and its geometrical nearest neighbors29.

The matrix describing the immediate local environments was then used as an input

for a voting classifier which arrives at its final prediction by averaging the predictions

(probability of oxidation states) of four base models, each based on a different approach

(decision trees, nearest neighbours, and linear functions in feature space). The use

of this voting makes our predictions more robust and provides us with an uncertainty

estimate30. This approach is similar to the way in which we use the collective knowledge

of chemists at the level of the training data to arrive at a data-driven definition for the

oxidation state—not all chemists use the same method to assign the oxidation state but

taken together the collective assignment for a particular chemical environment can be

robust.

After calculating the feature vector for each metal site, we split the data into disjoint

sets for training and testing (see Computational Methods section for more details). In

addition to that, we also use structures with strong spectroscopic evidence for the oxi-

dation state assignment as separate test cases.

Performance assessment

To assess the accuracy of our method, we focused on copper, for which we can compare

our results with an optimized and validated bond valence method14. In addition, for
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Fig. 2 |Performance metrics. Accuracy, precision, and recall for the assignment of oxi-
dation states for Cu in the MOF subset of the CSD using different classifiers that draw
from a uniform distribution (i.e., same probability for both oxidation states), only the
majority class (i.e., all structures are assigned II), the training set distribution (stratified,
i.e., assigning Cu(II) with a ca. 75 % chance), the bond valence sum method as well as
our ML model.

copper both oxidation states I and II are well represented in the MOF subset of the CSD

(Cu(I): 24.2 %, Cu(II): 75.8 %). To determine the performance of our ML method and

the optimized bond valence method, we calculate the accuracy of our predictions as

well as measures that are sensitive to the number of false positives (precision) and false

negatives (recall). Due to the imbalanced distributions of Cu(I) and Cu(II) we already

have a 75 % chance of success by assuming all oxidation states to be II (majority vote

in Fig. 2). Similarly, we can perform a random or stratified random assignment of the

oxidation state. These models are important as a baseline for the performance metrics.

Fig. 2 clearly shows that our model outperforms the baselines and the bond valence

method in all metrics.

It is interesting to use our ML results to investigate why the bond valence method

fails for some structures. For this, we projected our feature space onto two dimensions

using principal component analysis (PCA, cf. Fig. 3). In these principle components,

the two most relevant feature values are the extent to which the copper is trigonal

co-planar with coordination number three, and the extent to which copper is square

co-planar with coordination number four. The black stars are structures for which the
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Fig. 3 |First two principal components for Cu sites. Projection of the feature feature
space onto the two first principal components (linear combinations of features that cap-
ture most of the variance in the data). The colour coding shows the value of the order
parameter of the trigonal planar coordination (logarithmically scaled colour map). Black
stars mark metal sites of structures for which the bond valence method predicted the
wrong oxidation state. The two arrows denote the directions of the two original fea-
tures that have the highest contribution in the first and second principle component,
respectively. We also show two structures that are at the extremes of the first principal
component and for which the bond valence sum method is wrong and correct, respec-
tively.

bond valence method predicts the oxidation state incorrectly. We can see that these

incorrect assignments cluster for copper with high coordination numbers. In our model,

we see that for these structures the geometric features are of higher importance, and

exactly these geometric features can not be described in the distance-based bond valence

approach.

By design, our method is directly applicable to all metals. To obtain a more detailed

measure of the success of our predictions, we used a test set of 42,463 metal sites that
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Fig. 4 |Predictive performance across the periodic table. a, Confusion matrices for all
predictions, independent of the uncertainty of the model. b, Confusion matrices only
for predictions for which all base estimators agree (39,943 sites, s block: 100 %, d and
f block: 94 %, p block: 90 %). Confusion matrices calculated for predictions on a holdout
test set of 42,463 metal sites. Annotations in the confusion matrix in percent, which is
also used for the colour coding.

were not used in the training set to compute the confusion matrices for different parts of

the periodic table (cf. Fig. 4a). For the s block (e.g., Li, Na, Ca) all oxidation states were

correctly assigned. Even for the more challenging d block (e.g., Fe, Cu), p block (e.g., Al,

Pb, Bi), and f block (e.g., Ce, Eu, Ho) we obtained success rates of at least 90 %. These

results translate in commonly used classification metrics such as (balanced) accuracy

that exceed 98 % (see Supplementary Information).

One additional advantage of ensemble ML models is that they can provide informa-

tion on how reliable a prediction is. Models based on different hypothesis spaces tend

to disagree when used outside the domain of applicability (i.e., when they extrapolate)
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and agree when the queried case is well represented in the training data. For our model,

we find a mean difference between the number of disagreeing base estimators of 0.89,

which indicates that usually one base estimator will disagree in the case of a wrong pre-

diction. If we use this to eliminate predictions in which our model is uncertain, we find

that the overall prediction accuracy increases significantly. We now also get near-perfect

predictions for the p, low valence d, and f block metals (see Fig. 4b).

It is instructive to investigate those cases in which we make a prediction with a high

confidence, yet make a wrong assignment. These structures (ca. 300) were flagged

and we retrieved the article to manually inspect the oxidation state. Out of these, in 70

cases we observed that the assignment in the CSD did not match the one in the original

paper (see Supplementary Information), often caused simply by the exchange of IV to

VI or I with to II. In the rest of the articles, the oxidation state was either based on

experiments or guessed by the authors. For several of them we question the assignment

of the oxidation state and, of course, we also have cases in which our method incorrectly

assigns the oxidation state. All these cases are listed in the Supplementary Information.

The fact that the majority of the cases with discrepancies are erroneous assignments in

the CSD suggests that it would be advantageous to use our method as a diagnostics; if

we make a high confidence prediction that differs, a more detailed investigation into

the oxidation state would be advisable.

To further confirm the accuracy of our predictions, we identified a number of struc-

tures for which the oxidation state assignment is supported by strong spectroscopic

evidence. Also here, the model showed a good performance by predicting the correct

results in all but one of over 50 cases, including mixed-valence cases. In the Supplemen-

tary Information these cases are listed. The one structure for which our method failed is

a MOF for which it is known that there are missing linker defects31;32, but the unit cell

that was provided gave an averaged equivalent environment of all metals and hence

our model gave one oxidation state.
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Case studies

It is interesting to look at the assignments of a few case studies in detail. Of particular

interest are MOFs with mixed-valence and the case of flexible MOFs for which there is

considerable discussion in the literature about the oxidation state.

The importance of geometrical features in assigning the oxidation state is evident

for the case of the mixed-valence MOF Cu(I/II)-BTC. Mixed-valence MOFs have been

excluded from our training set as the CSD does not systematically indicate which oxida-

tion state corresponds to which metal. As our features are local, we can use the model

to determine the oxidation state for each metal site in these mixed-valence MOFs. Since

our program does not consider the symmetry, we determine the oxidation state for each

of of the 12 metal sites in the Cu(I/II)-BTC unit cell separately (cf. Fig. 5). In agreement

with the experimental data33 we assign the four coppers in the paddlewheel to be +II

while the eight coppers in the macrocyclus are assigned to be +I. In Fig. 5, we also

illustrate the relative importance of the different features that determine the assignment.

The assignment is mostly based on the local coordination geometry (blue ring), where

for the paddlewheel the square pyramidal (sq. pyr.) and for the macrocyclus the linear

order parameter is the most important feature. In Fig. 5e and f we give the top five

features that determine the oxidation state. In these figures, each dot corresponds to one

of the 12 metal sites. If the structure would be perfectly symmetric, there would be only

two dots. Our order parameters for the coordination environment reflect that the Cu

in the paddlewheel is considerably square pyramidal (high values for sq. pyr.) but not

linear, while the opposite is true for the Cu in the macrocyclus. This nicely illustrates

how our model captures the chemical intuition that a square pyramidal coordination en-

vironment is always associated with Cu(II) whereas a linear coordination environment

is associated with Cu(I).
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Fig. 5 |Predictions of the oxidation states in mixed-valence MOF Cu(I/II)-BTC. a,
Cu(I) macrocyclus. b, Cu(II) paddlewheel. c and d, Global feature importance for
the Cu(I) and Cu(II) sites, respectively. In both cases, the geometrical features (CN:
coordination number) are of highest importance for the prediction. e, Summary of the
Shapely additive explanations (SHAP)34 for the Cu(I) sites. f, SHAP feature importance
for the Cu(II) sites. The colour coding shows the value of the feature (red: high, blue:
low). Gray dots show the SHAP values for the other copper site. A negative SHAP value
translates into a lower predicted oxidation state, whereas a positive SHAP value corre-
sponds to a higher oxidation state. In all structures, copper is shown in blue, oxygen in
red and carbon in brown.
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An interesting case of a flexible MOF is MIL-47. For this MOF Barthelet et al.35 re-

ported an oxidation of the V(III) centre upon desorption of a terephtalate guest molecule,

which also resulted in a change of flexibility of the framework. In contrast to that, Cen-

trone et al.36 found no evidence for such a change in oxidation state. Our model supports

the initial assignment, as also did follow-up studies37;38: For the crystal structure with

the terephthalate guest molecule (cf. Fig. 6a) we find vanadium in the oxidation state

+III whereas we find vanadium in the oxidation state +IV for the crystal structures with-

out the guest molecule (cf. Fig. 6b). As visible in Fig. 6, the structures show a subtle

change in the coordination geometry upon activation, which our model mostly captured

in a change of the order parameter for octahedral coordination (coordination number 6

order parameters in Fig. 6c–f) which is higher for the structure with guest molecule. This

reflects the chemical intuition that V(III) is regularly octahedrally coordinated and that

the regular octahedron is distorted upon oxidation39. It is difficult to capture such sub-

tle effects in deductive approaches like formal electron counting or with the functional

form of the bond valence method.

Another peculiar example for the importance of small geometrical details in the as-

signment of the oxidation states is a redox-active MOF of the MOF-74 type in which the

iron centre was shown to be oxidized upon O2 adsorption at room temperature, which

was also reflected in a slight change in the coordination geometry of O2 from end-on

(η1) to a rather side-on (η2) coordination40. Our model is able to recognise the change

in oxidation state based on the slight change in coordination geometry. In a classical

bond valence or ligand-counting analysis, the assignment would remain ambiguous

due to the dependence on the arbitrary choice of the method to assign bonds between

the atoms.
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the octahedron after activation. c and d, Global feature importance for the V(II) and V(III)
sites, respectively. In both cases, the geometrical features (CN: coordination number)
are of the highest importance for the prediction. e, Summary of the SHAP feature
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colour coding shows the value of the feature (red: high, blue: low). Gray dots show the
SHAP values for the other vanadium oxidation state. A negative SHAP value translates
into a lower predicted oxidation state, whereas a positive SHAP value corresponds to a
higher oxidation state. In all structures, vandadium is shown in orange, oxygen in red.
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Novel MOFs

An interesting question is how well we would predict the oxidation state of a novel MOF

of which the chemistry is different from structures that are currently in the CSD. One

way to estimate the transferability of our model is to test it on databases of other struc-

ture classes, including binary ionic solids from the Materials Project41, transition metal

complexes42 and covalent organic frameworks (COFs)43, without additional training.

For small transition metal complexes, chemists conventionally assign oxidation states

by adding up the electron donation of ligands around the metal centre. For ionic crystals

on the other hand, chemists will usually base their reasoning directly on the chemical

formula. Our model unifies this picture: for the cases in which the model is highly confi-

dent in its prediction, we can predict the oxidation state with almost the same accuracy

as for MOFs (see Supplementary Information). Moreover, from a more practical point of

view, these results give confidence that our approach will predict reasonable oxidation

states for novel classes of MOFs that are not yet in the CSD.

We provide an app that uses our pre-trained model to assign oxidation states of metal

centres of MOFs on the Materials Cloud. This app requires the crystal structure as input

and outputs the oxidation states of the different metal sites together with an estimate of

the confidence. In addition, the program can provide details on the feature importance.

Conclusion

Oxidation states are a fundamental concept in chemistry. For many compounds (salts,

simple metal complexes) we can write down the oxidation state from empirical knowl-

edge. The bond valence method is successful in assigning oxidation states of more

complex structures. For small systems, we can even carry out accurate quantum calcula-

tions to determine the oxidation state44. However, there are many structures for which

these approaches are of limited use. Yet, chemists have provided a large amount of data
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on the oxidation state of structures for which these conventional approaches cannot be

used. In this work, we show that with an appropriate set of descriptors this collective

knowledge can be converted into a surprisingly powerful tool. Our work highlights

the power data-driven techniques can have in chemistry and materials science; as an

example to solve fuzzy problems, where no reliable alternative exists, but relying on the

collective knowledge acquired by chemists.

Computational Methods

We used the CSD python application programming interface (API) to retrieve the chem-

ical names for the structures of the MOF subset of May, 201945. Regular expressions

were used to parse the oxidation states and the corresponding metals. We excluded 6921

structures from our modeling workflow due to atomic overlaps in the experimental

structure.

For featurization, we used the matminer python package46 and standardised (based on

standard deviation and mean of each column) all features prior to use in the modelling

process.

The ML model adopted in this work is a soft voting classifier using gradient boosting,

k-nearest neighbours, logistic regression and an extra trees base classifier implemented

in the sklearn library47. For hyperparameter optimisation of each base estimator, we

used a mixed strategy of random search, simulated annealing and the tree Parzen esti-

mator (tpe) algorithm for 500 evaluations using the hyperopt-sklearn library to avoid

biases due to a single search strategy. Classification probabilities were calibrated on a

validation set, disjoint from training and test set, using isotonic regression. We use soft

voting to be able to provide an uncertainty metric. Further, this approach is appealing

as it gives higher weight to more confident models. More details can be found in the

Supplementary Information.
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To ensure that test errors are not optimistically biased due to multiple similar, but not

identical, local environments in one structure we not only constrained the split into

training and test set to have the same ratios of oxidation states and elements (iterative

stratification48) but also to include all chemical environments of one structures in only

one set. That is, if one chemical environment of a structure appears in the training set

all other chemical environments of the same structure will not appear in the test set.

Identical fingerprints are automatically discarded from our training set. We perform

this split based on “base identifiers” of the CSD database identifiers, which we create

by stripping all trailing integers. This accounts for the fact that some entries in the CSD

are updated entries (e.g., with refined lattice constants) for the same structure for which

a trailing number has been added to the original identifier. By restricting all structures

with the same base identifier to be in the same set, we avoid data leakage.

Further, we use a submodular selection approach49 to select a smaller, diverse set of

training points to make our training more efficient (and again recognise the parsimony

principle of Pauling by minimizing redundancy in our training set). To address the

fact that some metals (like copper) are more than an order of magnitude more frequent

than other metals (like ruthenium) we adjusted our sampling procedure to randomly

subsample the structures with the most common metals (Cu, Zn, Cd).

Crystal structures were drawn using VESTA50.
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