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ABSTRACT: Palladium-catalyzed amination reactions using soluble organic bases have provided a solution to the many issues 
associated with heterogeneous reaction conditions. Still, homogeneous C–N cross-coupling approaches cannot yet employ bases as 
weak and economical as trialkylamines. Furthermore, organic base-mediated methods have not been developed for Ni(0/II) catalysis, 
despite some advantages of such systems over analogous Pd-based catalysts. We designed a new air-stable and easily prepared Ni(II) 
precatalyst bearing an electron-deficient bidentate phosphine ligand that enables the cross-coupling of aryl triflates with aryl amines 
using triethylamine (TEA) as base. The method is tolerant of sterically-congested coupling partners, as well as those bearing base- 
and nucleophile-sensitive functional groups. With the aid of density functional theory (DFT) calculations, we determined that the 
electron-deficient auxiliary ligands decrease both the pKa of the Ni-bound amine and the barrier to reductive elimination from the 
resultant Ni(II)–amido complex. Moreover, we determined that precluding Lewis acid-base complexation between the Ni catalyst 
and the base, due to steric factors, is important for avoiding catalyst inhibition.  

INTRODUCTION 
The development of metal-catalyzed carbon–nitrogen 

(C–N) bond-forming reactions has had a transformative impact 
on the synthesis of pharmaceuticals, agrochemicals, organic 
materials and fine chemicals.1 Catalysts based on palladium and 
copper have been broadly employed to facilitate the cross-
coupling of aryl (pseudo)halides with amine nucleophiles, but 
these reactions have traditionally required the addition of 
inorganic bases.2 In recent years, however, there has been 
increased interest in the use of soluble organic bases in place of 
these commonly used inorganic reagents.3 These single-phase 
reactions are easily transferrable to high-throughput reaction 
screening settings, continuous flow chemistry, and microfluidic 
screening platforms.4 Moreover, the use of weak organic bases 
avoids functional group incompatibility issues associated with 
nucleophilic alkoxide and metal amide bases, especially in 
combination with amines.5 Previously, several phosphazene,6 
guanidine,6 amidine,7 and alkyl amine8 bases have been shown 
to facilitate Pd- and Cu-catalyzed9 C–N bond formation. The 
weakest among these, alkyl amine bases stand out as an 
attractive class of reagents, particularly since their steric 
properties, nucleophilicity, and basicity can be precisely 
tuned.10 Furthermore, many trialkylamine reagents, including 
triethylamine (TEA), are produced on large scale directly from 
alcohols and ammonia,11 making them as inexpensive as 
common organic solvents.  

Previously, our research group demonstrated that a 
bulky, electron-deficient Pd catalyst can facilitate C–N bond 
formation in the presence of 1,8-diazabicyclo[5.4.0]undec-7-
ene (DBU).12 Mechanistic investigations13 and in-depth reaction 
optimization studies14  suggested that other organic bases, 
including TEA and diisopropylethylamine (DIPEA, Hünig’s 
base) could facilitate the cross-coupling of aryl triflates and 
anilines, albeit with  
 

 

Figure 1. (A) Inorganic bases used in traditional Pd-, Ni-, and 
Cu-catalyzed C–N cross-coupling methodologies. (B) 
Amidine, guanidine, and phosphazene bases used in Pd-
catalyzed amination and Ni-catalyzed photo- or 
electrocatalysis. (C) Nickel-catalyzed C–N cross coupling of 
aryl triflates and amines facilitated by triethylamine. 
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slower reaction rates. We considered whether an electron-
deficient catalyst based on nickel might allow for these very 
mild and inexpensive trialkylamine bases to be used more 
effectively in C–N cross-coupling.  

The use of Ni was of particular interest to us because 
the use of weak, soluble organic bases in Ni-catalyzed aryl 
amination has not yet been systematically explored. Since the 
first reports of Ni-catalyzed amination,15 the transformation has 
been significantly improved in terms of scope and efficiency 
through rational ligand design,16 the development of 
photocatalytic variants,17 and using electrochemistry.18 While 
these efforts have greatly expanded the number and type of 
electrophiles19 and nucleophiles20 that can be cross-coupled 
under practical conditions, the majority of Ni-catalyzed 
methods remain predominantly reliant on inorganic bases such 
as metal tert-butoxides and phosphates to facilitate C–N 
formation (Figure 1A). Many useful solutions that are 
compatible with organic bases take advantage of energy input 
through either photo- or electrocatalysis. These protocols are 
primarily limited to the coupling of strongly coordinating 
nucleophiles such as aliphatic amines (Figure 1, B).17,18 
Providing a complementary approach, we herein describe the 
rational discovery of a Ni (pre)catalyst capable of effecting 
arylation of weakly binding aniline nucleophiles using a 
trialkylamine base. 

 

RESULTS AND DISCUSSION 
Our studies began with an evaluation of commercially 

available bidentate phosphine ligands and organic bases in a 
model transformation, the Ni-catalyzed cross-coupling of 
phenyl triflate (1) and aniline. Selected results from these 
studies are summarized in Table 1 (see Supporting Information 
for further experimental details). When we used Ni(COD)2 (4 
mol%) and 1,1′-bis(diphenylphosphino)ferrocene (L1, DPPF) 
as precatalysts and triethylamine (TEA) as base, a 6% yield of 
the desired product was observed, with unreacted 1 making up 
the remainder of the mass balance. As in our previous work on 
Pd-catalyzed amination, we predicted that a more electron-
deficient metal center would better facilitate the deprotonation 
of an amine-bound Ni complex by a base as weak as TEA.12a 
Accordingly, we prepared several DPPF derivatives bearing 
electron-withdrawing trifluoromethyl (–CF3) substituents on 
the P-aryl groups.21 Indeed, use of the fourfold 
trifluoromethylated ligand L2 ([CF3]4-DPPF) resulted in 32% 
yield of the desired product. The yield was further increased to 
94% by employing the further trifluoromethylated ligand L3 
([CF3]8-DPPF).22 The ferrocene backbone was also found to be 
important to the success of these reactions: other ligands 
containing similar trifluoromethylated aryl groups, such a 1,2-
bis(diphenylphosphino)benzene (DPPBz) derivative (L5, 
[CF3]8-DPPBz) were less effective in promoting the C–N 
coupling reaction. TEA, besides being advantageous in terms of 
cost and mildness, was also uniquely efficacious as a base. 
Several stronger bases that had been reported to facilitate Pd-
catalyzed amination reactions, including DBU and 7-methyl-
1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), were essentially 
unable to promote our Ni-catalyzed transformation. Other 
alkylamine bases, such as 1,4-diazabicyclo[2.2.2]octane 
(DABCO) and DIPEA, could be used instead of TEA, but with 
lower reaction yields.  
 
 

 
Table 1. Comparison of ligands and bases in the Ni-catalyzed 
cross-coupling of phenyl triflate (1) and aniline. 
 

 
Although Ni(COD)2 is a convenient source of Ni(0) 

for reaction discovery and mechanistic studies, the complex is 
highly sensitive to air and moisture, generally requiring the use 
of an inert atmosphere glovebox to handle.23 To alleviate the 
associated operational complications, we aimed to develop an 
air-stable Ni precatalyst bearing L3, the most effective ligand.24  

Figure 2. Synthesis and crystal structure of an L3-bound 
methallyl triflate nickel oxidative addition complex. Thermal 
ellipsoids are shown at 50% probability. Hydrogen atoms are 
omitted for clarity. 

aGC yields were determined relative to hexamethylbenzene 
internal standard and are reported as a single run. Reaction 
conditions: phenyl triflate (0.20 mmol), aniline (0.24 mmol), 
base (0.40 mmol), Ni(COD)2 (0.016 mmol, 4 mol% Ni), 
ligand (0.016 mmol, 4 mol%), and 2-MeTHF (0.40 mL, 0.50 
M). 2-MeTHF =  2-methyltetrahydrofuran.  
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Table 2. Amination of Aryl Triflates using P1a 

 
aIsolated yields are reported as the average of two runs. Unless noted, standard reaction conditions: aryl triflate (1.0 mmol), aryl 
amine (1.2 mmol), triethylamine (2.0 mmol), P1 (0.04 mmol, 4% Ni), 2-MeTHF (2.0 mL, 0.5 M), 100 °C for 16 h. bSingle reaction 
performed without stirring. c1.5 equiv of aryl amine was used. 
 

 
Our initial efforts focused on the use of σ-aryl “oxidative 

addition” (OA) complexes of aryl bromides and chlorides.25 
However, OA complexes bearing L3 and various aryl groups,26 

including o-tolyl and mesityl, were unable to facilitate the reaction, 
even when activated with reducing additives including 
phenylboronic acid and activated olefins. We hypothesized that the 
presence of strongly associating halide anions inhibits C–N 
coupling by outcompeting aniline for binding to Ni (see below for 
further mechanistic discussion).27 Predicated on this lack of 
reactivity, we sought to prepare OA complexes bearing non-
coordinating triflate anions.28 However, due to the propensity of 
coordinatively unsaturated Ni(II) complexes to undergo bimetallic 
decomposition pathways, our attempts to isolate Ni(II) σ-aryl 
complexes bearing triflate anions were not successful. Based on the 
work of Nolan29 and Hazari,30 we hypothesized that the introduction 
of an η3-allyl group would saturate the Ni coordination sphere 
without introducing new strongly-coordinating ligands such as 
halides. Combining a commercially available methallyl nickel 
chloride dimer with L3 in the presence of THF led to the formation 
of L3-Ni(Cl)(η3-methallyl).31 This complex was not purified, but 
immediately treated with trimethylsilyl triflate (TMS–OTf), upon 
which a methallyl nickel triflate complex was rapidly formed.32 The 
structure of this complex (P1) was unambiguously characterized 
using X-ray diffraction (Figure 2). Under optimized reaction 
conditions, this precatalyst (P1) facilitated the C–N coupling 
reaction and provided the desired product in  
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V

P

P

ArAr

Ar Ar

Ni
Ph
OTf

P

P

ArAr

Ar Ar

Ni
Ph
OTf

NH2
Ph

P

P

ArAr

Ar Ar

Ni
Ph
NH
Ph

P

P

ArAr

Ar Ar

Ni Ph OTf

Ph NH2

NEt3

NEt3

Ph
H
N Ph

H
TfO

Ph

Ph
H
N

NH2

MeFe
P

P

ArAr

Ar Ar

Ni Me

OTf

P1 Activation

II

IV III

I



 

  
98% yield in 2 h. Analysis of the crude reaction mixture 
(GC/MS) showed that N-methallyl aniline was formed during 
the reaction, consistent with activation of P1 through outer-
sphere nucleophilic attack by aniline at the methallyl ligand.33   
 

Using this new precatalyst, we explored the scope of 
the cross-coupling reaction by testing a variety of aryl triflate 
electrophiles and amine nucleophiles. In contrast to some Pd-
catalyzed amination procedures, in particular those facilitated 
by soluble organic bases, this methodology is tolerant of 
sterically encumbered coupling partners. Specifically, aryl 
triflates and anilines bearing bulky ortho-substituents, such as 
trifluoromethyl (2b), benzyl (2h), morpholino (2m) and phenyl 
(2n), underwent coupling in high yields. In contrast to 
traditional Ni-catalyzed amination protocols that work well for 
strongly coordinating alkylamine nucleophiles, the current 
method is especially effective for weakly coordinating anilines, 
including those bearing cyano (2c), trifluoromethoxy (2q), and 
carbonyl substituents (2a, 2j). Additionally, secondary aryl 
amines, including indoline (2g) and a 3-substituted indole (2p) 
could be arylated in high yields.22 We note, however, that 
aliphatic amines do not react under these conditions, likely due 

to their decreased acidity compared to anilines.34 Coupling 
partners containing heterocycles, including pyridines (2a, 2r), a 
quinoline (2e), a thiophene (2c), and a pyrrole (2i) were 
tolerated well. Several electrophilic functional groups, 
including methyl esters (2a-c, 2h, 2n) and nitriles (2c, 2g, 2p), 
remained intact under the mildly basic reaction conditions. An 
α,ß-unsaturated ester (2j), and a coumarin derivative (2k) could 
be cross-coupled under these reaction conditions, despite their 
potential to react with anilines in metal-catalyzed aza-Michael 
reactions.35 Moreover, substrates bearing redox-sensitive 
functional groups, including an anthraquinone (2l) are 
tolerated.36 Finally, because reproducibility issues associated 
with stirring rate can occur in amination protocols featuring 
inorganic bases37 or electric potentials,18b we wished to 
demonstrate that this method is not dependent on mixing 
efficiency. To show this, we prepared 2f without using a stir bar 
or external agitation. The desired product was obtained in 93% 
yield, which is in line with that obtained when magnetic stirring 
was used. This result suggests that these single-phase reactions 
are less prone to reproducibility issues when varied stirring 
techniques are used. 
 

Figure 4. Computed energy profiles for the Ni-catalyzed cross-coupling of 1 and aniline. Gibbs free energy values calculated with 
M06/6-311+G(d,p)-SDD(Ni,Fe)//B3LYP/6-31G(d)-SDD(Ni,Fe).  
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Table 3. Ligand effects on deprotonation and reductive 
elimination. a  

 
 
 

The proposed catalytic cycle of this Ni-catalyzed 
amination reaction is summarized in Figure 3.20b,38 First, 
activation of P1 via nucleophilic attack of the aniline at the 
methallyl group provides a L3-supported Ni(0) catalyst. Next, 
Ni undergoes oxidative insertion into the aryl triflate. Then, the 

amine binds to the Lewis acidic Ni(II) metal center, acidifying 
its hydrogens for deprotonation by TEA. Finally, reductive 
elimination from resultant Ni(II)–amido complex affords the 
desired product and regenerates the Ni(0) catalyst. Although 
this proposed mechanism is directly analogous to that of other 
Ni- and Pd- catalyzed C–N cross-coupling reactions,13 it was 
important to determine how the highly fluorinated ligand L3 
might affect the elementary steps, and importantly, how it is 
able to facilitate the catalytic transformation using such a weak 
base (TEA).  
 

Using density functional theory (DFT) calculations 
we obtained a model of the catalytic mechanism using phenyl 
triflate (1) and aniline as substrates. The energy profile of this 
mechanism is illustrated in Figure 4. The binding of phenyl 
triflate to L3-Ni(0) (complex I) was found to be exergonic by 
10.1 kcal/mol (II). From this π-complex, oxidative addition 
through an SNAr-type mechanism39 was predicted to be 
extremely rapid, with a barrier of only 9.0 kcal/mol (II-TS), and 
thermodynamically favorable, releasing 26.5 kcal/mol of free 
energy (III). In the ground state of the resultant Ni(II) complex 
III, the triflate anion was bound to Ni, although its dissociation 
appeared possible under the reaction conditions (+16.9 
kcal/mol, IV). Regardless, the displacement of the triflate 
ligand by aniline is only slightly endergonic (+7.5 kcal/mol, V). 
Interestingly, deprotonation of this cationic Ni–aniline complex 
by TEA was predicted to be slightly favorable in free energy (-
0.7 kcal/mol, VI). Reductive elimination from this amido 
complex through a three-membered transition state (+16.4 
kcal/mol, VI-TS) would then provide the diphenylamine 
product.   
 Considering our original hypothesis that the electron-
deficiency of the ligand had a favorable influence on the 
thermodynamics of the deprotonation step, we more closely 
examined the effect of varying the phosphine ligand on this 
process. Table 3 shows the pKa of several amine-bound Ni(II) 
complexes analogous to Vas well as triethylammonium triflate 
and aniline for comparison purposes. The free energy change 
associated with the proton transfer step can be calculated on the 
basis of pKa differences. The deprotonation of weakly acidic 
aniline (pKa = 28) by triethylamine (pKaH+ = 12.5)41 is 
thermodynamically highly disfavored. However, association of 
the aniline to cationic Ni(II) results in dramatic acidification, to 
the extent of roughly 13 pKa units in THF when the ligand is 
DPPF (L1). With the addition of electron-withdrawing groups 
on the ligand, the amine is further acidified. Indeed, in the 
complex with L3, the aniline is sufficiently activated that it is 
predicted to be more acidic (pKa = 12.2) than triethylammonium 
triflate. Thus, deprotonation by triethylamine is in this case 
slightly thermodynamically favorable. 

We also found that the barrier to reductive elimination 
is also somewhat affected by the electronic properties of the 
phosphine ligand: as the number of trifluoromethyl substituents 
on the catalyst increase, the reductive elimination is 
increasingly facile. For comparison, we also evaluated an 
analogue derived of L3 from DPPBz (L4). With the L4-ligated 
catalyst, the free energy of deprotonation and barrier to 
reductive elimination were both higher (+1.9 kcal/mol and +1.5 
kcal/mol, respectively) than from the L3-bound complexes. 
Thus, not only the identity of the P-aryl groups, but the 
backbone structure of the chelating ligand significantly 
influences these steps. The combined barrier from 
deprotonation–reductive elimination sequence is also shown in 
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Table 3. The net activation energies are qualitatively consistent 
with the experimentally determined yields using these catalysts. 

Finally, our model also explained the superior 
performance of triethylamine compared to other organic bases, 
even those that were significantly stronger bases. Previously, in 
experimental13a and theoretical13b mechanistic studies of Pd-
catalyzed amination using DBU, we found that off-cycle 
binding of the base to Pd could have an inhibitory effect. We 
investigated the relative binding ability of TEA, DBU, and 
aniline to the cationic intermediate IV (Figure 5). As a 
reference, we had found earlier that the binding of triflate to IV 
is exergonic by 16.9 kcal/mol. Due presumably to steric 
interactions, the binding of TEA to IV is significantly 
disfavored (∆G° = +7.8 kcal/mol), in a manner similar to well-
known “frustrated” Lewis acid-base pairs.40 Accordingly, 
aniline can outcompete the base for binding (∆G° = –9.4 
kcal/mol for aniline binding to IV), and the productive reaction 
can take place. In contrast, when DBU is present, we found that 
it tightly coordinates to IV (∆G° = –20.8 kcal/mol), 
sequestering Ni in this off-cycle resting state and thus 
increasing the overall activation energy for cross-coupling. We 
believe that this effect explains the unique effectiveness of TEA 
compared to stronger, more nucleophilic organic bases.  

 

CONCLUSION 
In summary, we have developed a novel Ni(II) 

precatalyst bearing an electron-deficient DPPF-derived ligand 
(L3) that is able to facilitate the cross-coupling of aryl triflates 
with primary anilines, as well as indolines and indoles. The 
precatalyst is a rare example of a bench-stable cationic Ni(II) 
triflate complex and represents a new class of halide-free Ni 
precatalysts that might have general applicability to reactions 
currently requiring Ni(COD)2. Using DFT calculations, 
relationships between ligand structure and the energetics of the 
key deprotonation and reductive elimination steps were 
elucidated. Moreover, we determined that the unique 
effectiveness of alkylamine bases can be attributed to their 
steric bulk, which prevents unwanted binding to cationic Ni 
intermediates. We anticipate that these mechanistic insights can 
assist in the development of new Ni-catalyzed cross-coupling 
methodologies that employ soluble organic bases.  
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