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Rationalizing the influence of the solvent on electrochemical reaction energetics is a

central challenge in our understanding of electrochemical interfaces. To date, it is

unclear how well existing methods predict solvation energies at solid/liquid interfaces

since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD)

simulations present a physically highly accurate, but also a very costly approach. In

this work, we employ extensive AIMD simulations to benchmark solvation at charge-

neutral metal/water interfaces against commonly applied continuum solvent models.

We consider a variety of adsorbates including *CO, *CHO, *COH, *OCCHO, and

*OH on Cu, Au, and Pt facets solvated by water. The surfaces and adsorbates con-

sidered are relevant, among other reactions, to electrochemical CO2 reduction and

the oxygen redox reactions. We determine directional hydrogen bonds and steric wa-

ter competition to be critical for a correct description of solvation at the metal/water

interfaces. As a consequence, we find that the most frequently applied continuum sol-

vation methods, which do not yet capture these properties, do not presently provide

more accurate energetics over simulations in vacuum. We find most of the computed

benchmark solvation energies to linearly scale with hydrogen bonding or competitive

water adsorption, which strongly differs across surfaces. Thus, we determine solva-

tion energies of adsorbates to be non-transferable between metal surfaces in contrast

to standard practice.

a)Electronic mail: kchan@fysik.dtu.dk
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I. INTRODUCTION

Modeling the electrochemical interface via atomistic simulations is a central challenge

in computational electrochemistry. In a comprehensive atomistic treatment, both a de-

scription of the electrified double layer under the influence of an external potential and the

interaction of reaction intermediates with the solvent (e.g. water) are required1. In density

functional theory (DFT) calculations, recent approaches to represent the solid/liquid in-

terface are solid/vacuum interfaces with a posteriori corrections for solvation2,3, “implicit”

continuum solvation methods4,5, static ice-like water bilayers6,7, and ab initio molecular

dynamics (AIMD) simulations8–10.

Implicit solvation methods employ a polarizable dielectric continuum to represent the

solvent. The continuum forms a cavity around a solute by varying the dielectric constant

ε smoothly from the bulk solvent value (i.e. for water ε ≈ 80) to the vacuum permittivity

where the quantum mechanical electron density is located. The parameterized interaction

of the dielectric mimics an ensemble representation of the solvent but usually does not in-

clude directional interactions with the solvent (e.g. hydrogen bonding), unless specifically

accounted for (i.e. in the RISM approach11 or CANDLE12 solvent model). In combination

with an electrolyte model, e.g. a modified Poisson-Boltzmann model, a tunable interfacial

potential can be introduced13–15. In contrast, explicit, static ice-like bilayer models include

directional water interactions but lack an ensemble effect. They therefore suffer from a sam-

pling problem due to the shallow local minima corresponding to different water structures.

If not sampled consistently, the computed solvation energies may not be reliable16. Through

the combination of static water bilayers with implicit/electrolyte models, a potential control

can be introduced17–21. AIMD represent a highly accurate, but also a very computationally

costly approach. By simulating the time propagation of a water ensemble, temperature ef-

fects of the directional water interactions are accounted for. Currently, the control of the

potential during such simulations remains an open challenge, with pioneering work only

recently emerging22,23.

From a practical point of view, the application of implicit solvent models is highly at-

tractive. The continuum modelling approach not only yields minimal computational cost

through the efficient representation of the solvent, but also through the elimination of the

sampling problem. Combined with the potential control enabled by continuum electrolyte
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models, these methods present the ideal tool to investigate electrochemical problems. It is,

however, unclear how well these methods capture solvation at the solid/liquid interface. This

is due to the fact that any parameterization is based on solvation references in bulk solvent4,12

and directional and steric interactions with explicit water molecules are absent1,15, at least

for the most frequently used models. Similarly, any improvement in accuracy via the inclu-

sion of static water molecules is in no way confirmed. Thus, the accuracy or shortcomings

of the application of implicit solvation methods for solid/liquid interfaces remain enigmatic.

Without an experimental benchmark for solvation energies at solid/liquid interfaces1, AIMD

simulations present a reliable way to quantify solvation energies at solid/liquid interfaces.

In this work, we perform a benchmark for solvation effects at uncharged metal/water

interfaces via AIMD simulations. We focus on metal surfaces, since these are well-behaved

at the GGA-DFT level. Our test set comprises of a variety of electrocatalytically relevant

adsorbates and metal surfaces with a wide range of binding strengths: we investigate *OH,

*CO on Cu(111), Au(111), and Pt(111) as well as *OH, *CO, *CHO, *COH, and *OCCHO

on Cu(211). We quantify and rationalize the solvation energies obtained. In that, direc-

tional hydrogen bonds and steric competitive water adsorption24 appear critical and linearly

correlate with the solvation energies of adsorbates with specific functional groups. We find

that solvation energies of individual adsorbates vary strongly across metals and facets, which

impedes their transferability for a posteriori corrections. The solvation energies determined

from frequently applied continuum solvent methods strongly deviate from those determined

from AIMD due to the missing directional and steric solvation effects. Specifically for our

diverse test-set, the associated mean absolute errors are equivalent to those obtained from

pure solid/vacuum calculations. On the one hand, these results put to question the accuracy

of recent popular implicit solvent models for solvation energies of adsorbates. On the other,

they provide a reference for future developments of these effective/parameterizable models.

II. METHODS

A. Computational Details

Density functional theory (DFT) calculations are performed with the Vienna Ab Initio

Simulation Package (VASP)25,26 employing the projector-augmented wave (PAW) method27
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in combination with a plane wave basis set in periodic boundary conditions. The RPBE28

exchange-correlation functional is used and dispersion effects are included via the semi-

empirical zero damping D3 dispersion correction scheme of Grimme29,30. This “RPBE-D3”

setup has been reported to accurately simulate liquid water properties on metal surfaces31–33.

A Gaussian smearing with a width of 0.1 eV and plane wave cutoff energies of 400 eV are

chosen. Electronic structure calculations are converged until a total energy difference of

10−4 eV whereby a quantitatively consistent performance against a more accurate conver-

gence criterion of 10−6 eV is ensured (via the energy conservation and relative energetics in

AIMD runs). For geometry optimizations, all atomic structures are relaxed until residual

forces are less than 0.05 eV/Å. In the AIMD simulations the motion of atoms is treated

classically using a 1 fs timestep within the NVT ensemble by employing a Nose thermostat

at 300 K34–36.

To simulate metal surfaces, we use slab models with a 3×1 and 3×4 supercell for the

fcc(211) and fcc(111) facets, respectively. A 4×4×1 and 4×3×1 Γ-point centered Monkhorst-

Pack k-point grid is applied to sample the Brillouin zone37. The lattice constants obtained

for the employed RPBE-D3 scheme based on a 1×1×1 bulk unit cell and a k-point den-

sity consistent 12×12×12 k-point grid are 3.560 Å for Cu, 4.167 Å for Au, and 3.934 Å for

Pt. AIMD simulations are conducted using (non-symmetric) slabs of three layers fixing the

positions of the two bottom layers and including a dipole correction38. Geometry optimiza-

tions are conducted on symmetric slabs of four layers with the two central layers fixed. The

symmetric cells are used to ensure a reliable determination of the workfunction if continuum

solvation is applied18. To avoid interactions across periodic images, a vacuum spacing of 10

Å on each side of the slab is included. For convenient handling of atomic structures, the

Atomic Simulation Environment (ASE) package is used39.

Solvation at the metal surface is modeled via (1) AIMD simulations of explicit water

molecules (see below Sec. II B) and (2) a density based continuum solvent model40 as imple-

mented in VaspSol5 combined with geometry optimizations. Solvation-free reference calcu-

lations are conducted for (1) via AIMD in absence of explicit water molecules and for (2) via

geometry optimization in absence of continuum solvation. To generalize our findings with

respect to the implicit solvation method, we compare the VaspSol continuum solvation and

the SCCS model in Quantum ESPRESSO / Environ4,41. We find them to yield near-identical

solvation energies (c.f. SI Sec. III). All simulations of (adsorbates at) the metal/water inter-
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face do not include a net charge on the metal slab and thus correspond to the model systems

at the potential of zero charge (PZC).

B. AIMD Statistics and Evaluation

To ensure high accuracy of the AIMD simulations, a physically sound representation of

the solid/liquid interface through a sufficient number of water molecules in the atomic model

and well converged statistics are required. The metal/water interface is modeled by roughly

three “layers” of explicit water molecules, resulting in 15 and 24 H2O for the 3×1 fcc(211)

and 3×4 fcc(111) facet, respectively. For each surface-adsorbate combination, four individual

AIMD runs are conducted starting from different water structures. The respective initial

water structures are local minima which deviate by up to 0.5 eV in relative energy. The

different starting points allow for a distinct randomization among the varying trajectories.

This setup avoids an entrapment in one local minimum of the water structure which may

potentially occur if only a single trajectory is investigated. Each MD trajectory is run for a

duration of > 30 ps, whereby data sampling is commenced after an equilibration period of

5 ps yielding in total at least 100 ps per surface-adsorbate combination. We ensured that the

individual trajectories are converged showing a drift in total energy of < 0.03 eV/ps after

equilibration (c.f. SI Sec. I). We determine an uncertainty for all averaged quantities from

the standard deviation σ between the n (=4) individual MD runs as σ√
n
.

Within the 3 water layers on the Cu and Pt surfaces, we find a “bulk” water segment

with a thickness of 5-7 Å, where we have defined “bulk” to correspond to regions with ≥

0.95 of the experimental water density in agreement with previous work32,33,42 (c.f. Fig. 4

and 5). We also find that in these regions the O and H density profiles are relatively flat

and featureless. The corresponding region on Au(111) appears slightly less dense with ≥

0.85 of the experimental water density. However, the presence of such a bulk-like segment

alone should ensure an adequate metal/water interface. The characteristics of the latter

have been found rather insensitive to the absolute water “bulk” thickness and extended

system size42. Thus, accurate solvation effects can be expected from our employed setup.

Further, our Pt(111)/water interface with small bulk water thickness yields a workfunction

of 4.86 ±0.32 eV which compares well to the value of 4.96± 0.23 eV found for a considerably

thicker (six water layer/Pt(111)) interface using the same DFT settings32,33. Reference
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AIMD simulations are conducted for all surface-adsorbate combinations without solvation

and for gas phase molecules. We ran these reference calculations once, since convergence is

rapidly achieved and the variation between runs is negligible.

We compare internal adsorption energies ∆Ead(∗A|Me) of various adsorbates ∗A on the

metal surfaces Me as calculated via the different approaches to solvation. These relative

energies are evaluated by

∆Ead(∗A|Me) = E(∗A+Meslab)− E(Meslab)− E(Ag) (1)

where E(∗A+Meslab), E(Meslab), E(Ag) correspond to the energy of the adsorbate on the

metal slab, the pristine metal slab and the adsorbate gas phase reference, respectively. The

states ∗A + Meslab and Meslab can thereby correspond to systems with solvation (based on

AIMD or continuum solvent) or without solvation (solid/gas interface). All adsorbates are

referenced to the gas phase molecules H2, H2O and CO. It follows for the gas phase reference

energy E(Ag)

E(Ag) =
nH

2
E(H2) + nO (E(H2O)− E(H2)) + nC (E(CO)− E(H2O) + E(H2)) (2)

where nH, nO, and nC are the number of H, O, and C species in the adsorbate, respec-

tively. When handling AIMD energetics, internal energies correspond to the sum of the

time averaged potential and kinetic energy. Also, we add 3
2
kBT to the energy of each stoi-

chiometric gas phase reference molecule, since the center of mass motions are not included

in the gas-phase MD simulations43,44.

We carefully monitor the microscopic events occurring during the AIMD trajectories to

capture the mobility and integrity of the adsorbates, hydrogen bonding, and H2O adsorp-

tion. The diffusion of adsorbates and water molecules is tracked via the mean squared

displacement (MSD). The increased mobility at the water/vacuum interface is omitted from

the diffusion analysis through exclusion of water molecules which reside more than 5 % of a

trajectory within this region. The latter is defined within 4 Å from the outer most H2O at a

given snapshot. To remove noise, the MSD is time averaged from overlapping subsets of atom

displacement and diffusion coefficients are evaluated following the Einstein formulation45,46.

The instantaneous adsorption site of each adsorbate is tracked by the distance to the in-

dividual surface sites (c.f. Fig. 1) which are determined using the package CatKit47. For each

snapshot all distances d to the surface sites are weighted by a Gaussian fg = exp(−d2/2σ2)
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FIG. 1. Surface sites for the 3×4-(111) (top left) and 3×1-(211) (top right) slab models used for the

site-partitioning of the AIMD trajectories. Symmetrically equivalent sites are shown in the same

color. (bottom) Schematic of Gaussian weights on surface sites with Gaussian weighting function

(fg) against the distance d. The weighting function overlap is depicted for two sites separated by

the minimum distance dmin.

and normalized. The standard deviation σ for the distance weighting Gaussian is chosen to

drop to virtually ≈ zero (0.1 %) within the shortest distance between two surface sites (c.f.

Fig. 1). This approach gives a quantitative measure of the fractional site occupation which

allows us to (1) obtain the share of site occupation over the course of a trajectory and (2)

partition the AIMD energies to single sites. For the latter, an individual site is counted as

fully occupied if the normalized Gaussian weight is > 50% (compare Fig. 1). Dissociation

and desorption events, as well as other chemical reactions (c.f. Sec. III A) are tracked and

the corresponding parts of the trajectories are omitted from the evaluation of the energetics.

Hydrogen bonds are evaluated following the criterion of O-H-O angles > 140 ◦ between an

O atom of an adsorbate and of a water molecule which is coordinating the former within

a distance of 3.5 Å48,49. Water adsorption is tracked by monitoring the distance of water

molecules to the surface atoms. A water molecule is considered adsorbed if it is closer than

2.55 Å to the position of a surface atom. We determined this criterion via radial distri-

bution functions as discussed in the SI Sec. II. When evaluating the frequency of chemical
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reactions or water adsorption, recrossing events are omitted if the lag time between them is

< 150 fs. This lag time is chosen to optimize the distinctness of the ad/desorption process

of water molecules on the metal surface.

III. RESULTS AND DISCUSSION

A. The thermalized metal/water interface

Dynamic vs. static adsorbates

A continuum dielectric and AIMD simulation with explicit water molecules give, respec-

tively, a static 0 K picture and a thermalized ensemble average. In the former case, the

model system is an adsorbate resting on a single site, while in the latter, the adsorbate is

subject to surface diffusion and interaction with explicit water molecules. As described in

Sec. II B, the diffusion of adsorbates and water is monitored via the MSD, which allows us

to determine diffusion coefficients. Nearly all investigated adsorbates on all surfaces show a

high degree of mobility, as shown in Fig. 2. This mobility is consistent with the low diffusion

barriers on metal surfaces50. Additionally, the mobility scales with the binding strength as

visible for *CO on the different surfaces ranking as Au(111)≥Cu(111)>Cu(211)>Pt(111).

Water is very mobile in all simulations, indicating a high degree of averaging for the solvent

interactions around the various adsorbates. The numerical diffusion coefficients for water

are in most cases close to the experimental value of ≈ 0.23 Å2/ps51. A maximum deviation

of the water diffusion coefficients in some cases by a factor of only 2 may be functional

related (as known for revPBE)52.

Besides a high surface mobility of adsorbates, chemical reactions of the adsorbates occur

in some AIMD simulations, as schematically depicted in Fig. 3. *OH adsorbates desorb as

H2O after their protonation by co-adsorbed water molecules which simultaneously form new

*OH adsorbates. As shown in Tab. I, the frequency of *OH to H2O conversion strongly differs

for each surface. Further, *CO reversibly desorbs from Au(111) due to its weak binding.

The desorbed state of *CO makes up 44 % of the sampled run time. Lastly, dissociations

of H from *CHO and *COH to form the more stable *CO occur irreversibly within the

timescales of our simulations. *CHO dissociates to *H and *CO in two of four trajectories,

with the dissociated state making up 32 % of the sampled run time. COH* is deprotonated
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FIG. 2. (left) Time averaged mean squared displacement (MSD) of the 4 AIMD trajectories for the

example of *CHO on Cu(211). The MSD of *CHO is shown above (grey lines) and of water below

(blue lines). (right) Averaged diffusion coefficients of all water and all investigated adsorbates on

the Cu(211), Cu(111), Au(111), and Pt(111). The diffusion coefficients of water were obtained

from an average over all simulations, with and without adsorbates.

by water to form *CO and H3O
+, simultaneously charging the Cu(211) metal slab. This

event occurs within all trajectories, with the deprotonated state making up 47 % of the

sampled run time. The parts of the trajectories where *CHO and *COH dissociated or *CO

is desorbed are excluded from the calculation of adsorption energies and other properties.

TABLE I. Statistics of *OH to H2O conversion. Given are the frequency of *OH conversion f and

the number of observed events nevents during combined sampling time of ≈ 100 ps for each surface.

The data is corrected for recrossing events as described in Sec. II B.

f (104/s) nevents

Cu(211) 5.0 5

Cu(111) 40.3 41

Au(111) 13.9 14

Pt(111) 102.3 102
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FIG. 3. Schematic of possible reactions occurring during the AIMD trajectories: (top left) *OH

to H2O conversion, (top right) *CO desorption on Au(111), (bottom left) *COH deprotonation,

(bottom right) *CHO dissociation.

Water-metal interaction

We assess the interaction of water with the metal surfaces through the average atomic

density profiles normal to the surface as well as water adsorption. The former are shown in

Fig. 4 and 5. All surfaces show a maximum density at the immediate solid/liquid interface.

The features of this high-density region mark the differences between the clean metal/water

interfaces considered, as shown in the top panels of Fig. 4 and 5. Pt(111) shows a pronounced

double O-peak, indicative of a bilayer structure9,32,44,53. Consistent with a previous report42,

this feature appears to a lesser degree on Cu(111). On Au(111), only a single broad peak is

found, which indicates the absence of any bilayer water structure. In accordance with the

reduced degree of structuring, the mean position of the first water layer is farther from the

Au(111) surface at 2.5 Å in comparison to 2.0 Å for Cu(111) and for Pt(111). The stepped

Cu(211) does not show a double peak feature in the presented densities along the surface

normal. As shown via radial distribution functions in the SI Fig. S2, a bilayer structure is

however present at the step-edge of Cu(211). In fact, a very strong interaction with water

can be detected with the first “layer” located at 1.9 Å from the step edge.

The water-metal interaction is also indicated through water adsorption, which is evaluated

as described in Sec. II B. The adsorbing water molecules thereby approach the metal surface

for short periods of time. Water adsorbs on the top sites of the (111) terraces and on the top

sites at step edges on Cu(211) as detailed in the SI Sec. IV. The amount of water adsorption

is depicted in Fig. 6. For the clean surfaces, there is a trend in the average number of H2O

molecules adsorbed (〈nH2O
ads 〉) following Pt(111) > Cu(211) > Cu(111) >> Au(111). Pt binds
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FIG. 4. Average atomic densities of Cu(111) (top left), Au(111) (top right), and Pt(111) (bottom)

along the surface normal z. The densities for the clean surfaces and in presence of *OH, and *CO

are depicted in the top, middle and bottom panels, respectively (as labelled). The atomic density

of O (Ow) and H (Hw) from water are shown in red and cyan, respectively. The experimental

atomic densities of bulk water are depicted by the dotted lines. The shaded area corresponds to

the integrated area of the first water layer with the numeric values included, normalized to H2O

molecules per unit cell.

individual water molecules for periods of around 1 ps whereas the exchange on Cu is much

more rapid with H2O residence times of < 500 fs. Au(111) is the only surface considered

which shows essentially no binding of water to the bare metal surface.

Both the density profiles and water adsorption show a trend in the overall hydrophilicity
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first water layer with the numeric values included, normalized to H2O molecules per unit cell.
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FIG. 6. Average number of water molecules adsorbed (〈nH2O
ad 〉) in the computational cell for

Cu(211), Cu(111), Au(111), and Pt(111) with and without (no label) the presence of adsorbates.

of the metal surfaces in the order Pt > Cu > Au. Such a trend cannot be captured in the

effective, averaged nature of implicit solvation methods. There is of course an effect based

on the placement of the dielectric continuum against the electron density in self-consistent
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models4,14, but its qualitative implication is hardly assessed. As we discuss below in Sec.

III C, water adsorption as a consequence of this hydrophilicity has a significant impact on

adsorbate solvation.

Water-adsorbate interaction

The interaction of water with a polar adsorbate occurs predominantly through hydrogen

bonding. As described in Sec. II B, we use a structural criterion to identify hydrogen bonds

in an AIMD snapshot. Of the identified hydrogen bonds to adsorbates, we compute time

averages (〈nHbond〉) which are presented in Tab. II. The affinity for hydrogen bonding shows a

stronger correlation with the identity of the adsorbate than with the identity of the surface.

*CO has the weakest affinity, with < 0.5 hydrogen bonds on average (〈nHbond〉), *CHO

and *COH show an intermediate affinity with 〈nHbond〉=1.0-2.0 whereas *OH and *OCCHO

show the strongest affinity, with ≈ 2.0-3.0 〈nHbond〉. A particularly high variation in the

hydrogen bonding amongst different trajectories is seen for *OCCHO. This variation is due

to configurational changes around the O-C-C-O dihedral angle. While a dihedral angle

around 0-90 ◦ is usually present, a dihedral angle of ≈ 180 ◦ is sometimes found. The latter

configuration leads to reduced hydrogen bonding since the oxygen is sterically less accessible.

The hydrogen bonding affinity correlates with water density at the interface, as indicated

by the density integral of the first water layer (c.f. Fig. 4 and 5). Adsorbates with a weak

affinity repel water and thereby reduce the density in the first water layer through the

formed cavity. In comparison, adsorbates with strong affinities for hydrogen bonds integrate

into the water structure and maintain the pristine water density on the surface. On the

(111) terraces, *OH has a very similar water density to that of the pristine surface. Due

to the reduced space on the (211) step-edge leading to O-O repulsion, *OH, *COH, and

*OCCHO show this effect only in the H-density of the water. We find that the hydrogen

bonding of the adsorbates “pulls” the water to the surface, which is especially apparent for

*OH on Au(111). As shown in Fig. 6, the *OH adsorbate even induces water adsorption

on the otherwise very hydrophobic Au(111) surface. It should be noted, however, that the

changes in water adsorption do not directly correlate with the changes in water density if

an adsorbate is present. With few exceptions the adsorbate almost always decreases water

adsorption.
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TABLE II. Hydrogen bond statistics for the different adsorbates on the investigated surfaces.

Displayed are the average number of hydrogen bonds (〈nHbond〉), the deviation in the average value

between different AIMD runs σruns and the thermal fluctuation σthermal.

〈nHbond〉 σruns σthermal

*OH

Cu(211) 2.04 0.21 0.79

Cu(111) 2.39 0.10 0.90

Au(111) 2.96 0.02 0.69

Pt(111) 2.76 0.07 0.62

*CO

Cu(211) 0.28 0.05 0.51

Cu(111) 0.32 0.03 0.53

Au(111) 0.11 0.07 0.28

Pt(111) 0.44 0.05 0.62

*CHO

Cu(211) 1.16 0.13 0.82

*COH

Cu(211) 1.77 0.27 0.73

*OCCHO

Cu(211) 2.98 0.67 1.06

B. Stabilization through solvation

We compare the adsorption energies (following eq. 1) for all adsorbates on the various

surfaces as obtained from AIMD simulations and through implicit solvation. In general, this

comparison is complicated due to the diffusion of the adsorbates onto different sites during

the AIMD trajectories (c.f. Sec. II B). We probed the adsorption energies at all sites visited

during the AIMD simulations via geometry optimizations in presence of continuum solva-

tion. From the total share of sites observed during the AIMD simulations, we additionally

evaluate a site-averaged adsorption energy from the geometry optimizations on the single
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energies determined from the two methods and the larger, framed symbols compare the average

adsorption energy from AIMD vs. site-averaged energies from implicit solvation.

sites, replicating the AIMD statistics. Fig. 7 shows the parity plot comparing the adsorption

energies derived from AIMD and implicit solvation. The smaller symbols represent single-

site energies from the two methods and the larger, framed symbols compare the averaged

adsorption energy from AIMD vs. site-averaged energies from implicit solvation. The single

site energies generally cluster around the averaged energies, but a few outliers are present,

which likely arise from insufficient statistics during the AIMD. As further indicated in Fig.

8, the site-averaged energies obtained from the geometry optimizations nearly coincide with

the average energy of the most stable sites. This confirms the validity of the usual Boltzmann

weighted assumption to consider the most stable site only50 for static calculations.

The deviation between adsorption energies obtained through implicit solvent and from

AIMD appears to vary strongly across adsorbates and surfaces, as depicted in Fig. 8. On the

one hand, implicit solvation overestimates the binding strength of all adsorbates on Cu(211)

by a near constant 0.2-0.3 eV. On the other hand, for (111) terraces, implicit solvation

underestimates the *OH binding strength by 0.3 to 0.6 eV, while capturing the *CO binding

strength to within ± 0.1 eV of AIMD. To estimate the influence of the different solvent

methods we compute the solvation energy ∆Esolv via

∆Esolv = ∆Esolv
ad −∆Evac

ad (3)

where ∆Esolv
ad is the adsorption energy including solvent and ∆Evac

ad the adsorption energy
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FIG. 8. Adsorption ∆Ead (top) and solvation energies ∆Esolv (bottom) for the adsorbates sampled

on Cu(211) (left) and Cu(111), Au(111), and Pt(111) (right). Black symbols with error bars present

the AIMD data, red and blue symbols data obtained through geometry optimizations with and

without implicit solvent. × symbols represent time or site averaged data and + symbols the most

stable configuration obtained from geometry optimizations.

without solvent. As shown in Fig. 8, the effect of the continuum solvent method always yields

a minor stabilization proportional to the size of the adsorbate. This behavior results from

the cavity formed by the adsorbate in the implicit dielectric and its surface tension penalty4.

In contrast to this, the solvation in the AIMD simulations yield both destabilization for i.e.

most adsorbates on the Cu(211) facet as well as strong stabilization in the case of *OH on

the (111) terraces.

The difference between adsorption energies determined using AIMD vs. continuum sol-

vent is essentially accounted for by the differences between the respective solvation energies

in most cases, within a certainty of 0.1 eV, as shown in Fig. 9. This correlation shows that

the difference in the evaluated adsorption energies stems from the treatment of solvation

and not the temperature difference, i.e. 0 K vs. 300 K. We attribute the minor deviation be-

tween solvation and adsorption energy differences to dynamic effects. For example, *CO on

Au(111) is unstable on the surface. Through the sampling of surface sites during the AIMD
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ad , vs. the differences between the respective solvation energies, ∆∆Eaimd-impl

solv . The

shaded region indicates data points showing the same deviation in adsorption and solvation energy

within 0.1 eV.

we expect entropic stabilization to manifest itself in different magnitude with and without

solvent. This difference in turn is ultimately seen in an apparent difference in solvation

energy ∆EAIMD
solv as compared to the difference in adsorption energy ∆EAIMD

ad .

We estimate the overall performance of the continuum solvation against AIMD for our

benchmark set via the mean average error (MAE) in adsorption and solvation energies. We

find the MAE for the adsorption energies to yield 0.25 eV which is overall well reflected in

the MAE for the solvation energy of 0.22 eV. In comparison, the MAE of the adsorption

energies in static calculations without solvent in vacuum (∆Evac
ad ) is 0.24 eV. The similarity

of the MAE of the vacuum and implicit solvent simulations suggest that implicit solvent

models do not improve the accuracy of adsorption energies over vacuum simulations. This is

also shown in Fig. 8, where the binding energies do not differ significantly when neglecting

continuum solvent. However, this effect may be specific for strongly solvated adsorbates

considered in the present work. It should also be noted, that we find the continuum solvent

to predict geometries of solvated adsorbates more accurately, i.e. in the case of the dihedral

angle of *OCCHO on Cu(211).
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FIG. 10. AIMD solvation energy ∆Eaimd
solv against the average number of hydrogen bonds 〈nHbond〉

(left) and against the difference in average number of adsorbed water molecules in presence of

an adsorbate compared to the pure metal/water interface ∆〈nH2O
ads 〉 (right). Apparent correlations

derived from a weighted fit (see text) are indicated by the dark dashed lines.

C. Influence of thermalized explicit water

We hypothesize that the main contributions to the AIMD solvation energies arise from

hydrogen bonding and competitive water adsorption (c.f. Tab. II and Fig. 6). These phe-

nomena also present the most fundamental differences to the continuum solvent model. The

lack of these contributions thus rationalizes the large deviation in the solvation energies

and limits the advantage in the application of continuum solvation over basic solid/vacuum

simulations.

As demonstrated in Fig. 10, the AIMD solvation energies suggest a strong correlation with

hydrogen bonding for *OH on all surfaces and *COH on Cu(211). These adsorbates present

a subset which is distinguished by an H donating -OH group. The unambiguous relationship

between hydrogen bonding and solvation energy for the H donating groups follows a linear

function (f = 1.44 eV− (0.72 · 〈nHbond〉) eV). We also find a correlation between competitive

water adsorption and the solvation energy for *CO on all surfaces and *CHO on Cu(211).

This correlation is captured in the difference in the total water adsorption between the

clean surface and in the presence of an adsorbate, i.e. the replacement of adsorbing water

(giving a linear relationship as f = −0.15 eV − (0.68 · ∆〈nH2O
ads 〉) eV). This relationship

reveals a basic stabilization when no competitive water adsorption is present (i.e. ≈ -0.15 eV

for *CO on Pt(111) and Au(111)). Since we find no apparent correlation with hydrogen

bonding for these cases, this stabilization may be linked to the cavity formation in the
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water. The competitive water adsorption also correlates for some of the *OH adsorbates.

Since hydrogen bonding and competitive water adsorption are related properties defined

by the nature of the solid/liquid interface, this apparent correlation is not surprising. An

outlier to any correlation is *OCCHO on Cu(211). This adsorbate is unique in the test set

due to its size and the presence of two functional groups. For *OCCHO, the associated

hydrogen bonding and competitive water adsorption may just cancel to effectively exhibit a

minor solvation stabilization which is also correctly predicted by continuum solvation. The

observed correlations can also serve as a correction to continuum solvation energies. As

shown in Fig. S4 in the SI, nearly the same relationships apply to the deviation in solvation

energies.

The systematic correlation of the solvation energies with hydrogen bonding 〈nHbond〉 and

competitive water adsorption ∆〈nH2O
ads 〉 suggest a phenomenological model to determine ad-

sorbate solvation energies a priori. Such a scheme would be highly desirable to circumvent

costly AIMD simulations for each adsorbate-surface combination. In that sense, easy-to-

determine descriptors would be necessary from which 〈nHbond〉 and ∆〈nH2O
ads 〉 may be pre-

dicted. As further described in the SI Sec. Vb, we survey a number of descriptors. In

these, we do not find unambiguous correlations sufficient for a general a priori model. Al-

though correlations could be non-trivial, their absence may be circumstantial to a lack of

data points. Notwithstanding, we find scaling-relation-like54 correlations between hydrogen

bonding of *OH and its adsorption energy at the metal/vacuum interface without presence

of any water molecule (∆Evac,∗OH
ad ) at the limit of zero coverage. From this correlation we

can formulate a model to predict solvation energies specifically for *OH on metal surfaces.

A function for the solvation energy of *OH (∆E
∗OH
solv ) follows as

∆E
∗OH
solv = −0.22 eV − 0.44 ·∆Evac,∗OH

ad . (4)

Equ. 4 suggests a stronger solvation stabilization of *OH in the case of weaker binding to

the metal. Further, we are also able to quantitatively predict the total water adsorption

from H2O binding energies. The existence of these trends indicates fundamental atom-

istic relationships with the metal/water interface and thus a possibility for general a priori

models.
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D. Comparison to other explicit solvation approaches

We compare the solvation energies from our AIMD simulations to literature reports,

as summarized in Tab. III. We restrict the comparison to results obtained by inclusion of

explicit water molecules and omit implicit solvation methods.

Since available AIMD data points are scarce in literature, we also include solvation en-

ergies determined from classical molecular dynamics and DFT single point energies55,56.

Regardless, comparable data to our test set is still limited to the electrochemical model

system Pt(111). We find good agreement for *CO55 but only limited agreement for *OH44

on Pt(111). For the latter, we found a deviation of -0.26 eV, where it should be noted that

the considered reactions differ, i.e. H2O(g) → *OH + 1
2
H2(g) (our study) vs. H2O* → *OH

+ 1
2
H2(g).

In contrast to AIMD simulations, solvation energies from explicit ice-like water bilayer

models have been reported significantly more frequently. These solvation energies are usually

consistently obtained using only one ice-like bilayer62. Where available, we find the deviation

between reported solvation energies to vary within 0.1-0.2 eV which may very well be due

to uncertainties in sampling of the water structure. The solvation energies determined at

terrace sites compare relatively well (within the uncertainties) to our AIMD results with

only the stabilization of *CO on Cu(111) being slightly overestimated in the static picture.

Considerably less agreement is found for solvation energies on the Cu(211) step. All static

water layer energies indicate comparably strong stabilization while the AIMD results indicate

destabilization (with the exception of the more complicated *OCCHO). This trend likely

arises from competitive water adsorption, which is very prominent on the step sites and is

seemingly not captured in a static calculation. On another note, there is a difference in

solvation energies of *OH on the Cu(211) and Pt(111) surface in the case of static water

calculations. Such a variation of the same adsorbate on different metal surfaces is similar to

our AIMD results. It follows that the solvation energies for a given adsorbate on different

surfaces cannot necessarily be assumed to be the same.
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TABLE III. Solvation energies in eV for different adsorbates on Cu(211), Cu(111), Au(111), and

Pt(111) from this work (left column) and adapted from literature based on different methods. *in-

dicate an approximation to AIMD via classical molecular dynamics and single point DFT energies.

this work AIMD static bilayer

Cu(211)

*OH 0.0 ± 0.03 - -0.1357

*CO 0.24 ± 0.05 - -0.257,58 / -0.116

*CHO 0.09 ± 0.05 - -0.357,58 / -0.1516

*COH 0.12 ± 0.05 - -0.216

*OCCHO -0.09 ± 0.08 - +0.0516

Cu(111)

*OH -0.31 ± 0.05 - -

*CO 0.05 ± 0.06 - -0.159

Au(111)

*OH -0.68 ± 0.08 - -

*CO -0.14 ± 0.07 - -

Pt(111)

*OH -0.58 ± 0.07 -0.3244 -0.460 / -0.661

*CO -0.03 ± 0.12 -0.01 ± 0.0955* -

IV. SUMMARY AND CONCLUSION

We benchmarked solvation energies of adsorbates at the metal/water interface as ob-

tained from continuum solvation methods against AIMD simulations. We considered *OH,

and *CO on Cu(111), Au(111), and Pt(111) as well as *OH, *CO, *CHO, *COH, *OC-

CHO on Cu(211). These highly different adsorbates, the simple terrace surfaces, and the

complex Cu(211) stepped surface constitute a representative test-set for solvation effects

on metal surfaces. We find the deviation between AIMD and continuum solvation to be

substantial, especially for strongly solvated adsorbates such as *OH. In that, based on the

MAE in relation to our AIMD results, we find no apparent advantage in applying contin-
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uum solvation in comparison to a basic solid/vacuum calculation to determine adsorption

energies at the metal/water interface. We want to remark, that this conclusion does not

include implicit solvent models which account for directional interactions (e.g. CANDLE12).

Moreover, ongoing developments in continuum solvation13,63–65 could reconcile the present

shortcomings. Further, we find that solvation energies for individual adsorbates vary sig-

nificantly between metals and even facets, which puts to question the common assumption

that solvation energies of given adsorbates do not change with metal surface identity.

We identify hydrogen bonding and competitive water adsorption as the main contribu-

tors to the solvation energy captured in AIMD simulations. This insight is supported by

quantitative relationships between these phenomena and solvation energies. Specifically,

we find that adsorbates with hydrogen donating -OH groups (*OH, *COH) are stabilized

by hydrogen bonding and weakly interacting adsorbates (*CO, *CHO) are destabilized by

competitive water adsorption. *OCCHO as the sole bulky and ambivalent adsorbate in our

test-set does not fit either correlation. These relationships rationalize trends of solvation

among different adsorbates, facets, and metals. Also, these relationships may be a basis

for a general systematic a priori thermodynamic treatment to account for solvation effects.

However, the immediate, general prediction of the underlying descriptors - average hydro-

gen bonding and competitive water adsorption - via reliable surface/adsorbate properties

appears non-trivial, and is the subject of future work.
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35S. Nosé, Prog. Theor. Phys. Suppl. 103, 1 (1991).

36D. Bylander and L. Kleinman, Phys. Rev. B: Condens. Matter Mater. Phys. 46, 13756

(1992).

37H. Monkhorst and J. Pack, Phys. Rev. B: Condens. Matter. 13, 5188 (1976).

38L. Bengtsson, Phys. Rev. B 59, 12301 (1999).

39A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Du lak,

J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B.

Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard,

J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz,
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