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ABSTRACT: Cross-couplings are among the most frequently 
used reactions in complex molecule synthesis. However, the 
requirement of stoichiometric base can cause challenges. 
Harsh, insoluble inorganic bases can lead to poor tolerance of 
sensitive functional groups, scale-up issues, and difficult ad-
aptation to continuous flow platforms. Herein, we describe 
the use of high throughput experimentation to identify a num-
ber of conditions that enable Buchwald-Hartwig reactions to 
be carried out using readily available ligands (e.g. XantPhos) 
with DBU as a soluble, functional group tolerant, homogene-
ous base. Application of this system to diverse aminations in 
batch and flow are demonstrated, as is the translation of this 
technique to performing continuous Mizoroki-Heck and So-
nogashira coupling reactions. 

Performing chemical reactions continuously in microreactors 
(“flow chemistry) can provide benefits over batch synthesis, 
including improved safety at a range of temperatures and 
pressures, smaller reactor volumes, efficient scale-up, and 
waste reduction.1 A future where intelligent continuous flow 
systems can assist scientists in accessing and manufacturing 
complex molecules is particularly appealing.2 While this area 
is still in its infancy, recent examples in API manufacturing, 
on-demand synthesis, and automated optimization are prom-
ising.3-6 The propensity of solids to clog small reactor channels 
is one of the greatest challenges that must be overcome before 
continuous synthesis can become universally applicable. 
While numerous strategies have been reported,7 these solid-
handling issues continue to hinder the progress and imple-
mentation of continuous flow methods.  

Our group recently reported the adaptation of the BASF Basel 
process8 to allow continuous flow acylation, arylation, alkyla-
tion to be reliably performed without concerns of clogging, re-
gardless of the choice of solvent or concentration, by mediat-
ing them with bases that form ionic liquid conjugate acids 
upon protonation.9 These simple substitution reactions are 
among the most frequently run in the pharmaceutical indus-
try,10 and are thus particularly important to be able to conduct 
in automated synthesis platforms. Cross-coupling reactions 
are no less important, and their use in complex molecule syn-
thesis continues to grow.11 The Suzuki-Miyaura reaction has 
been frequently reported in flow, in particular because the use 
of biphasic conditions allows for dissolution of organic and in-
organic species present.12 Other cross-couplings are less 
straightforward to run continuously. In particular, the Buch-
wald-Hartwig amination is most frequently carried out using 
a strong inorganic base such as NaOtBu and forms insoluble 
halide salt (NaX) byproducts (Scheme 1A). Continuous flow 
Buchwald-Hartwig aminations have been successfully 
achieved, for example, by sonicating the reactor channels to 
avoid aggregation of precipitate13 or by identifying effective bi-
phasic conditions,14 among other strategies.15. While these so-
lutions are promising, a more general and scalable strategy to 

allow Buchwald-Hartwig aminations to be reliably performed 
under homogeneous conditions would facilitate this reac-
tion’s use in continuous flow chemistry. 

 

Scheme 1. Mild organic bases for cross coupling reactions in 
batch and flow. 

 

 From the perspective of running Buchwald-Hartwig amina-
tions in continuous flow, the use of organic bases that do not 
form precipitating solid byproducts is appealing. However, 
such reports are relatively rare. Examples using phosphazines 
and guanidines have recently been reported,16 though they are 
not economical for scale-up. 1,8-Diazabicyclo(5.4.0)undec-7-
ene (DBU), a milder, ionic liquid-forming amidine base, has 
been shown to work in microwave-irradiated aminations of 
organononaflates;17 however, experimental and DFT studies 
using this species suggested the barrier to the key deprotona-
tion step is generally unachievably high.18 Towards the goal of 
enabling Pd-catalyzed amination to be performed with this 
relatively mild base to provide improved substrate scope, 
Buchwald and co-workers recently demonstrated that AlPhos, 
a designer phosphine ligand, facilitates the key deprotonation 
step by influencing the acidity of Pd-bound amines.19 Re-
searchers at Bristol-Myers Squibb realized a similar goal,20 
noting the scale-up challenges associated with using insoluble 
inorganic bases, by using a combination of DBU as a base, 
NaTFA as a salt additive, and either Josiphos or t-BuBrettPhos  
as a ligand. These conditions were demonstrated to effectively 



 

and reproducibly enable a range of challenging Buchwald-
Hartwig aminations. While these contributions show great 
potential for the use of milder organic bases, the relatively 
high cost of the ligands used21 may hinder widespread adop-
tion. 

Towards the goal of expanding the range of important chemi-
cal reactions that can be reliably performed in continuous 
flow, we sought to explore Buchwald-Hartwig aminations 
with cost-effective ligands and DBU as an ionic liquid-forming 
base (mp DBU•HCl = 66 °C). Numerous variables can influ-
ence the barrier of each key transition state of catalytic ami-
nations, including the sterics and electronics of both coupling 
partners, the choice of solvent, the nature of the halide, and 
most importantly, the ligand. As a consequence, we antici-
pated that use of high throughput experimentation (HTE)22 
may allow rapid and efficient exploration of diverse chemical 
reaction space to help identify an effective subset of condi-
tions (Scheme 1B). Herein, we describe how several ligands, 
and XantPhos in particular, were identified for the efficient 
coupling of electron-poor aryl halides with nitrogen nucleo-
philes facilitated by DBU. As a milder alternative to inorganic 
bases like KOt-Bu and LiHMDS, sensitive functionality like ni-
trile, nitro, and ketone groups are tolerated. As an ionic liquid-
forming base, the reactions can be readily implemented in a 
continuous flow process without concern for precipitate for-
mation and reactor clogging. Lastly, the strategy of using ionic 
liquid-forming bases is demonstrated to be applicable to run-
ning continuous Mizoroki-Heck and Sonogashira reactions, 
further expanding the range of chemical reactions that can 
now be predictably and reliably run in flow (Scheme 1B). 

 The key variables of the Buchwald-Hartwig amination, such 
as the choice of halide, ligand, and solvent, are interrelated, 
and changes to one can impact the relative energies of multi-
ple steps within the catalytic cycle.23 With this in mind, we 
performed a high throughput screen where each combination 
of six different organohalides, four amine nucleophiles, 10 
commercially available ligands, and two solvents, all of which 
have been individually demonstrated in the literature to be ef-
fective choices.24 The metal catalyst (Pd2(dba)3), concentra-
tion (0.1 M), reaction temperature (100 °C), time (18 h), stoi-
chiometry (1.2 equiv amine), and most importantly, base 
(DBU, 2 equiv) were fixed to keep the total number of experi-
ments at a reasonable number.  

 These 480 experiments were setup in five 96-well plates us-
ing liquid-handling tools to facilitate material transfers.25 The 
outcome of the reaction was classified as a hit (product ob-
served by GC-MS) or failure (no product observed) without 
rigorous quantification.26 In total, 35 unique hits were ob-
served, suggesting that previous implications that DBU is an 
ineffective base may not be universally true.27 The selection of 
ligands, nucleophiles, organohalides, and solvents screened 
are provided in Scheme 2, ordered based on the frequency that 
they were observed to give a positive result in the high 
throughput screen. Several trends were observed. The elec-
tron-deficient organohalides 2-bromopyridine and 4-bromo-
benzonitrile were found to be effective more often than re-
lated electron-neutral species. Control experiments in the ab-
sence of catalyst confirmed that this observation was not re-
lated to nucleophilic aromatic substitution background reac-
tivity.28 Of the amine nucleophiles tested, aniline and ben-
zamide gave product more often than the more nucleophilic, 

less acidic benzylamine and morpholine. Both toluene and 
DMF were effective solvents, with DMF providing slightly 
more hits. Most excitingly, the inexpensive ligand XantPhos 
was found to be particularly promising. XantPhos has been 
previously observed to be an exceptionally effective ligand for 
Buchwald-Hartwig amination reactions;29 however, to our 
knowledge, its use with DBU as a homogeneous base has not 
been reported.  

 

Scheme 2. Classification of varied parameters in HTE based 
on number of successful with each.  

 

  

While individual optimization of each hit was beyond the 
scope of this article, we anticipate that many, if not most, of 
these experiments can be tuned to give synthetically viable 
yields. Towards confirming this hypothesis, a selection of suc-
cessful conditions were reproduced as singleton experiments, 
quantified, and subject to brief reoptimization (Scheme 3). For 
example, the reaction between 4-bromobenzonitrile (1) and 
benzamide (2) in the presence of XantPhos as a ligand and 
DMF as a solvent was observed to give a large product peak in 
crude GC analysis. Replication and quantification confirmed a 
yield of 83%, indicating no further optimization was needed 
(Scheme 3A). Repeating the experiment with the aryl chloride 
analog instead resulted in a reduced 20% yield (Table 1, entry 
1), consistent with previous knowledge on the relative chal-
lenging of activating these stronger bonds. 

Screening different Pd sources (entries 2–4) allowed identifi-
cation of [Pd(cinnamyl)Cl]2 as an improved choice over 
Pd2(dba)3, Increasing the equivalents of nucleophile (entry 5), 
resulted in a slight improvement. Exploring alternative sol-
vents (entries 6, 7) and metal to ligand ratio (entry 8) to in-
crease the yield of reaction. Lastly, decreasing the catalyst load 
provided 87% NMR yield (85% isolated). 

Next, the coupling of aryl bromide 1a and benzyl amine 4 me-
diated by Xantphos as ligand, DBU as base, and DMF as sol-
vent was replicated and quantified, providing 5 in 20% yield 
(Scheme 3B). Again, minor manipulations to the conditions 
enabled the identification of conditions that provide the de-
sired coupling product in 75% NMR yield (70% isolated) (See 
Table S5 in the SI for more information).

 



 

 

Scheme 3. Identification and optimization of effective Buchwald-Hartwig aminations using DBU as a mild base. 

 

Table 1. Optimization of coupling amides with aryl halides in 
the presence of DBUa 

 
Entry 2 

eq 

Pd source, Ligand 

mol% 

Solvent %b 

Yield 

1 1.2 Pd2(dba)3 2.5, L= 7.5 DMF 20 

2 1.2 Pd(OAc)2 5, L= 7.5 DMF 25 

3 1.2 [Pd(Allyl)Cl]2 2.5, L= 7.5 DMF 14 

4 1.2 [Pd(Cinamyl)Cl]22.5, L= 7.5 DMF 50 

5 2 [Pd(Cinamyl) Cl]2 2.5, L= 7.5 DMF 62 

6 1.2 [Pd(Cinamyl)Cl]2 2.5, L= 7.5 Dioxane 26 

7 1.2 [Pd(Cinamyl) Cl]2 2.5, L= 7.5 PhMe  74 

8 2 [Pd(Cinamyl) Cl]2 2.5, L= 10 PhMe 88 

9 2 Pd(Cinamyl) Cl]2 1.5, L= 6 PhMe 87 (85)c 

a Reactions performed on 0.1 mmol scale. b Yield determined 
by 1H NMR with 1,3,5-trimethoxy benzene as internal stand-
ard. c Isolated yield.  

 

 The hit for the reaction of organotriflate 6 and aniline 7 was 
observed with DavePhos as ligand, albeit only in trace yield 
(Scheme 3C). Following a similar approach to that illustrated 
in Table 1, a brief optimization resulted in identification of 
conditions that provided 85% NMR (85% isolated) yield of 8 
(See Table S6 in the SI for more information) 

 Given the importance and relative rarity of cross-coupling 
reactions with amide nucleophiles,29,30 a brief reaction scope  

 

 

 

was evaluated using the reaction conditions identified for the 
coupling described in Table 1 (Scheme 4). The reaction was 
observed to be give amide 3 in good yield regardless of the 
choice of halide counterion. This was further confirmed by the 
successful coupling of 2-bromopyridine, 4-nitrochloroben-
zene, and 2-iodobenzonitrile with varied amides to give prod-
ucts 9–11. Ketones with enolizable protons are particularly 
challenging functional groups when performing coupling re-
actions in the presence of aggressive bases such as KOtBu. 
With our conditions, 4-bromoacetophenone underwent 
smooth coupling to form 12 in 79% yield. Similarly, enantioen-
riched substrates with enolizable stereocenters are often rac-
emized in the presence of strong base. Coupling of N-acetyl-
L-prolinamide with 4-bromobenzonitrile gave an excellent 
yield of the coupling product 13 with minimal epimerization 
(92% yield, 94:6 e.r.).31 While this method is currently limited 
to electron-deficient organohalides, the low cost of XantPhos 
as a ligand, the mildness of DBU as a base, and the relative 
challenge of using amides as nucleophiles in these Pd-cata-
lyzed coupling reactions make these conditions appealing 
when viable.  

In addition to the ability to tolerate base-sensitive functional 
groups (nitrile, ketone, acidic stereocenter), one of the major 
benefits of using DBU as a base is in continuous flow chemis-
try. With the development of sophisticated flow synthesis ma-
chines and continuous multistep API manufacturing as major  

 

 

 

 



 

 

Scheme 4. Selected scope table for the Buchwald-Hartwig 
amination in the presence of DBU.a 

a Reactions run on 0.2 mmol scale. Isolated yields given. b Re-
action run for 2 h. 

  

goals in modern chemistry,3-6 it is important to ensure Buch-
wald-Hartwig aminations and related cross-coupling reac-
tions can be readily implemented in flow without the hazard 
of clogging tubular reactors with precipitate.13-15 DBU is a well 
behaved liquid and the corresponding conjugate acids 
(DBU·HX) are ionic liquids, bearing melting points below 100 
°C, making it an appealing alternative to highly basic inor-
ganic solvents. With this in mind, a selection of the Buchwald-
Hartwig aminations were carried out in a simple flow reactor 
using DBU as a base and XantPhos as a ligand. The XantPhos 
Pd G3 was selected due to efficient and rapid generation of the 
active catalytic species, and an elevated reaction temperature 
was chosen to ensure reactions reached completion in a rea-
sonable residence time of 1 hour (Scheme 5). With these mod-
ifications,32 a selection of different organohalides and am-
ide/aniline nucleophiles were coupled in 78–88% yield in a 1 
mL tubular flow reactor with no precipitate formation, con-
firming this added benefit of using DBU as a base in amina-
tions. 

 Lastly, we wished to extend this concept of using ionic liq-
uid-forming bases in other cross-couplings. Mizoroki-Heck 
reactions are often performed with triethylamine as a base,33 
which forms a high melting conjugate acid upon protonation. 
Successful examples of continuous flow Mizoroki-Heck reac-
tions are primarily achieved by, for example, using dilute con-
ditions,34 and/or high temperatures with very polar solvents.35 
Like DBU, tributylamine forms ionic liquids upon protonation 
(mp of NBu3•HCl = 60 °C). With this simple change, high 
yielding Mizoroki-Heck reactions can be performed in flow 

with use of a typical nonpolar solvent (dioxane) and reaction 
temperature (90 °C). Similarly, Sonogashira reactions com-
monly use triethylamine as a base and generate large quanti-
ties of precipitate. Reactions in flow have been achieved, for 
example, under high temperatures using high dilution with a 
polar solvent or by design of biphasic conditions.36 Simply us-
ing tributylamine as an ionic liquid-forming base instead ena-
bles straightforward adaptation of batch conditions to flow 
under reasonable temperature (90 °C) and concentration (0.25 
M) with a non-polar solvent (THF) (Scheme 5).37 

In conclusion, we have explored the use of DBU as a base on a 
range of different Buchwald-Hartwig amination reactions us-
ing relatively inexpensive ligands. High throughput screening 
allowed identification of several conditions that could be rap-
idly optimized to provide synthetically viable yields, particu-
larly when using XantPhos as ligand. In addition to providing 
an affordable and functional group tolerant set of conditions, 
the homogeneity of the reactions and the fact that the conju-
gate acid byproduct (DBU•HX) is an ionic liquid enables 
smooth translation into continuous flow conditions. A similar 
strategy using NBu3 as an ionic liquid-forming base enables 
continuous Mizoroki-Heck and Sonogashira couplings. Given 
the ubiquity of cross-coupling reactions, we believe this strat-
egy will help expand the scope and utility of continuous auto-
mation platforms. 
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Scheme 5. Cross couplings in continuous flow using ionic liquid-forming bases. 

Buchwald-Hartwig amination conditions: 1 eq of aryl halide, 1 eq of amine, 2 eq of DBU and 5 mol% of the ’’ XantPhos Pd G3’’ 
using MeCN/PhMe mixture as solvent in a 1 ml stanless-steel flow reactor with 60 min residence time, 140 ˚C. Mizoroki-Heck 
coupling: 1 eq of aryl halide, 1.5 eq of olefine, 3 eq of NBu3 and 3 mol% of the ‘’P(t-Bu)3 Pd G3’’ using dioxane as solvent in a 1 ml 
PFA flow reactor with 60 min residence time, 90 ˚C. Sonogashira coupling: 1 eq of aryl halide, 1.5 eq of alkyne, 3 eq of NBu3 and 
2 mol% of Pd(PPh)3, CuI 2 mol% using THF as solvent in a 1 ml PFA flow reactor with 30 min residence time, 100 ˚C. Isolated 
yields.
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