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ABSTRACT

In-silico protein-ligand binding prediction is an ongoing area of research in com-
putational chemistry and machine learning based drug discovery, as an accurate
predictive model could greatly reduce the time and resources necessary for the
detection and prioritization of possible drug candidates. Proteochemometric mod-
eling (PCM) attempts to make an accurate model of the protein-ligand interac-
tion space by combining explicit protein and ligand descriptors. This requires the
creation of information-rich, uniform and computer interpretable representations
of proteins and ligands. Previous work in PCM modeling relies on pre-defined,
handcrafted feature extraction methods, and many methods use protein descrip-
tors that require alignment or are otherwise specific to a particular group of re-
lated proteins. However, recent advances in representation learning have shown
that unsupervised machine learning can be used to generate embeddings which
outperform complex, human-engineered representations. We apply this reason-
ing to propose a novel proteochemometric modeling methodology which, for the
first time, uses embeddings generated via unsupervised representation learning for
both the protein and ligand descriptors. We evaluate performance on various splits
of a benchmark dataset, including a challenging split that tests the model's ability
to generalize to proteins for which bioactivity data is greatly limited, and we find
that our method consistently outperforms state-of-the-art methods.

1 INTRODUCTION

A main goal of cheminformatics in the area of drug discovery is to model the interaction of small
molecules with proteins in-silico. The ability to accurately predict the binding affinity of a ligand
towards a biological target without the need to conduct expensive in-vitro experiments has the po-
tential to accelerate the drug development process by enabling early prioritization of promising drug
candidates (Cortés-Ciriano et al., 2015). A common approach is to train a machine learning algo-
rithm to predict the binding affinity of ligands towards a certain biological target using a training set
of compounds that have been experimentally measured on this target. This modality is commonly
referred to as a quantitative structure-activity-relationship (QSAR) model (van Westen et al., 2011).

QSAR models can be broadly classified into two types: single-task QSAR models and multi-task
QSAR models (Figure 1). In single-task QSAR modeling, a model is trained separately for each pro-
tein to predict a binary or continuous outcome (binding vs not-binding or the binding affinity) given
a compound input. The machine learning model used could be anything from logistic regression
to deep neural networks (Lenselink et al., 2017; Cherkasov et al., 2014).In multi-task modeling,
a single model is trained to predict binding across multiple proteins simultaneously, allowing the
model to take advantage of the correlations in binding activity between compounds on different tar-
gets (Caruana, 1997; Yuan et al., 2016). This is done, for example, by using a neural network with
multiple output nodes where each output node corresponds to a different protein. Thus, multiple
outputs are predicted given a compound input (Simões et al., 2018; Dahl et al., 2014).

While these methods have been employed on various protein targets, there are methodological con-
cerns to their use (Lima et al., 2016; Mitchell, 2014). Both single-task and multi-task models must
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be retrained from scratch if one wishes to incorporate binding data for a new protein, and both cannot
be used at all to make predictions on new protein targets for which experimental data is absent (van
Westen et al., 2011).

An attractive solution to this problem is to also include protein information in a so called pro-
teochemometric model (Figure 1). The additional protein information enables a PCM model to
directly utilize similarities between proteins for bioactivity modeling (Cortés-Ciriano et al., 2015;
van Westen et al., 2011). This leads to many potential benefits over classical QSAR single-task and
multi-task modeling. First, as proteins are explicitly represented by a defined featurization, PCM
models can be used to make activity predictions on proteins without pre-existing bioactivity data,
which is impossible with single-task or multi-task modeling. They can also be used to model binding
on proteins for which experimental data may be too limited to train an effective single-task model
(van Westen et al., 2011). Second, with an expressive protein descriptor, a model could leverage
similarities and differences between proteins directly to model their binding behaviors, rather than
merely using correlations found among the compounds they bind to, as in multi-task modeling, or
ignoring protein relationships altogether as in single-task modeling (Cortés-Ciriano et al., 2015; van
Westen et al., 2011). Consequently, PCM models have found success on a variety of protein targets,
and using many different machine learning methods, including random forests and SVMs (Ballester
& Mitchell, 2010; Weill et al., 2011; van Westen et al., 2013; Shiraishi et al., 2013; Cheng et al.,
2012).
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Figure 1: Depiction of the architectures of different ligand-target binding-affinity prediction models.

Recent advances in the field of Deep Learning have also led to its use in QSAR single and multi-
task modeling as well as PCM modeling (Lenselink et al., 2017; Menden et al., 2013; LeCun et al.,
2015; Schmidhuber, 2015). Lenselink et al. (2017) compared deep learning methods against other
machine learning methods for PCM, single-task QSAR, and multi-task QSAR models on a bench-
mark dataset, and the authors found that PCM models using deep neural networks outperform other
machine learning methods as well as single-task and multi-task QSAR models.

All of the aforementioned works make features for both the small molecules and the proteins based
on hand-crafted feature extraction protocols. Small molecules are often represented by counting and
aggregating smaller substructures, while proteins are often represented by aggregation of computed
physio-chemical features of their amino-acids or by encoding the differences in aligned sequences.

In many application domains of Deep Learning, recent research has shown that these methods gen-
erally work better when the input data representation is lower-level and unabstracted, allowing the
model to learn hierarchical features directly rather than relying on features which are hand-crafted by
humans (LeCun et al., 2015; Schmidhuber, 2015). For example, this is the case in computer vision,
where deep learning on pixel value features has been the state of the art for several years (Schmid-
huber, 2015). In cases where the input space is too high-dimensional, and especially if there is not
enough labeled data to train a model end-to-end, unsupervised representation learning is used to
generate lower-dimensional embeddings, again relying on machine learning, rather than human en-
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gineering, for feature extraction. This is the case in natural language processing, as well as in video
analysis (Srivastava et al., 2015; Erhan et al., 2010; Mikolov et al., 2013).

In this work, we follow this reasoning and utilize such unsupervised-learned embeddings to repre-
sent both the ligand and protein spaces for proteochemometric modelling. To the best of our knowl-
edge, we combine, for the first time, compound and protein representations both generated by deep
learning models that were pretrained on an unsupervised learning task, as inputs to a PCM model.
Moreover, we believe that this is the first work which combines unsupervised-learned embeddings
of biological and chemical entities simultaneously in order to solve a downstream task.

1.1 COMPOUND DESCRIPTORS

The following section describes the currently used handcrafted ligand descriptors, evaluates their
properties, and introduces the ligand descriptors that we use for our model — known as CDDD
descriptors — which are generated via unsupervised machine learning.

Handcrafted Compound Descriptors The state-of-the-art compound descriptors that are used
for a vast majority of PCM and other chemoinformatics tasks are different varieties of circular fin-
gerprints. In binary keyed circular fingerprints, each bit refers to a specific substructure's presence
or absence in the molecule, while in counts format the bits refer to the number of occurrences of the
substructure (van Westen et al., 2011; Glen et al., 2006; Rogers & Hahn, 2010). As the number of
potential substructures is vast (∼232), the resulting sparse set of bits is usually hashed and folded to
a much smaller size (∼103) at the expense of hash and bit collisions (Rogers & Hahn, 2010). These
structure-based descriptors can be augmented with physicochemical descriptors, such as DRAGON
or PaDEL, along with other chemical descriptors like atom identity/type, MACCs keys, and topo-
logical indices (Mauri et al., 2006; Yap, 2011).

Issues Circular fingerprints contain information about only the presence or absence of certain sub-
structures in the compound – they thus fail to capture the shape or arrangement of those substructures
within the compound. Furthermore, fingerprints rely on a hashing protocol to compress the millions
of different substructures that are recorded into a smaller vector – as a result, hash collisions can
mean that completely different substructures can correspond to the same fingerprint bit. This also
means that one cannot determine which exact substructures are responsible for the model prediction.

CDDD – Ligand Descriptor To avoid these issues, we use the CDDD (Continuous and Data
Driven Molecular Descriptors), a model for the generation of lower-dimensional representation vec-
tors of molecules developed by Winter et al. (2019). This model uses a recurrent autoencoder trained
on the task of translating non-canonical SMILES string representations of compounds into their
canonical form. After unsupervised learning on approximately 72 million compound SMILES, a
given compound is represented by the 512-length bottleneck of the translation model, and thus is
encoded into a 512-length vector. These embeddings have been shown to be effective on QSAR
prediction and virtual screening tasks (Winter et al., 2019).

CDDD descriptors offer a unique, compact, and continuous vector representation for each com-
pound, as opposed to fingerprints, which are non-unique, discrete, and must be hashed to be made
compact. Molecules with the same substructures but differently arranged will correspond to dif-
ferent vectors. Additionally, these unsupervised-learned descriptors have demonstrated competitive
or superior results compared to molecular fingerprints on a variety of other tasks, indicating their
ability to effectively represent compound properties and behaviors (Winter et al., 2019). A diagram
can be found in Appendix section D.

1.2 PROTEIN DESCRIPTORS

Next, we describe the various methodologies used for handcrafted protein descriptors. There are
many different examples of highly specialized protein feature-extraction protocols used for PCM
models that operate over a narrow range of targets. We describe the broad categories, examine their
drawbacks and introduce the unsupervised protein descriptor which we use, known as UniRep.

Handcrafted Protein Descriptors Most commonly used protein descriptors can be described
as either amino-acid-based, or sequence-based. Amino-acid-based descriptors are computed us-
ing some combination of physicochemical and structural properties of individual amino acids. For
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example, the commonly used Z-scale descriptors and their counterpart ProtFP descriptors are con-
structed by computing various amino acid physicochemical properties (such as hydrophobicity or
polarity), taking a PCA over these properties, and then representing each amino acid by its first
few principal components (Sandberg et al., 1998; van Westen et al., 2013). These descriptors can be
combined with structural information descriptors, such as normalized van der Waals volume, charge,
and the secondary structure of the protein at that amino acid residue (Lapins et al., 2013). The whole
protein is then represented by aggregating the amino-acid descriptors over the whole sequence.

Sequence-based descriptors are constructed by taking aligned sequences or regions and using en-
codings to represent the amino acid identity at a given location in the aligned region. For example,
in Nabu et al. (2015), the authors build a model that predicts the bioactivity on mutated vs wild
type penicillin binding proteins based on the positions of the mutations in the sequence. This was
done by aligning the protein sequences and uniquely representing the positions a mutation may have
occurred at with a one-hot-encoding. Thus, from 75 potential mutation sites, a 75-length vector is
returned for each protein. Other variations of this technique use motifs or encodings of multiple
varying segments (Lapinsh et al., 2005).

Additionally, on proteins for which 3D-information is available, this information can be incorporated
into the protein descriptor. Methods vary – in general, 3D-models, for example crystal structures or
water-field maps, are first aligned. Subsequently, descriptors are built based on amino acid identity
at specific positions at the binding pocket or taking a PCA over the aligned field maps (van Westen
et al., 2013; Lapinsh et al., 2005; Subramanian et al., 2016; Kruger & Overington, 2012).

Issues Amino acid-based descriptors require crude aggregation or binning methods, as they must
convert variable length sequences of amino acids into a constant-length vector. For example, a com-
mon strategy is to divide the sequence into equal-length segments, then average over the descriptors
for each segment (Lenselink et al., 2017; van Westen et al., 2013). This leads to the undesirable
property where a single amino acid insertion early in the sequence would shift all subsequent seg-
ments, thus changing every descriptor bit despite a small change to the protein itself. Additionally,
motifs and functional domains have variable numbers of amino acids which are not necessarily con-
tiguous, so averaging over fixed-length contiguous segments can fail to capture relevant features
consistently.

Sequence and 3D-structure based descriptors must be aligned, which restricts the usable bioactivity
data to only a very small fraction of closely related proteins for which an alignment is meaningful.
These descriptors also cannot be applied to new regions of the protein space, where bioactivity
measurements of similar proteins are unavailable. Essentially, these methods build descriptors that
are explicitly based on the differences between a few proteins, which greatly limits the scope of the
problems that can be approached with such descriptors, as well as the amount of data that can be
leveraged to train models. These data availability issues are exacerbated when using 3D-descriptors,
since 3D structures are only available for a subset of proteins.

UniRep – Protein Descriptor We use UniRep developed by Alley et al. (2019), which uses a
multiplicative LSTM architecture on approximately 24 million protein amino acid sequences taken
from UniRef50 (Krause et al., 2016). The UniRep model is trained on the next-character-prediction
task, where the LSTM predicts the next amino acid in the protein sequence given the previous amino
acids. To generate fixed-length embeddings, the hidden states of the model that are generated during
the forward pass are averaged over the sequence dimension. For implementation details, refer to
Alley et al. (2019). The pre-trained model can be used out-of-the-box, taking as input amino acid
sequences and outputting embeddings of length 64, 256, or 1900 depending on the architecture used.
For the PCM model which we propose here, we found that the 256-length embeddings performed
best, and so we will use UniRep to refer to the 256-length UniRep descriptor in this paper. A diagram
can be found in Appendix section E

UniRep descriptors offer many advantages over their handcrafted counterparts. The descriptors
are alignment-free sequence-based representations, which therefore allow the utilization of protein
bioactivity assay data across families and species instead of just highly similar proteins, greatly
increasing the available training data. Moreover, these descriptors do not require 3D-structure in-
formation, which is available for only a small subset of proteins. Additionally, there is no need for
binning or averaging across arbitrary length contiguous chunks of sequence.

4



2 METHODS

2.1 DATASET AND EVALUATION

We evaluate on a large-scale benchmark PCM dataset created in Lenselink et al. (2017), which
contains 310k compound-protein bioactivity measurements taken from exclusively the highest-
confidence bioactivity assay data in ChEMBL. The dataset is comprised of 1226 unique human
proteins from a range of protein families, and 190k unique compounds.

For validation purposes, we use three different types of hold-out-sets: random and temporal splits,
which are included in Lenselink et al. (2017), and low-coverage-protein splits, which is a new and
more challenging criterion/splitting. Random splits randomly divide the bioactivity measurements
into train, valid, and test sets, with the validation set used for early stopping. A drawback of the
random split is that it can assign bioactivity measurements from the same experimental assay into
the training and test sets. Since a single assay can involve similar, congeneric compounds, it is likely
that there will be compounds in the training set that are highly similar to compounds in the test set
and measured on the same protein. This split can thus report overly optimistic results (Lenselink
et al., 2017). Therefore, experiments are performed on a temporal split, which attempts to overcome
this problem by splitting measurements from experimental batches done during or after 2013 into
the test set, and using batches done pre-2013 for the training and validation set.

Ultimately, we would like to assess the ability of the model to generalize to protein targets that
only have very few experimental measurements for training. This setting is more challenging but
also more relevant for demonstrating a PCM model's potential, since PCM models should be able
to utilize relationships in the protein descriptor space to infer on proteins that have not been well
covered in the training set. We therefore apply a final, more challenging split – the low-coverage
split. Here, we create several data folds by randomly selecting small numbers of proteins and then
randomly selecting 90% of the bioactivity measurements on these proteins to be held out as a test
set. The remaining 10% of the measurements on these proteins are included in the training set,
along with all the bioactivity measurements from the other proteins. Thus, the hold-out set of the
low-coverage split only contains proteins for which there is low data coverage in the training set.

All hyperparameter optimization of our model was performed on the temporal split, and the best
performing hyperparameter scheme on the validation set of the temporal split was used to train
models on the random and low-coverage-protein splits. Early stopping on the validation set was
used for the random and temporal splits, while the low-coverage splits were trained for a fixed
number of epochs. For the random and temporal splits, we use bootstrapping over 25 bootstrapped
samples to estimate the standard error of the various models, and we compute Wilcoxon signed-
rank-test p-values over the bootstrapped samples to determine the significance of our results, while
on the low-coverage split we compute Wilcoxon p-values over the paired held-out proteins (Demšar,
2006).

2.2 DESCRIPTORS

For our models, we use the unsupervised-learned UniRep and CDDD descriptors as described above.
The handcrafted benchmark model which we compare against uses 4096-bit circular fingerprint de-
scriptors plus six computed molecular physicochemical properties for the ligand. For the protein, the
handcrafted benchmark computes amino-acid-property-based features and averages these properties
across 20 equal-length parts of the protein sequence (Lenselink et al., 2017).

2.3 MODELS

DeepPCM The DeepPCM model is a feedforward neural network with fully connected layers.
We first apply N (0, 0.01) Gaussian noise to the compound inputs and N (0, 0.05) Gaussian noise
to the protein inputs for data augmentation and generalization purposes. The noised inputs are
passed through separate bottleneck layers, each with 128 nodes. The bottleneck outputs and original
noised inputs are concatenated together, to allow the rest of the model to use either the transformed
features from the separate bottlenecks, or to learn features from the raw compound and protein
inputs – a trick used in many recent neural network architectures (Huang et al., 2017; He et al.,
2016). This concatenated vector is fed into two fully connected layers, with 2048 and 1024 nodes
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Table 1: Results for the random and temporal split experiments performed on the benchmark dataset.
Results for the Single- and Multi-Task QSAR model (*) were taken from Lenselink et al. (2017).
Bold indicates results where our model exhibited highly statistically significant (p < 0.0005) im-
provement over the Benchmark model. NIB:No-Interaction-Terms Baseline; HD:Handcrafted De-
scriptors; UD: Unsupervised-learned Descriptors; UP: Unsupervised Protein Descriptor; UC: Unsu-
pervised Compound Descriptor; HP: Handcrafted Protein Descriptor; HC: Handcrafted Compound
Descriptor

Random Temporal
Model MCC BEDROC MCC BEDROC
Single-Task QSAR * 0.53±0.07 0.91±0.05 0.22±0.08 0.73±0.06
Multi-Task QSAR * 0.57±0.07 0.92±0.05 0.26±0.07 0.76±0.06
NIB + HD 0.529±0.012 0.954±0.004 0.287±0.016 0.776±0.012
NIB + UD 0.543±0.006 0.954±0.003 0.304±0.005 0.787±0.006
Benchmark 0.573±0.097 0.958±0.012 0.304±0.054 0.799±0.020
DeepPCM + UP + HC 0.619±0.004 0.968±0.002 0.317±0.007 0.820±0.010
DeepPCM + HP + UC 0.589±0.031 0.969±0.005 0.351±0.013 0.828±0.015
DeepPCM + UP + UC 0.630±0.008 0.973±0.003 0.353±0.007 0.839±0.007

respectively. Dropout regularization is used throughout. Details about the model architecture and
hyperparameters can be found in the Appendix sections A and F.

No-Interaction-Terms Baseline In addition, to evaluate the contribution from compound-protein
interaction terms, we include a no-interaction-terms model that does not allow information flow
between proteins and compounds. This model processes protein and compound inputs in separate
networks, with the final predictions from each network averaged to then give a final output for the
model. A diagram is included in the Appendix section B.

Benchmark Model We compare against a PCM model developed in Lenselink et al. (2017), which
uses a three-layer fully-connected pyramidal neural network. A diagram can be found in the Ap-
pendix section C. The authors compare this model against single-task and multi-task QSAR models
as well as other deep learning architectures on their benchmark PCM dataset and find this model to
perform best.

2.4 METRICS

The models and parameter settings are compared using Matthews Correlation Coefficient (MCC)
and Boltzmann-Enhanced ROC (BEDROC) (Lenselink et al., 2017). The MCC score represents the
overall model quality and is especially useful for measuring performance on unbalanced datasets.
The BEDROC score is a metric that represents the effectiveness of the model for compound prioriti-
zation since often, only a small subset of in-silico screened compounds can be tested experimentally,
a useful model will rank active compounds very highly (Truchon & Bayly, 2007). The BEDROC
score represents this by weighting the ROC results such that 80% of the BEDROC score comes from
the top 8% of predicted actives. Thus, it is analogous to a ROC-50 score.

3 RESULTS

Overall, on all splits and metrics, we find that our method outperforms the benchmark model with
high statistical significance (p < 0.0005). On the random split, we find a 10% improvement in MCC
from using our model compared to the benchmark, and a 10% improvement in MCC compared to
the best multi-task QSAR model run by Lenselink et al. (2017) on this dataset. On the temporal split,
the improvement is greater: 16% increase in MCC compared to the benchmark and 36% increase in
MCC compared to the best multi-task model.

On the low-coverage-split, we also find that our method significantly outperforms the benchmark.
In Figure 2a, the per-protein-target MCC results of our model vs the benchmark model are plotted.
Our model, based on the unsupervised-learned descriptors, shows on average better performance.
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When applying a Wilcoxon signed-ranked test we find this difference to be highly significant (p =
4.1*10-7).

Figure 2: Scatterplot of pairwise MCC performance per protein on the low-coverage split. Panel A
compares the DeepPCM model with unsupervised-learned descriptors to the benchmark model with
handcrafted descriptors. Panels B and C compare the performance of the full models versus the No-
Interaction-Terms models when using unsupervised-learned or handcrafted descriptors respectively.
The blue line indicates the diagonal, where performance for both models would be equal.

4 DISCUSSION

The results are consistent with our expectation that the descriptors generated via unsupervised repre-
sentation learning would be significantly more powerful than the handcrafted protein and compound
descriptors.

In order to elucidate the individual impact of each descriptor type we also train models using unsu-
pervised descriptors for either the ligand or the protein, and handcrafted descriptors for the other. We
find that replacing the handcrafted compound descriptor with the unsupervised compound descriptor
is responsible for the largest increase in performance on the temporal split, with the unsupervised
protein descriptor providing a very small improvement (see Table 1). We note that we did not tune
the network architecture or hyperparameters for these descriptor combinations as a result, we might
expect performance to be slightly different if the models were to be fully optimized. However, we
believe that these experiments broadly illustrate which descriptors are responsible for the perfor-
mance improvement.

Furthermore, we compare performance of the DeepPCM model on all splits with performance on
the No-Interaction-Terms model, using both handcrafted and unsupervised-learned descriptors. By
comparing these two models, we can investigate the difference between the full model, which is
potentially able to model the specific bio-chemical interaction between the protein and the ligand,
versus a model that can only recover compound and protein bias in the dataset.

We find that models with interaction terms between the protein and ligand perform significantly bet-
ter than the No-Interaction-Terms model across all metrics and splits, which is consistent with our
expectation that the model is able to make predictions based on specific protein-ligand binding in-
formation, and is not merely collapsing to predict the protein or compounds independent propensity
for binding, which is what the No-Interaction-Terms-model is restricted to (Table 1).

Just as when using full models with interaction terms, we find that the No-Interaction-Terms model
using unsupervised-learned descriptors performs better than the No-Interaction-Terms model us-
ing handcrafted descriptors, which suggests that the unsupervised-learned descriptors contain more
useful information on which to learn general features of proteins and compounds that make them
more or less likely to be binding overall. Additionally, we find that the improvement in perfor-
mance from using the full models rather than the No-Interaction-Terms models is greater when
using unsupervised-learned descriptors than when using handcrafted descriptors. For example, on
the temporal split, the unsupervised-learned descriptors improve performance on the DeepPCM
model by 16% relative to the No-Interaction-Terms model with unsupervised-learned descriptors,
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while the handcrafted descriptors improve performance on the benchmark model by only 6% rela-
tive to the No-Interaction-Terms model with handcrafted descriptors (Table 1). This suggests that
the unsupervised-learned descriptors facilitate the learning of actual protein-ligand interactions to a
greater degree than do handcrafted descriptors.

This finding is supported by the results on the low-protein-coverage split, where Figures 2B and
2C depict the difference between the full models and the No-Interaction-Terms models when using
unsupervised-learned descriptors and handcrafted descriptors respectively. The DeepPCM model
significantly outperforms the No-Interaction-Terms model when the unsupervised-learned descrip-
tors are used as input (p = 2.1*10-6). This is not the case when handcrafted features are used, where
the difference in performance between the benchmark model and the No-Interaction-Terms model
is not significant (p = 0.10).

Taken together, these results indicate that the unsupervised-learned descriptors — despite being
more compact representations that were not specifically trained for the PCM task but instead learned
in a fully unsupervised manner — are able to not only store more meaningful information about a
protein or ligand's overall binding propensity, but also that they are more useful for learning higher-
order features required to model the specific binding interaction of a given protein and ligand.

5 CONCLUSION

In this work we proposed a proteochemometric model that utilizes a feature extraction method for
both ligand and target that was pre-trained on an unsupervised learning task. We demonstrated how
a PCM model based on these descriptors significantly outperformed state-of-the-art hand-crafted
descriptors in various experiments, including the impactful low-protein-coverage split. Looking for-
ward, we believe that with sufficient data, PCM models could be powerful enough to replace much
of the expensive and time-consuming in-vitro experimentation required to develop new drugs, and
could also find applications in precision medicine – for example to examine the influence of muta-
tions in viral, cancerous, or otherwise modified proteins on their binding activity. More broadly, we
hope that by demonstrating the power of unsupervised pre-trained embeddings on a biological task,
this work inspires further research to improve currently existing machine learned representations of
compounds and proteins, to generate new representations of biological and chemical entities such
as RNAs, antibodies and cell lines, and to apply these representations to solve difficult problems in
the life sciences.
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A DEEPPCM MODEL ARCHITECTURE

DeepPCM

Compound Descriptor Protein Descriptor

Gaussian Noise (0, 0.05)Gaussian Noise (0, 0.01)

Protein Bottleneck (128)Compound Bottleneck (128)

Concatenate (128 + 128 + len(compound) + len(protein))

Dropout (0.2) Dropout (0.2)

Dropout(0.25) (ReLU(FullyConnected (2048)))

Dropout(0.25) (ReLU(FullyConnected (1024)))

FullyConnected (1)

Figure 3: Architecture and Hyperparameters for the DeepPCM model.
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B NO-INTERACTION-TERMS BASELINE ARCHITECTURE

No Interaction Terms Baseline

Compound Descriptor Protein Descriptor

Gaussian Noise (0, 0.05)Gaussian Noise (0, 0.01)

Protein Bottleneck (128)Compound Bottleneck (128)

Dropout (0.2) Dropout (0.2)

Dropout(0.25) (ReLU(FullyConnected (1024)))

Dropout(0.25) (ReLU(FullyConnected (512)))

FullyConnected (1)

Concatenate (128 + len(compound)) Concatenate (128 + len(protein))

Dropout(0.25) (ReLU(FullyConnected (1024)))

Dropout(0.25) (ReLU(FullyConnected (512)))

FullyConnected (1)

Average

Figure 4: Architecture and Hyperparameters for the No-Interaction-Terms Baseline model.
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C BENCHMARK MODEL ARCHITECTURE

Benchmark Model

Compound Descriptor Protein Descriptor

Concatenate (len(compound) + len(protein))

Dropout(0.25) (ReLU(FullyConnected (4000)))

Dropout(0.25) (ReLU(FullyConnected (2000)))

Dropout(0.25) (ReLU(FullyConnected (1000)))

FullyConnected (1)

Figure 5: Architecture and Hyperparameters for the benchmark model from Lenselink et al. (2017)
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D CDDD DIAGRAM

directly follows from this property. Since features have to be
learned from scratch for every new dataset, these methods are
prone to overtting if trained on limited data. This is an issue
when it comes to bioactivity data, due to the relatively high cost
of generating a data point.11,18,19

Recently, work was also done to learn molecular descriptors
in an unsupervised and data-driven way. Gómez-Bombarelli
et al. proposed a variational autoencoder20 to convert the
discrete SMILES representation of a molecule to and from
a multidimensional continuous representation.21 Although
their main purpose was to build a framework for de novo
molecular design, the authors showed that the resulting
representations could also be used as descriptors for a down-
stream classication task. Xu et al. proposed a related unsu-
pervised approach based on sequence to sequence learning.22,23

Both studies use an autoencoder24 methodology applied on
the SMILES representation. An autoencoder comprises two
neural networks, an encoder and a decoder. The encoder
network transforms the input, here a SMILES sequence of
variable length with discrete values, to a xed size continuous
representation (latent representation). The decoder network
takes the latent representation as the input and aims at trans-
forming it back to the input sequence. The whole autoencoder
network is trained on minimizing the mean reconstruction
error on a single-character level for each input sequence. By
introducing an information bottleneck between the encoder and
the decoder, the network is forced to compress the essential
information of the input, so that the decoder still makes as few
errors as possible in the reconstruction. If the trained autoen-
coder is able to encode all the necessary information of a given
molecular representation to accurately reconstruct the original
molecular representation, Xu et al. argue that it may also
capture more general chemical information about the molecule
and could be used as a molecular descriptor. However, training
an autoencoder on reconstructing a sequence which represents
a molecule bears the risk that the network solely focuses on
syntactic features and repetitive patterns of this sequence,
neglecting its semantics and failing to encode higher-level
concepts such as molecular properties.

In this work, we want to address this issue by proposing
a method that is based on a translation rather than a recon-
struction methodology (see Fig. 1). Similar to a human trans-
lating a sentence from one language to another by rst reading
the whole sentence to get a general understanding before
starting translation, a so-called Neural Machine Translation
(NMT)23 model rst reads the whole input sequence and
encodes it into an intermediate continuous vector representa-
tion (latent representation) which is then used by the decoder to
emit a respective translation. This latent representation can be
thought of as the model's “understanding” of the input
sequence's “meaning”, incorporating all the semantic infor-
mation shared by the input and output sequences. Here, we
want to exploit this translation methodology to extract the
“meaning” of a molecular representation like an InChI (Inter-
national Chemical Identier)25 by translating it to another
syntactically different one, e.g. SMILES. Since the decoder uses
the encoded latent representation to generate a semantically

equivalent but syntactically different representation, the
network does not benet from encoding unnecessary informa-
tion about the input sequence. However, the decoder can only
succeed in generating the right translation for a givenmolecular
representation if the encoder compresses a comprehensive
description of the chemical structure in the latent
representation.

By training the translation model in a data-driven way on
a large set of chemical structures, we propose a model that can
extract the information contained in a comprehensive but
discrete and variable-sized molecular representation (e.g.
SMILES) and transform it into a continuous and xed-sized
representation. Once trained, the resulting model can be used
to extract meaningful molecular descriptors for query structures
without the need for retraining or including labels. To analyse
the quality of the resulting molecular descriptors, we perform
a variety of experiments on predictive QSAR and virtual
screening tasks. Finally, we show that it is possible to navigate
smoothly in this new continuous chemical descriptor space by
modifying slightly the molecular representation of an existing
compound in a given direction and using the decoder to obtain
new chemical structures.

2 Methods
2.1 Molecular representations

While translation could be performed between arbitrary
molecular representations, in this work we focus on the
sequence-based SMILES and InChI representations.

The InChI notation represents molecular structures as
a sequence of characters divided into layers and sub-layers
providing different types of information such as the chemical
formula, bonds and charges.

The SMILES notation also represents molecular structures as
a sequence of characters. In contrast to the InChI notation,
however, a SMILES is not divided into different information
layers but encodes the whole molecular structure in one
sequence of characters including identiers for atoms as well as
identiers denoting topological features like bonds, rings and
branches. Since a molecule can typically be represented by
many of equally valid SMILES, various algorithms have been
developed to guarantee the uniqueness of a SMILES notation for

Fig. 1 General architecture of the translation model using the
example of translating between the IUPAC and SMILES representations
of 1,3-benzodioxole.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 1692–1701 | 1693
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Figure 6: General architecture of the translation model, using the example of translating between
IUPAC and SMILES representations of 1,3-benzodioxole. The final CDDD model translates from
non-canonical to canonical SMILES representations of compounds. Figure and text taken from
Winter et al. (2019) with permission from the authors.
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E UNIREP DIAGRAM

 
 

Here, we use a recurrent neural network to learn statistical representations of proteins from ~24 million 
UniRef50 22 sequences (Fig. 1a). Without structural or evolutionary data, this uni fied rep resentation (UniRep) 
summarizes arbitrary protein sequences into fixed-length vectors approximating fundamental protein features 
(Fig. 1b). This method scalably leverages underutilized raw sequences to alleviate the data scarcity constraining 
protein informatics to date, and achieves generalizable, superior performance in critical engineering tasks from 
stability, to function, to design. 
 
 

 
Figure 1.  Workflow to learn and apply deep protein representations. a. UniRep model was trained on 24 million UniRef50 primary 

amino acid sequences. The model was trained to perform next amino acid prediction (minimizing cross-entropy loss), and in so doing, 
was forced to learn how to internally represent proteins.  b.  During application, the trained model is used to generate a single 
fixed-length vector representation of the input sequence by globally averaging intermediate mLSTM numerical summaries (the hidden 
states). A top model (e.g. a sparse linear regression or random forest) trained on top of the representation, which acts as a featurization 
of the input sequence, enables supervised learning on diverse protein informatics tasks.  

Results 

An mLSTM learns semantically rich representations from a massive sequence dataset 

 
Multiplicative Long-Short-Term-Memory (mLSTM) Recurrent Neural Networks (RNNs) can learn rich 
representations for natural language, which enable state-of-the-art performance on critical tasks 23. This 
architecture learns by going through a sequence of characters in order, trying to predict the next one based on 
the model’s dynamic internal “summary” of the sequence it has seen so far (its “hidden state”). During training, 

3 
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Figure 7: Workflow to learn and apply deep protein representations. a. UniRep model was trained
on 24 million UniRef50 primary amino acid sequences. The model was trained to perform next
amino acid prediction (minimizing cross-entropy loss), and in so doing, was forced to learn how to
internally represent proteins. b. During application, the trained model is used to generate a single
fixed-length vector representation of the input sequence by globally averaging intermediate mLSTM
numerical summaries (the hidden states). A top model (e.g. a sparse linear regression or random
forest) trained on top of the representation, which acts as a featurization of the input sequence,
enables supervised learning on diverse protein informatics tasks. Figure and text taken from Alley
et al. (2019) with permission from the authors.
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F HYPERPARAMETERS

Table 2: The table indicates the hyperparameters that were tested for the DeepPCM model. Bold
indicates the hyperparameters that were chosen for the final model based on performance on the
validation set of the temporal splits.

Hyperparameter Values
Learning Rate 0.05, 0.01, 0.005, 0.001, 0.0001
Optimizer SGD, NAG SGD w/ Momentum, ADAM
Early Stopping Patience 5, 20, 50, 100
Compound Input Noise SD 0, 0.01, 0.05
Protein Input Noise SD 0, 0.01, 0.05, 0.1
Architectures Wide( >1000 neurons/layer), Deep ( >4 layers)
Architecture cont’d Wide + Deep, Shallow(<3 layers) , Shallow + Wide
Weight Decay 0.0001, 0.00001
Learning Rate Decay Constant, On Plateau
Dropout All 0.5, All 0.25, All 0.1, 0.5 in early layers and decaying to 0.1
Activation Functions ReLU, TanH, Sigmoid, LeakyReLU, Swish
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