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Abstract

In an effort to assist researchers in choosing basis sets for quantum mechanical modeling
of molecules (i.e. balancing calculation cost versus desired accuracy), we present a systematic
study on the accuracy of computed conformational relative energies and their geometries in
comparison to MP2/CBS and MP2/AV5Z data, respectively. In order to do so, we introduce a
new nomenclature to unambiguously indicate how a CBS extrapolation was computed. Nineteen
minima and transition states of buta-1,3-diene, propan-2-ol and the water dimer were optimized
using forty-five different basis sets. Specifically, this includes one Pople (i.e. 6-31G(d)), eight
Dunning (i.e. VXZ and AVXZ, X=2-5), twenty-five Jensen (i.e. pc-n, pcseg-n, aug-pcseg-n,
pcSseg-n and aug-pcSseg-n, n=0-4) and nine Karlsruhe (e.g. def2-SV(P), def2-QZVPPD) basis
sets. The molecules were chosen to represent both common and electronically diverse molecular
systems. In comparison to MP2/CBS relative energies computed using the largest Jensen basis
sets (i.e. n=2,3,4), the use of smaller sizes (n=0,1,2 and n=1,2,3) provides results that are within
0.11–0.24 and 0.09–0.16 kcal·mol-1. To practically guide researchers in their basis set choice,
an equation is introduced that ranks basis sets based on a user-defined balance between their
accuracy and calculation cost. Furthermore, we explain why the aug-pcseg-2, def2-TZVPPD
and def2-TZVP basis sets are very suitable choices to balance speed and accuracy.

1 Introduction
In projects involving quantum mechanics (QM) calculations a compromise must often be reached
between the computational cost – theory level and basis set size – and the desired precision of
the resulting data. The Dunning series of correlation-consistent polarized basis sets (i.e. VXZ
and AVXZ)3,25,45,47 are frequently used and considered among the best for generating accurate
data. However, they are also among the most costly to use. In an effort to reduce calculation
cost while maintaining good data accuracy, alternative basis sets have been proposed. Two
such basis sets are Jensen’s polarization-consistent (e.g. pc-n, aug-pcseg-n)16–21 and response
property-optimized Karlsruhe (i.e. def2)13,32,34,35,41,43 basis sets.

The Jensen basis sets were developed for use in Hartree-Fock (HF) and density functional
theory (DFT) calculations. These basis sets were designed to converge faster than Dunning
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basis sets without the loss of accuracy in certain observables (e.g. absolute energies, electron
affinity, dipole moment, polarizability). Two groups have investigated how Jensen’s pc-n basis
set family perform for correlated wave function (i.e. MP2 and CCSD(T)) optimizations. For
isolated molecules, Kupka and Lim showed that MP2 and CCSD(T) calculations using pc-n basis
sets performed favorably in comparison to Dunning basis sets and at a reduced computational
cost.29 More recently, Kupka and coworkers analyzed the aug-pc-n basis sets for predicting the
water dimer minimum’s interaction energy using CCSD(T) theory, and their convergence to the
complete basis set (CBS) limit using different fitting approaches28. ElSohly and Tschumper
extended this work by investigating weakly-bonded systems. Using modified pc-n basis sets that
include diffuse functions that better model weak forces; they found that the basis sets could
reproduce benchmark values, but at a higher cost than the Dunning basis sets.4

The early Karlsruhe basis sets (e.g. SVP, QZV) were developed to reproduce energetic
target data34,35,41,43. The more recent basis sets that include diffuse functions were optimized
for reproducing dipole polarizabilities computed by HF, DFT, MP2 and their corresponding
post-SCF resolution-of-the-identity (RI) calculations.13,32 The most recent of these basis sets
were shown to calculate interaction energies (using the S22 data set23) electron affinity, dipole
moments and polarizabilities of atoms and relatively inflexible molecules (e.g. He2, Be(CH3)2,
Mo(CO)6) that are competitive with the larger Dunning basis set.13 For organic compounds
(e.g. 2-fluoroethylamine, aspirin, butane-1,4-diol), def2 basis sets have been used to investigate
geometries and conformational energies using DFT and post-SCF calculations, some of which
made use of the RI approximation.8,15,27 In particular, one study computed the relative energy
profile for a torsion rotation that included transition states (TS), but did not compare the
resulting data to higher theories levels.15

To our knowledge, there have been two studies that include a comparison between Jensen
and Karlsruhe basis sets. Johansson and Olsen computed the transition states for rotating about
the central bond of biphenyl using pc-n (n=1-4), aug-pc-n (n=1-3), def2-SVP, def2-TZVPP, and
def2-QZVPP basis sets using HF and DFT theories.22 In a larger study, Witte et al examined the
basis sets’ performances when used with DFT theory for reproducing intermolecular interactions
of the S22 data set.46 They concluded that once basis set superposition error has corrected for,
def2-SVPD performs well to similarly sized Dunning and Jensen basis sets, while def2-QZVPD
is a practical alternative to pc-4.

Herein, we present an extension of the above papers by comparing an extensive collection
of Jensen, Karlsruhe and Dunning basis sets for computing MP2 geometries and relative
conformational energies of minima and transition states. The choice of MP2 theory was
motivated by the fact that it is a well established theory whose behavior is systematic as a
function of basis sets size (i.e. variational-like). While modern DFT methods can offer better
performance at a reduced cost, we feel that the rapid progress and development of new functionals
makes the longevity of a given theory difficult to predict. The results herein will be of interest
to researchers who model larger and more flexible molecules (e.g. carbohydrates, drugs), whose
potential energy surfaces are not easily explored using more rigorous theories (e.g. CCSD(T)),
but want to include some level of electron correlation into their modeling.

The segmented contracted basis sets by Jensen (i.e. pcSseg-n and aug-pcSseg-n) were
specifically created to calculate nuclear magnetic shielding constants21. Consequently, one might
not expect them to provide highly accurate relative energies and geometries. Never-the-less, we
include them into this study in hopes that they might fortuitously provide good results at a
reasonable expense.

The target benchmark data includes MP2/AV5Z optimized geometries and MP2 CBS relative
energies for buta-1,3-diene, propan-2-ol and the water dimer. These molecules were chosen
to represent diverse organic systems (i.e. containing H, C and O) that comprise significant
electron delocalization, non-negligible dipole moments and hydrogen bonds. By including both
minima and transition states, we further enrich the variety of electronic configurations that
are studied. Finally, we also compare two schemes for computing CBS energies and introduce
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an equation that ranks theory levels according to their calculation cost, accuracy and a user
specified weighting factor.

2 Methods
2.1 Optimizations and Frequency Calculations
PyMol2 was used to create the buta-1,3-diene and propanol’s initial conformations, which were
then fully optimized using MP2/AV5Z theory level. The resulting geometries were subsequently
used as input for the other theory levels herein. For the water dimer, all input configurations
were taken from supplementary information of Tschumper et al.,36 which were computed at the
CCSD(T)/TZ2P(f,d)+dif theory level. To simplify the writing, water configurations will be
referred to as conformations. To characterize the structures’ positions on their potential energy
surface, MP2/AVTZ//MP2/AVTZ frequency calculations were computed using finite-differences
of gradients.

In all MP2 calculations, only the valence electrons were correlated, and the RI approxima-
tion24,37 with auxiliary basis sets10,40,42–44 were used (see SI material for full listing). Exceptions
to this include calculations involving correlation-consistent polarized core-valence basis sets
(i.e. ACVXZ) and two CCSD(T)/TZ2P(f,d)+dif calculation (i.e. water dimer 2 and 7), where
core electrons were included into the correlation (see Table S1 and S2). All optimizations were
performed using C1 molecular symmetry unless otherwise stated, with a maximum force of
1.5E-5, a root-mean-squared (RMS) force of 1.0E-5, a maximum displacement of 6.0E-5 and an
RMS displacement of 4.0E-5 convergence criteria specified.

2.2 Complete Basis Set Extrapolation
In practice, extrapolating energies to the complete basis set limit can be done using two different
schemes. These differ by the choice in the molecular geometry used for determining the component
energy computed by each basis set. For clarification, a generalized representation for computing
a CBS energy is:

ETHEORY
CBS (Rsource) = ESCF

CBS(Rsource) + ECORR
CBS (Rsource) (1)

where ETHEORY
CBS is the CBS limit of the total energy computed using a given theory level sequence,

ESCF
CBS is the CBS limit of the Hartree-Fock energy, ECORR

CBS is the CBS limit of the correlation
energy and Rsource indicates the source of the geometries used in the calculations.

In Scheme 1, a single source (i.e. reference) geometry is used for computing the required
energies for an extrapolation. Generally, the geometry comes from either experimental spec-
troscopy or a high-level ab initio optimization. This scheme reduces the overall calculational
expense since multiple geometry optimizations are not performed. An example for noting this
scheme that uses an MP2/AV5Z optimized geometry is:

E
MP2/AV[D,T,Q//T,Q]Z
CBS (RMP2/AV5Z) =

ESCF
CBS(RMP2/AV5Z) + ECORR

CBS (RMP2/AV5Z)
(2)

where the numbers of the sequential basis sets used are given within the square brackets. The
double slash notation within these brackets signify that three and two basis sets (see below)
were used to obtain the CBS limits of the Hartree-Fock and correlation energies, respectively.

In Scheme 2, multiple geometries are used in computing the component energies. Specifically,
these are geometries that were optimized using each basis set specified for the extrapolation
workflow. An example for an extrapolation that uses MP2/AVDZ, MP2/AVTZ and MP2/AVQZ
optimized geometries is:
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E
MP2/AV[D,T,Q//T,Q]Z
CBS (RMP2/AV[D,T,Q]Z) =

ESCF
CBS(RMP2/AV[D,T,Q]Z) + ECORR

CBS (RMP2/AV[T,Q]Z)
(3)

One advantage of this scheme is that it can enable a CBS limit to be obtained for internal
coordinates.11

In all CBS limit calculations, the ESCF
CBS was extrapolated to using three sequential basis sets

and Feller’s exponential equation.5,6 Conversely, the ECORR
CBS was extrapolated to using the two

largest basis sets within the sequence and Helgaker’s power equation with α = 3.0.9,12 The
difference in the basis set involvement for computing ESCF

CBS and ECORR
CBS gives rise to the notation

within the square brackets (e.g. MP2/AV[D,T,Q//T,Q]). In the current study, the individual
component ESCF values were extracted from the MP2 optimizations rather than performing
additional Hartree-Fock optimizations. Additional details of the equations used are given in
supplementary information.

For an unambiguous shorthand nomenclature of how a CBS limit was computed one can
extend the double slash notation (e.g. MP2/AVDZ//MP2/AV5Z) to include the numbers of the
basis set triads (e.g. [T,Q,5]) used in the extrapolation workflow. For both schemes, this can be
illustrated in the following examples:

Scheme 1 MP2/AV[T,Q,5//Q,5]Z//MP2/AV5Z
Scheme 2 MP2/AV[T,Q,5//Q,5]Z//MP2/AV[T,Q,5]Z

2.3 Indexing of Jensen Basis Sets
In order to make comparisons as easy to read and understandable as possible, the Dunning and
Jensen basis set nomenclature needed be adjusted such that the indexing becomes consistent
between them. Therefore, we chose an index range from 1–5 instead of 0–4, which also allows for
clear CBS extrapolations. Consequently, the Jensen index will be adjusted by +1 (i.e. X = n+1,
n=0,1,2,3,4) throughout this work, and will be referred to as such (e.g. pc-X, X=1,2,3,4,5) unless
specifically indicated otherwise.

2.4 Software and Analysis
All QM calculations were done using Psi4 (v. 1.1a2.dev170)30. Root-mean-squared deviations
(RMSD) were computed using pytraj, a Python package that uses the cpptraj program.33

Python31,38 was used to execute pytraj, perform statistical analysis and generate plots using
Matplotlib (v. 1.3.1)14 and Seaborn (v. 0.7.1).39 A total of 860 full optimizations and 80
single-point calculations were used in the analysis. All averages presented were computed using
absolute values (i.e. |xi−xj |

n ) and exclude the global minima (i.e 0.000 kcal·mol-1) for each
molecular system. Data normalization was done using max-min feature scaling implemented in
the Python scikit-learn library.31

3 Results and Discussion
A total of four, seven and eight conformations of buta-1,3-diene, propan-2-ol and the water dimer
were optimized by nearly all basis sets used herein, and are shown in Figure 1. The specific
instances where an optimization was unable to converge include water dimer 4 (MP2/aug-pcSseg-
2, MP2/def2-SVPD) and 5 (MP2/aug-pcSseg-1 and MP2/aug-pcSseg-2, MP2/def2-SVPD). None
of the theory levels employed were able to converge to the water dimers 2 and 7 that were
reported in reference 36.

In an attempt to reproduce the water dimers 2 and 7 as stationary points, we performed
full optimizations at the CCSD(T)/TZ2P(f,d)+diff theory level (i.e. the same theory level
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Figure 1: The MP2/AV5Z//MP2/AV5Z optimized conformations for buta-1,3-diene, propan-2-ol and
the water dimer. The water dimer conformation numbers are consistent with those used in reference
36.

reported in reference 36), using our specified convergence criteria (see Methods), enforcing Cs

symmetry for 7 and C1 for 2, and correlating all electrons. Using this theory level, we were
able to optimized water dimer 7. A full optimization at MP2/TZ2P(f,d)+diff (valence electrons
correlated) also found 7 as a stationary point. Finally, we added the three diffuse function (i.e.
αs(H)=0.03016, αs(O)=0.08993, and αp(O)=0.05840.) to the VTZ basis set (i.e. VTZ+diff),
which also resulted in being able to optimize 7 using MP2 theory. An MP2/VTZ optimization
of 7 was also performed with the molecular symmetry of Cs enforced, which resulted in the
structure optimizing to water dimer 1. Thus for water dimer 7, the presence of these diffuse
functions is critical for its characterization as a stationary point. In all of these additional
calculations, the water dimer 2 remained elusive. Additional information can be found in SI
material.

3.1 CBS Extrapolation Using Schemes 1 and 2
As briefly mentioned in the introduction, one goal of this study is to evaluate the impact of the
more severe approximations made in Scheme 1 in comparison to the more rigorous approach of
Scheme 2. Due to their wide-spread and long usage, the AVXZ (X=D,T,Q,5) basis set family
was used for this part of the study. Table 1 provides the relative energies for all conformations
investigated, computed using both CBS schemes. Included in this table are previously published
CCSD(T) relative energies, computed using a variety of approaches,7,26,36 which are the current
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state-of-the-art results.
On average, the use of Scheme 1 and 2 results in values that are within 0.002 kcal·mol-1 of

one another when using [D,T,Q] or [T,Q,5] basis sets triads. The largest deviation observed is
|0.007| kcal·mol-1, computed using the [T,Q,5] triad for water dimer 6. Thus, for the augmented
Dunning basis sets and the molecules studied here, the two extrapolation schemes yield nearly
equivalent MP2/CBS values results. Note that this result is based on the fact that a very reliable
geometry (i.e. MP2/AV5Z//MP2/AV5Z) was used for Scheme 1. It is reasonable to assume
that if one would alternatively use a less reliable geometry (e.g. computed at a lower theory),
then implementing Scheme 1 and 2 would likely yield less equivalent results.

Within each scheme, increasing the basis sets triad used (i.e. [D,T,Q] → [T,Q,5]) alters the
relative energies by values ranging from -0.030 (water dimer 6) to +0.062 (buta-1,3-diene 3)
kcal·mol-1. An average absolute difference is computed to be 0.015 and 0.014 kcal·mol-1 for
Scheme 1 and 2, respectively. In comparison to the small differences observed when changing
the CBS scheme used, the size of the basis sets triad has a noticeable impact on the resulting
MP2/CBS relative energy values.

3.2 CBS Trends
3.2.1 Electronic Energies

Observing data trends and why they occur improves our understanding of basis set behavior
and helps to identify questionable data in future calculations. Both the Dunning and Jensen
basis set families allow for straightforward CBS limit extrapolations. As expected due to the
variational-like behavior of MP2, all MP2 electronic energies (Table S3) asymptotically approach
a CBS limit (Figures S1–S3). Using these energies, the CBS SCF and MP2 energies were
computed and are graphically shown as a function of their triad sequence in Figures S4–S6.
For both Dunning basis set families (i.e. VXZ, AVXZ), more negative MP2/CBS energies are
always computed when using a larger basis set triad. This trend is also seen for the pcseg-X and
aug-pcseg-X Jensen basis set families.

However, exceptions occur for pc-X, pcSseg-X and aug-pcSseg-X where the use of a [X=3,4,5]
triad results in more positive MP2/CBS energies and is dependent upon the chemical system. As
a mathematical property of the extrapolation, the MP2/CBS electronic energy computed using a
specific triad results in a more negative value in comparison to the component energies that were
used in the extrapolation process (e.g. AVDZ > AVTZ > AVQZ > A[D,T,Q]Z). Therefore, the
fact that some [X=3,4,5] CBS energies are more positive than those computed by the [X=2,3,4]
triad is a consequence of how their respective component energies are distributed (i.e. the shape
of the curve formed by the three points). And recall that the pcSseg basis sets were optimized
for nuclear magnetic shielding constants, not for determining energies.

Decomposing the MP2/CBS energies into CBS SCF and correlation energies reveal that the
SCF component consistently becomes more positive as the triad increases (e.g. [2,3,4] → [3,4,5]),
with the single exception of the VXZ basis set family. Conversely, the correlation energies do
not follow a consistent trend. By examining Figures S4–S6, it is clear that the MP2/CBS energy
trends follow those of the CBS correlation energies as the triad sequence increases.

3.2.2 Relative Energies

Considering that multiple CBS values can be computed for a given basis set family — for
example, a pc-X CBS energy can be computed using [X=1,2,3], [X=2,3,4], or [X=3,4,5] triad

— we also examined how the extrapolated relative energies computed using the smaller triads
compare to those computed using the largest triad. Here we make the assumption that the CBS
values computed using the largest triad are the most accurate within a given family. Figures 2–4
plot the MP2/CBS relative energies (Scheme 2, Table S4) for the three systems studied as a
function of the Dunning and Jensen triad sequence. What is reassuring, in comparison to the
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MP2/CBS electronic energies that show significant changes as the triad size increases (Figures
S4–S6), is that their computed relative energies show little variation. Consequently, while the
ultimate goal here is to obtain the best CBS relative energies through the use of the largest size
triad, one can get reasonably close values through the use of a smaller triad (e.g. [1,2,3]) as
elaborated upon in the following paragraphs.
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Figure 2: The MP2/CBS relative energies (Scheme 2) computed from the possible sequential Dunning
and Jensen basis set triad combination (e.g. [2,3,4]) for buta-1,3-diene conformations. The horizontal
dashed lines are added as visual guides and indicate the CBS limit computed using the [3,4,5] triad
within the each basis set family.

The mean absolute errors of the MP2/CBS relative energies computed using the [1,2,3] and
[2,3,4] triads, relative to a basis set family’s largest [3,4,5] triad extrapolated value, are given
in Table 2. The largest error (0.243 kcal·mol-1) is seen for pc-[X=1,2,3], while the smallest
error (0.015 kcal·mol-1) is seen for AV[D,T,Q]Z. Both Dunning basis set families (i.e. VXZ and
AVXZ) generate [2,3,4] extrapolated values that are more accurate than those computed using
the equivalent Jensen basis sets.
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On average, the MP2/CBS relative energies computed using the [X=1,2,3] Jensen triads result
in values that are within 0.11–0.24 kcal·mol-1 of those computed using their substantially larger
[X=3,4,5] triad (Table 2). Similarly, the use of [X=2,3,4] triads provides improved agreement
with values within 0.09–0.16 kcal·mol-1 of the [X=3,4,5] CBS computed limit. These values are
similar to the ones reported by Kupka and coworkers’ investigation of the water dimer minimum
using CCSD(T) theory level28. One would expect these agreements to become slightly worse if
further compared to extrapolated values computed using [X=4,5,6] and larger triads.

Highlighting specific results, the aug-pcseg-[X=1,2,3] triad CBS extrapolations perform the
worst for buta-1,3-diene, with a mean absolute differences of 0.598 kcal·mol-1. A significant
improvement occurs when computing the aug-pcseg-[X=2,3,4] extrapolations, with a resulting
value of 0.138 kcal·mol-1 obtained. For buta-1,3-diene, this improvement is mirrored within each
of the Jensen basis set families. However, this is not consistently seen for propan-2-ol or the
water dimer. Notable are the pcseg-X, aug-pcseg-X and pcSseg-X families where their [X=1,2,4]
triad results in better average agreements to [X=3,4,5] triad CBS extrapolated relative energies
for both propan-2-ol and the water dimer.

Finally, as seen in previous studies36 the CBS’s SCF component is largely responsible for
the general distribution of conformer stability (see Figures S7–S9). Including correlation energy
slightly modulates the separation and order of the relative conformer stability.

3.2.3 Including Core Electron Correlation

The correlation of the valence electrons only introduces some error into the resulting relative
energies. Table 3 provides the MP2/CBS relative energies computed using both the standard
augmented valence Dunning basis sets (i.e. AVXZ) and the augmented Dunning basis sets that
were specifically created for including core electron correlation into a calculation (i.e. correlation-
consistent polarized core-valence basis sets: ACVXZ).48 If one were to include electron correlation
into a CBS extrapolation involving valence basis set (e.g. AVXZ), then an absolute difference of
0.12 kcal·mol-1 would be, on average, expected based on the three molecules reported herein.

Alternatively, if the core-valence basis sets (i.e. ACVXZ) were used, including the core
electrons into the correlation only changes the relative energies by an average absolute value
of 0.02 kcal·mol-1 in comparison to the equivalent valence basis sets (i.e. ACV[2,3,4]Z versus
AV[2,3,4]Z) without core-electron correlation. However, this value reflects both the addition of
core electron correlation and the basis set enlargement since the ACVXZ basis sets contain more
functions than the AVXZ basis sets. Thus from a practical viewpoint, the optimizations that
correlate only the valence electrons using the valence basis sets provide relative energies that are
very close to those that correlate both core and valence electrons using the core-valence basis
sets. While one might say that neglecting core-electron correlation in the CBS extrapolation
results in 0.12 kcal·mol-1 error, an apparent fortuitous cancellation of errors suggests that such a
statement would be slightly misleading.

3.3 Individual Basis Set Performance
If computing MP2/CBS energies is not possible or desirable, then knowing how individual basis
sets perform becomes important. For the remainder of the analysis the MP2/AV[T,Q,5]Z//
MP2/AV[T,Q,5]Z CBS values (Table 1, Scheme 2) will be used as target reference values.
For geometry comparison, the MP2/AV5Z//MP2/AV5Z structures will be used as benchmark
targets.

3.3.1 Relative Energies

The relative conformational energies computed using each basis set is given in Table S5. Table S6
provides the individual absolute error, the mean absolute errors for each molecule and the overall
mean absolute errors. The overall mean absolute errors of the MP2 relative energies computed
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using the Dunning, Jensen and Karlsruhe basis sets are plotted in Figure 5. As expected, the
general trend is that smallest basis within each family yields the least accurate relative energies,
with the unpolarized Jensen basis sets being the least accurate. In the release of the pc-n basis
sets, Jensen stated that pc-0 (herein labeled as pc-X, X=1) was expected to be inaccurate16.
The addition of a polarization function (e.g. pc-n, n=1) reduces the error to under 0.3 kcal·mol-1.

Interestingly, there are two instances where using a sequentially larger basis set results in a
slightly larger overall mean absolute error for the relative energy: aug-pcseg-3 (0.03 kcal·mol-1)
→ aug-pcseg-4 (0.05 kcal·mol-1) and def2-SV(P) (0.37 kcal·mol-1) → def2-SVP (0.39 kcal·mol-1).
Decomposing the overall mean error as a function of the molecule reveals that these results
originate from propan-2-ol and the water dimer (see Table S6; Figures S10–S12). Concerning
the Karlsruhe basis sets, def2-SVP (0.48 kcal·mol-1) performs worse than def2-SV(P) (0.36
kcal·mol-1) only for the water dimer even though it includes an additional polarizing p function
on hydrogen atoms.43 Part of this comes from def2-SVP incorrectly finding the water dimer’s
conformer 4, a cyclic structure, to be more stable than the true global conformer 1 minimum.

Apart from VQZ (water dimer: 0.111 kcal·mol-1), pcseg-4 (water dimer: 0.083 kcal·mol-1;
buta-1,3-diene: 0.059 kcal·mol-1) and aug-pcseg-4 basis set (water dimer: 0.080 kcal·mol-1), all
quadruple zeta basis sets perform well, with mean absolute relative energies that are within 0.05
kcal·mol-1 of the MP2/AV[T,Q,5]Z//MP2/AV[T,Q,5]Z CBS values. As expected for the Dunning
and Jensen basis set families, enlarging the basis set to a quintuple size improved values further,
with the largest mean absolute error of 0.034 kcal·mol-1 (water dimer) occurring for V5Z.

If one would like to model a large molecule, HF/6-31G(d) optimizations are considered a good
theory due to fortuitous cancellation of errors and its small size. If one can afford a slightly more
expensive level, then MP2/def2-TZVP theories provide relative energies and geometries (Figure
6) that are significantly better than HF/6-31G(d). Also notable is the smaller MP2/def2-SVPD
theory level. However, as seen in Figures S10-S18, its improvement is system dependent. For
buta-1,3-diene, MP2/def2-SVPD provides nearly equivalent results as HF/6-31G(d), while for
the water dimer it shows a significant improvement.

3.3.2 Geometries

In regards to reproducing MP2/AV5Z geometries, all-atom and heavy-atom RMSD values for
each conformation are provided in Table S7, and whose mean values computed for each molecule
are plotted in Figures S13–S18. Figure 6 shows the overall mean all-atom RMSD values for
all conformations investigated. As seen in this plot, the RMSD improves as the number of
basis functions increases within each basis set family, with the exception of def2-SVP (0.146 Å
versus def2-SV(P)’s 0.124 Å). This exception is due to the RMSD contributions from the water
dimer (see Figure S15), and mirrors the increased error seen in def2-SVP’s relative energies.
Furthermore, through a comparison to the heavy-atom RMSD values (Table S7 and Figure S18),
one can conclude that a significant amount of def2-SVP’s error comes from the water dimer’s
hydrogen atoms’ positions. An examination of the mean all-atom RMSD values as a function of
the molecule finds one additional minor inconsistency worth noting - MP2/def2-TZVPP results
in a 0.003 Å worse geometry than MP2/def2-TZVP for the water dimer.

On average, the geometries optimized using triple zeta basis sets provide structures that
are between 0.005–0.034 Å, with the best and worse being aug-pcseg-3 and VTZ, respectively.
Similarly, geometries optimized using quadruple zeta basis sets are within 0.005 Å of the AV5Z
target geometries, with the exception of VQZ (0.017 Å). For both VTZ and VQZ basis sets,
the water dimer contributes the most to the overall mean RMSD error. Consequently, one
should preferentially use the AVDZ and AVTZ over the VTZ and VQZ basis sets since they
provide better geometries and relative energies, which also holds true for propan-2-ol. However
interestingly, the VTZ and VQZ basis sets perform better for buta-1,3-diene. And finally, AVQZ
and all of the Jensen quintuple basis sets (i.e. X = 5) produce geometries that are within 0.002
Å of the target geometries.
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3.4 Timing
Since one goal of the Jensen and Karlsruhe basis sets is to reduce the overall calculation cost
while maintaining accuracy, we present the relative calculation time for computing a single point
energy calculation for propan-2-ol in Table 4 as a general guide for the cost of basis sets when
used with MP2 theory. Note that the following results, analysis and rankings could change
if one were to use an alternative software (e.g. Gaussian, Molpro) or optimization algorithm.
Consequently, we encourage researchers to conduct their own timing study if they are wish to
identify cost-effective theory levels using their software and workflow.

Using Psi4, three theory levels are equivalently fast: HF/6-31G(d), MP2/pcseg-1 and
MP2/pcSseg-1. The most time-consuming theory is MP2/aug-pcSseg-5, which is more than 600
times slower than the fastest theories. The most accurate theory for modeling propan-2-ol is
pcseg-5, with a mean absolute relative energy error of 0.003 kcal·mol-1 (see Table S6), and is
about 200 times slower.

Choosing a theory level that balances the calculation cost and accuracy is often difficult and
subjective. To provide a quantitative guide for evaluating a theory level as a function of both
cost and accuracy, we propose the following ranking equation:

Rank(nC, nE) = [f ∗ nC] + [(1− f) ∗ nE] (4)

where nC is a normalized cost, f is a scaling factor (i.e. 0→1) and nE is the normalized error.
The smallest result of this equation (i.e. min(Rank)) will be the best ranked theory level for a
given scaling factor, representing a user-desired balance between the theory’s cost and its error.

Since timing data is available, nC was chosen to be normalized relative times (Table 4) and
nE the normalized mean absolute error in the relative energies (e.g. Table S6). Table 5 gives
the top three theories for five different scaling factors. An expanded version of this table can be
found in the SI material (Table S9) that provides the five best theories for scaling factors given
in 0.1 intervals. At the scaling factor extremes, the equation correctly ranks MP2/pcseg-5 as the
most accurate theory relative to the MP2/CBS target values (i.e. f = 0.0); while HF/6-31G(d),
MP2/pcseg-1 and MP2/pcSseg-1 are the fastest theories (i.e. f = 1.0). For all other scaling
factors, different theories arise that represent different cost and error balances. Notable is that
for scaling factors 0.20–0.90, the augmented Dunning basis sets (i.e. AVTZ and AVDZ) are
ranked bests. If one is willing to give up some accuracy for speed improvement, then aug-pcseg-3
and def2-TZVPPD often appears to be reasonable options (Table S9).

Alternatively, nC could represent a different normalized observable. For example, a reasonable
observable would be the number of uncontracted basis functions (UCBF) for a given basis set.
Consequently, a notable difference in theory ranking occurs, as seen in Table 5. A Pearson
correlation analysis between the relative calculation time and the number of UCBF results in
a value of 0.87 (p=7.2E-14). While it is often generally used, the number of basis functions
(contracted or uncontracted) is not a perfect predictor of a theory’s speed. As noted above, this
conclusion is drawn for Psi4’s algorithm, and different software could yield different results.

4 Conclusions
Performance comparisons of different basis sets are an important means to aid researchers in
choosing the optimal molecular orbital representation for their investigations. Usually, this
choice is driven by a desire for high data accuracy and confined by how costly the calculation
becomes. In this paper we compared the performance of Dunning, Jensen and Karlsruhe basis
sets, forty-five in total, for computing relative electronic energies and geometries of nineteen
stationary points across three electronically diverse molecular systems (i.e. buta-1,3-diene,
propan-2-ol and the water dimer). For benchmark data, geometries were computed at the
MP2/AV5Z//MP2/AV5Z theory level and relative energies were extrapolated to the CBS limit
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via MP2/AV[T,Q,5//Q,5]Z//MP2/AV[T,Q,5]Z. Two different CBS extrapolation schemes with
different approximation levels were also compared. Finally, to practically guide researchers in
their basis set choice, an equation was presented that ranks basis sets based on a user-defined
balance between their accuracy and calculation cost.

In summary, the highlights from this work are the following:
1. In computing CBS relative energies using the augmented Dunning basis sets (i.e. AVXZ),

one can reduce the calculation cost by using Scheme 1 without significantly reducing the
results’ accuracies. Note however, that the use of a less reliable geometry in Scheme 1
(e.g. originating from a lower theory level) can have a significant impact on the resulting
extrapolated energies – and consequently the use of Scheme 1 and 2 would provide different
results.

2. The MP2/CBS relative energies computed using the Dunning basis set [2,3,4] triads were,
on average, more accurate than those computed using the corresponding Jensen [X=2,3,4]
triads (Table 2). This is reasonable since the Dunning basis sets were optimized for use
with electron correlated theories, while the Jensen basis sets were optimized for use in DFT
theory.

3. Including core-electron correlation into the CBS extrapolations using the valence basis
sets alters, on average, the relative energies by 0.12 kcal·mol-1. However, the valence-only
correlations using the standard Dunning basis sets (i.e. AVXZ) result in extrapolations that
are in close agreement to the more rigorous calculations that include core electrons and
correlation-consistent polarized core-valence basis sets Dunning basis sets (i.e. ACVXZ).

4. On average for the Jensen basis sets, the MP2/CBS relative energies computed using
[X=1,2,3] triads resulted in values that were within 0.11–0.24 kcal·mol-1 of those computed
using its substantially larger [X=3,4,5] triads (Table 2). Similarly, the use of Jensen
[X=2,3,4] triads provided CBS results that were within 0.09–0.16 kcal·mol-1 of those
computed by [X=3,4,5] triads. However, the use of [X=2,3,4] triads does not automatically
guarantee that the results will be closer to the [X=3,4,5] CBS limits. For propan-2-ol and
the water dimer, pcseg-X, aug-pcseg-X and pcSseg-X provided [X=1,2,3] triad extrapolated
CBS values that were in closer agreement to the [X=3,4,5] CBS values.

5. Caution should be employed when using def2-SVP since it incorrectly computed the most
stable water dimer conformation as the cyclic structure (i.e. conformation 4). Caution
should also be extended to def2-SVPD, aug-pcSseg-1 (i.e. aug-pcSseg-n, n=0) and aug-
pcSseg-2 (i.e. aug-pcSseg-n, n=1) for their inability to optimize the water dimer’s 4 and 5
conformations.

6. Of the triple zeta basis sets, aug-pcseg-3 (i.e. aug-pcseg-n, n=2) provides the best overall
geometries in comparison to MP2/AV5Z structures. When Dunning basis sets are desired
for studying polar molecules, one might consider using AVDZ and AVTZ rather than the
VTZ and VQZ basis sets, respectively, since they provide better geometries and relative
energies using less functions.

7. Utilizing a cost/error equation provides a quantitative way for evaluating which theories
should be preferentially explored when considering theory choice early within a study. In
exploring different weighting factors, the aug-pcseg-3 and def2-TZVPPD basis sets appear
to be reasonable options that balance calculational cost and accuracy when using Psi4.

8. When possible, MP2/def2-TZVP theory level seems to be a better choice for optimization
of large molecules than HF/6-31G(d). The cheaper MP2/def2-SVPD theory is also worth
investigating, but shows more dependency on the system being optimized.

9. We have introduced a new nomenclature (e.g. MP2/AV[T,Q,5//Q,5]Z//MP2/AV[T,Q,5]Z),
an extension of the double-slash notation, that attempts to unambiguously indicate how a
complete basis set extrapolation are computed.
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[24] A. R. Kendall and A. H. Früchtl. The impact of the resolution of the identity approximate
integral method on modern ab initio algorithm development. Theor. Chem. Acc., 97(1):158–
163, 1997.

[25] R. A. Kendall, T. H. Dunning, and R. J. Harrison. Electron affinities of the first-row atoms
revisited. Systematic basis sets and wave functions. J. Chem. Phys., 96(9):6796–6806, 1992.

[26] K. N. Kirschner, W. Heiden, and D. Reith. Small alcohols revisited: CCSD(T) relative
potential energies for the minima, first- and second-order saddle points, and torsion-coupled
surfaces. ACS Omega, 3(1):419–432, 2018.

[27] S. Kozuch, S. M. Bachrach, and J. M. Martin. Conformational equilibria in butane-1,4-diol:
A benchmark of a prototypical system with strong intramolecular H-bonds. J. Phys. Chem.
A, 118(1):293–303, 2014.

[28] T. Kupka, A. Buczek, M. A. Broda, A. Mnich, and T. Kar. Performance of polarization-
consistent vs. correlation-consistent basis sets for CCSD(T) prediction of water dimer
interaction energy. J. Mol. Model., 25(10):313, 2019.

13



Kirschner and coworkers Basis Sets Performance

[29] T. Kupka and C. Lim. Polarization–consistent versus correlation–consistent basis sets in
predicting molecular and spectroscopic properties. J. Phys. Chem. A, 111(10):1927–1932,
2007.

[30] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E. G.
Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M.
James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma,
H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney,
T. D. Crawford, and C. D. Sherrill. Psi4 1.1: An open-source electronic structure program
emphasizing automation, advanced libraries, and interoperability. J. Chem. Theory Comput.,
13(7):3185–3197, 2017.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. J. Mach. Learn.
Res., 12:2825–2830, 2011.

[32] D. Rappoport and F. Furche. Property-optimized gaussian basis sets for molecular response
calculations. J. Chem. Phys., 133(13):134105, 2010.

[33] D. R. Roe and T. E. Cheatham. PTRAJ and CPPTRAJ: Software for processing and
analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 9(7):3084–3095,
2013.
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Figure 3: The MP2/CBS relative energies (Scheme 2) computed from the possible sequential Dunning
and Jensen basis set triad combination for propan-2-ol conformations.
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Figure 4: The MP2/CBS relative energies (Scheme 2) computed from the possible sequential Dunning
and Jensen basis set triad combination for the water dimer conformations.
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Figure 5: The mean absolute error (kcal·mol-1) in the relative energies of the propan-2-
ol, buta-1,3-diene and water dimer conformations and configurations, using MP2/CBS (i.e.
MP2/AV[T,Q,5//Q,5]Z//MP2/AV[T,Q,5]Z, Scheme 2) energies as reference values. The solid black
lines indicate the standard errors of the mean. The two dashed lines indicate values at 0.05 and 0.10
kcal·mol-1. The Jensen basis sets are noted using X=1–5 indexing.
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Figure 6: The mean all-atom RMSD (Å) of the propan-2-ol, buta-1,3-diene and water dimer confor-
mations in comparison to MP2/AV5Z geometries. The two dashed lines indicate values at 0.002 and
0.005 Å. The Jensen basis sets are noted using X=1–5 indexing.
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