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Abstract  

 Threofuranosyl nucleic acid (TNA) is an analogue of DNA. Its inter-nucleotide linkages are shifted from 

the wild-type 5'-to-3' one to the 3'-to-2' one. As a result, the number of covalent bonds between consecutive 

phosphates is reduced from 6 to 5. This leads to higher chemical stability, less reactive groups, and lower 

conformational flexibility. Experimental observations indicate that the interaction network is perturbed at the 

minimal level and the thermodynamic stability of the duplex is unaltered upon the TNA mutation. Whether 

computational modelling could reproduce this result will be studied in the base flipping of the middle T (DNA) 

residue or its T-to-TFT mutation (TNA). We applied the equilibrium free energy simulation and the 

nonequilibrium stratification method proposed previously in the base flipping case, proving the applicability 

of alternative free energy simulation protocols. As the force field is the main accuracy-limiting factor when 

converged phase space sampling is obtained, we benchmarked three popular AMBER force fields for 

nucleotides. The last-generation force fields include bsc1 and OL15, both of which perform similarly in 

reproducing the structures near the crystal conformation in previous benchmark studies. Our results indicate 

that all these three force fields provide similar descriptions of the base-paired state. However, with free energy 

simulation constructing the free energy profiles along the conformational change pathway, high-energy 

regions are explored and these three force fields behave differently. The bsc1 force field is found to perform 

best in reproducing the similarity of stabilities of DNA and TNA duplexes. The free energy barrier of base 

flipping under the OL15 force field is lowered modestly in TNA, and thus this force field is also usable. 

However, the bsc0 force field provides wrong results. The TNA duplex is significantly less stable than the 
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DNA duplex. Therefore, the bsc0 force field is not recommended in any application in modern nucleotide 

simulations. The salt concentration in nucleotide simulations is another factor influencing the thermodynamics 

of the system. Previous reports conclude that the net-neutral and excess-salt simulations provide similar results. 

However, the simulation method limits the phase space region explored in previous computational modelling. 

Our free energy simulation explores high-energy regions, where the excess salt does affect the thermodynamic 

stability. The free energy barrier along the base flipping pathway is generally elevated upon the addition of 

excess salts, but the relative height of the free energy barriers in DNA and TNA duplexes is not significantly 

changed. This phenomenon emphasizes the importance of adding sufficient salts to reproduce the experimental 

condition.  
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Introduction 

The capacity of the Watson-Crick (WC) base pair is observed in various alternative sugars (e.g. 

hexopyranoses, pentopyranoses and tetrofuranoses).1-8 One of the simplest analogues of DNA is 

threofuranosyl nucleic acid (TNA), the inter-nucleotide linkages of which are shifted from the wild-type 5'-

to-3' one to the 3'-to-2' one.9-10 TNA is able to form stable duplexes with DNA, RNA and TNA,4, 7, 11-16 which 

enables it to transfer information to DNA or RNA. The enzymatic and non-enzymatic polymerization of the 

TNA nucleotide is also made possible due to this cross-pairing.17-23 TNA is often assumed to be a good 

predecessor of RNA.24-25 The chemical stability of TNA is higher and the number of reactive groups is smaller, 

which leads to fewer side reactions and thus more faithful copying. The regioselectivity is no longer a problem 

due to the presence of only two hydroxyl groups.24 A direct consequence of the change of the linkage in TNA 

is the alternation of the number of covalent bonds between consecutive phosphates, i.e. from 6 in DNA to 5 

in TNA. The conformational flexibility is reduced, making TNA probably more suitable for information 

storage than DNA. However, the thermodynamic stability of the duplex and the interaction network are often 

unaltered upon the TNA mutation.2 For instance, the stacking interactions are virtually unchanged in TNA-

modified Dickerson-Drew dodecamer (DDD). The O4' atoms in the tetrose sugars also share very similar 

interaction network with those of the deoxyribose O4' atoms in the DDD duplex.26  

In recent years, the importance of DNA systems are becoming widely recognized and more and more 

scientists start to work on nucleotide systems.27-31 The unique functional role of nucleotides makes them one 

of the key targets in understanding biological processes. The genetic code deposited in the molecule hides 

inside the duplex and triplex structures and is inaccessible to other biomolecules. When the duplex is activated 

due to the change in the surrounding conditions or the intrinsic fluctuation of the duplex and the base flips 

outward to be exposed to solvent,32-40 the bases can interact with enzymes and triggers some biological 

processes, such as modifications of the nucleotide sequence.28, 41 The computer simulation is a powerful tool 

to study the dynamics of DNA-related molecules at atomic details and numerous investigations of the base 

flipping process in various systems are reported.37, 42-48 For example, the computer simulation shows that the 

conformational ensemble in DNA systems depends on the sequence of the molecule, and the BI<->BII 

transition is found to depends on the ion included in the simulation.49 The excitation of DNA molecules is also 

studied computationally.50-51 Technically, molecular dynamics (MD) simulations are normally unable to model 

base flipping due to the huge difference between the timescale of the base flipping event and the time step for 

integrating the equations of motion.52-62 Specifically, the (free) energy penalty of flipping a base is about 10 

kcal/mol.63-68 As a result, the timescale of base flipping is about ms.69 By contrast, to ensure numerical stability 
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of integrating the equations of motion, the time step in MD simulations cannot exceed several fs. Such a huge 

gap between the timescale accessible in MD simulations and that of base flipping makes it hard to get 

converged statistics in computer simulations. To get converged and statistically meaningful data, the 

equilibrium enhanced sampling techniques such as umbrella sampling70-72 and replica exchange methods73-78 

are often employed. For instance, the umbrella sampling is applied to study the protonation-dependent 

behavior of base flipping in RNA systems, where the protonation-dependent base flipping is found to be 

coupled with a syn-to-anti transformation of a guanine (G) group in the G-adenine (A) mismatch.65 The 

polarization-induced change of the height of the free energy profile along the base flipping pathway is also 

studied with umbrella sampling.63 Although the nonequilibrium technique of steered MD (SMD)79-83 is less 

frequently employed to investigate the thermodynamics in base flipping, they do have significant potentials 

and show similar performance in the construction of the free energy landscape of base flipping, compared 

with equilibrium enhanced sampling techniques.64, 84 Successful applications reported in recent years are, for 

example, the variation of base flipping free energy landscapes upon the sulfur substitution at G groups in G-

cytosine (C) base pairs and G-thymine (T) mismatches.84 However, the existing publications often focus on 

the mutation-dependent behaviors of the nucleotide systems, e.g. synthetic nucleobase pairs and naturally 

occurring mutations.65, 84-93 The behavior of the duplex could also be influenced by the alteration in the sugar 

moiety, which is less frequently studied. Therefore, we select a TNA case here to investigate the effect of the 

alteration in the sugar moiety on the thermodynamics of the duplex. The thermodynamic profiles along the 

base flipping pathway in wild-type DNA and the mutant TNA duplexes are constructed from equilibrium and 

nonequilibrium free energy simulations. Comparisons of the performance of the two different free energy 

simulation methods are provided.  

The major interactions stabilizing the base-paired conformation include two parts. The first one is the 

inner hydrogen bond interactions between in each base pair.94-100 The number of hydrogen bonds can be 2 in 

AT pair or various types of mismatches or 3 in GC pair.101 The second contribution is the stacking interactions 

between neighboring bases in the same chain.102-108 The solvent reorganization, the relaxation of the DNA 

duplex upon base flipping and the DNA-solvent interactions also contribute to the free energy difference.100, 

109-112 Based on the two major interaction parts assumption, various simplified theoretical models are proposed 

and applied to a number of DNA systems.113-114 The other minor contributions are included implicitly in the 

parameterization of the hydrogen bond interactions and the stacking interactions.100, 108, 110-111, 115 This leads to 

the two-state helix-coil transition model103, 116 and the Peyrad-Bishop-Dauxois (PBD) mesoscopic model.105-

106, 117 These models are successfully applied to DNA melting,39-40, 98-99, 102, 114, 118 bubbling,119 breathing37, 100, 
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120 and bending.121 When more details are added to the models, they approach the atomic force field description 

and simulations with extended Ising models become all-atom MD simulations.  

All-atom descriptions of DNA systems are more popular in computational community in recent years 

due to the increase in computer power. The mostly used derivatives of AMBER force fields are bsc1122 and 

OL15,123-125 both of which are based on the earlier AMBER force field named parm99126 with its 

modification bsc0.127 The dihedral parameter is the most difficult and developing part of nucleic acid force 

fields and recently developed force fields focus mostly on the refinement of this term. The physical meaning 

of the dihedral term is not defined clearly. It is closely related to the contributions from electronic structures 

and is used as the final part tuning the force field. Recent benchmark studies on force fields show that these 

two last-generation force fields perform similarly in describing the structural ensemble of canonical 

structures of DNA in long brute-force simulations. The conformational ensemble described by the last-

generation AMBER force fields is found to be comparable with the NMR-derived ones.66 However, in our 

recent work on base flipping in AT tracts, we observe that the free energy barriers along the base flipping 

pathway are significantly different under different force fields.64 The base flipping in mutated DNA duplex 

also has this behavior,84 but both last-generation AMBER force fields are able to provide quantitatively 

correct results for the substitution-induced variation of the free energy barrier along the base flipping 

pathway. Therefore, in the current work, we perform simulations with all of the three AMBER force fields 

including the oldest bsc0 modification and the newer OL15 and bsc1 modifications to assess their abilities in 

describing the thermodynamics in nucleic acid systems (i.e. DNA and TNA duplexes).  

The ion concentration in the solvated system may also influence the thermodynamic and kinetic behavior 

of the system in nucleic acid simulations. As the nucleic acid systems are polyanions with negative charges at 

the outer phosphate groups, neutralization is often performed by adding Na+ cations. By adding excess salt to 

achieve the physiological ion concentration of 0.1 M or 0.15 M, we obtain a system for excess-salt simulations. 

It has been summarized that the structural dynamics of nucleic acid systems would not be altered significantly 

with the addition of excess salts.128-131 However, these observations are obtained from unbiased simulations, 

where the phase space regions explored are close to the canonical structure. In our enhanced sampling 

simulations, some high-free-energy regions are visited, which may make the conclusion inapplicable. 

Therefore, we simulate the systems under different salt concentrations to investigate the salt-concentration 

effect.  

 

Method and Computational Details  
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System preparation. The original 2'-deoxy-T (T) in DNA could be mutated to (L)-alpha-threofuranosyl-

T (TFT) in TNA. The structures of the DDD and its T-to-TFT mutant are obtained from the crystal structure 

with the pdbid 1N1O.26 Based on this structure, we build the DNA and TNA systems simulated in this work. 

The crystal structure and illustrations of the flipping processes are depicted in Fig. 1a. In the middle of Fig. 

1a, the structures of the T residue in DNA and the TFT residue in TNA is compared. The canonical 5’-3’ DNA 

backbone is mutated to the 3’-2’ TNA backbone. There are two TFT residues in the system. The 7th residue is 

at the center of the duplex and thus its flipping should be influenced at the minimal level by the terminal effect. 

Therefore, we study the flipping of the base of this residue. AM1-BCC132 charges are derived for the mutated 

T residue, which is named as TFT in the current work. The other parameters for the TFT residue are obtained 

from AMBER14SB133 and GAFF.134 The flipping 7th residue of the canonical T is mutated to TFT to 

investigate the variation of thermodynamics in the DNA<->TNA mutation. Three AMBER force fields are 

tested in the current simulation. Namely, the whole simulation procedure is repeated under force fields 

including the OL15 combination of modifications of the AMBER force field,123-125 another last-generation 

AMBER force field of bsc1,122 and the oldest bsc0 force field.127 As the two last-generation AMBER force 

fields are built on the oldest bsc0, the current work can be seen as an assessment of the improvement 

introduced in the modifications of the last-generation force fields, from a thermodynamic perspective. The 

whole system is solvated with TIP3P135-136 water molecules. The truncated octahedron cell is replicated in 

whole space by periodic boundary conditions. Non-polarizable spherical counter ions of Na+ parameterized 

for the TIP3P water by Joung and Cheatham137-138 are added for neutralization. Also, we performed simulations 

to study the variations of the thermodynamic profiles when adding excess salts (Na-Cl ion pairs). The salt 

concentration of the excess ions is 90 mM, which is consistent with the condition of the experimental study.26  

Free energy simulation. The equilibrium enhanced sampling method of umbrella sampling and our 

nonequilibrium stratification method proposed previously are used to bias the sampling.64 As a traditional and 

representative equilibrium free energy simulation method, umbrella sampling is well developed and applied 

to a number of cases. Time-independent (harmonic) biasing potentials are added along the collective variable 

(CV) to enhance the sampling efficiency. The reaction coordinate or CV is the slow degree of freedom 

important for describing the process of interest. In this case, the flipping dihedral defined by 4 centers of 

masses (COM) is used as the CV. Only heavy atoms are included. The definition is illustrated in Fig. 1b. 

Similar CVs have been widely applied to a number of DNA and RNA systems.63, 65, 84 After accumulating 

sufficient statistics in the biased ensemble, we reweight the data to recover the expectations of observables in 

the original unbiased ensemble. Popular reweighting techniques are maximum likelihood estimators such as 
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the weighted histogram analysis method (WHAM)139-140 and the variational free energy profile (vFEP).141 

Note that vFEP uses the cubic spline interpolation and thus the potential of mean force (PMF) estimates 

obtained from it are often smoother than the WHAM results. Therefore, in the current work, we use the vFEP 

method to construct the free energy profiles. 

The window spacing regime also follows the widely applied one.63, 65, 142 Specifically, the umbrella 

windows are equally spaced from 0° to 360° with 5° increments. The force constant of 100 kcal/(mol·rad2) is 

used to ensure sufficient phase space overlap for reliable reweighting and enhance the sampling efficiency. In 

each umbrella window, 2000-cycle energy minimization and 200 ps NPT equilibration are performed. Then 

we initiate the production run with the sampling interval of 2 ps. The autocorrelation time of the COM pseudo-

dihedral is about 1-10 ps.64 Therefore, such a sampling interval extracts approximately independent samples 

and avoids excessive output. The simulation proceeds until the convergence is reached. The convergence 

check of the umbrella sampling simulations is performed with the block averaging method, which is a widely 

used method to check the convergence of the simulation. In this method, the whole production run is divided 

into several time blocks to monitor the convergence behavior of the free energy landscape. When similar or 

identical PMF estimates are obtained from different time blocks, the convergence is reached. The non-

equilibrated time blocks can thus be identified and omitted, and the well-equilibrated time blocks are used for 

later comparisons.  

Another free energy simulation method used here to enhance the sampling efficiency is the nonequilibrium 

stratification method proposed by us previously.64, 84 It could construct the free energy profile along the base 

flipping CV with a similar efficiency and accuracy compared with the equilibrium umbrella sampling 

scheme.64, 84 The method applies the time-dependent biasing potential to drive the system from one 

conformational state to another. The whole pulling process from 0° to 360 ° is divided into a series of smaller 

2° segments, the dissipation in the pulling process between which is reduced, resulting in improvements in the 

convergence behavior. In nonequilibrium pulling and initial configuration sampling, a large force constant of 

2000 kcal/mol·rad2 is used to achieve the stiff spring limit, which has been employed in various cases in our 

previous work.64, 79, 81 In the nonequilibrium free energy simulation, short configurational sampling is needed 

to extract equilibrated structures. In each conformational state, we perform 5000-cycle energy-minimization, 

200 ps heating from 0 K to 300 K in an NVT ensemble and 150 ps NPT equilibration. Then, short 

configurational sampling is performed with a sampling interval of 2 ps to extract a set of configurations from 

equilibrium ensembles. The 2 ps interval is observed to be close to the autocorrelation time of the flipping 

dihedral in our previous work.64, 84 To provide a statistically meaningful dataset for the uncertainty estimation 
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in data analysis, we calculate the autocorrelation time of the pseudo-dihedral in each conformational state i  

and subsample the whole dataset by the statistical inefficiency , 1 2eq i i    in order to obtain uncorrelated 

configurations.143 Bidirectional pulling is then initiated from these equilibrated structures to accumulate the 

microscopic nonequilibrium works. The pulling speed of 0.5 ps per segment is used due to our previous 

experience in base flipping simulations.143 To extract unbiased estimates of the mechanical observables from 

the nonequilibrium simulations in the statistically optimal way, we employ the Crooks’ Equation (CE)144 or 

Bennett Acceptance Ratio (BAR)145 to reweight the statistics. A new convergence criterion for bidirectional 

reweighting proposed in our previous work is tested here. The criterion is achieved when the standard 

deviation (SD) is obviously smaller than the overlap scalar,145-146 which is used to estimate the phase space 

overlap or the overlap between distributions of nonequilibrium works.81 

In all simulations, the SHAKE147 algorithm is applied to perform bond-length constraints for bonds 

involving hydrogen atoms in all molecules to minimize the fluctuation of chemical bonds.148 Langevin 

dynamics149 with the collision frequency of 4 ps-1 are employed for temperature regulation at 300 K. Isotropic 

position scaling along with the Berendsen barostat is employed to regulate the pressure. A time step of 1 fs is 

used to integrate the equations of motion. A cutoff of 10 Å for non-bonded interactions in the real space is 

applied and the long-range electrostatics are treated with the PME method,150 where the size of the charge grid 

in each dimension is 64. The direct sum tolerance of PME remains the default value of 10-5. MD simulations 

are performed with the AMBER151 16 suite and all other analyses are performed with homemade codes. 

 

Result and discussion 

Equilibrium Simulations. The first thing to check in free energy simulations is the convergence. Block 

averaging is used to check the convergence. In our previous base flipping simulations, 1 ns, 2 ns or 4 ns time 

blocks are used to estimate the free energy profiles, as they are estimated to be close to the minimum sampling 

time for each umbrella window to reach converged sampling results.64, 84 To make the convergence as reliable 

as possible, in the current case, we use 4 ns time blocks, the results of which are shown in Fig. 2 (OL15), Fig. 

S1 (bsc1) and Fig. S2 (bsc0). Note that in our previous study, the statistical error obtained from the bootstrap 

analysis is much smaller than the systematic error.64 Therefore, convergence is mainly hindered by bias 

elimination rather than variance minimization. Thus, in the current study, the statistical error is not shown in 

the free energy profile. In the first several time blocks, the free energy profiles become lower due to the gradual 

equilibration of the system in each umbrella window. In the last several time blocks, the free energy profiles 



 9 / 41 

 

are similar and fluctuations are observed. In this case, we use the overall results obtained from these last time 

blocks to calculate the PMFs.  

As different systems require different lengths of equilibration, the total simulation times for different 

systems described with different force fields under different salt concentrations differ. The resulting statistics 

are summarized in Table 1. An empirical conclusion from the statistics is that in base flipping simulations, to 

obtain converged estimates of the free energy profile from umbrella sampling simulations, 2 µs simulation 

time is often required to be performed in the whole system. For simpler systems with smaller fluctuations the 

simulation time could be shorter (e.g. 1 µs).64, 84 Any result obtained from sub-µs simulations should be treated 

with care.  

Nonequilibrium techniques. The nonequilibrium stratification method coupled with the statistically 

optimal bidirectional estimator is shown to be very robust in constructing the thermodynamic profiles in base 

flipping.64, 84 We then check its applicability in the current base flipping cases. The OL15 force field is used 

in the illustrative discussion and the behaviors of the other force fields are similar.  

The first thing to check is the autocorrelation of the mechanical observable we bias, namely the 

autocorrelation of the CV or the flipping dihedral. The statistical inefficiency in the equilibrium ensemble 

calculated during the initial configurational sampling procedure is shown in Fig. 3a. The statistical inefficiency 

has the lower bound of 2 ps, as the sampling interval is 2 ps. Fluctuations in the value of the statistical 

inefficiency are observed, but we can still see that the typical value is 2 ps. Therefore, this value is used in our 

later calculation of the sampling time of the nonequilibrium free energy simulation.  

Previously, we have observed the correlation between the convergence of the free energy simulation and 

the relative size of the dimensionless SD and the overlap scalar. If SD is smaller than the overlap scalar, the 

convergence is reached. The convergence determined by this criterion agrees with the time-invariant behavior 

of the free energy profile and the monotonically decreasing behavior of the SD profile during further sampling. 

Therefore, before checking the free energy profile, we firstly get a glance of the sample size required for 

converged determined by the SD-smaller-than-overlap criterion. Fig. 3b provides the comparison between the 

dimensionless SD profile and the overlap profile. We notice that 5-sample SD profile intersects with the 

overlap profile, while with larger sample sizes such as 50 or 100 samples the criterion seems to be satisfied 

and the convergence is reached. Therefore, the convergence requires about 50 samples.  

To make a more reliable determination of the sample size required for convergence, we plot the iteration-

dependence of the free energy profile in Fig. 3c. In each iteration, 5 new samples are added to the dataset. 

When the simulation converges, the PMF should remain unchanged or fluctuate at a minimal level with the 
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addition of new samples. In the first 8 iterations, the free energy barrier becomes lower and some fluctuations 

are observed. Since the 10th iteration, the PMF does not change significantly in further sampling and thus the 

convergence is reached with 50 samples.  

The time-evolution of the SD profile also provides hints on the convergence behavior of the simulation. 

If the simulation converges, the SDs in all configurational states should decrease monotonically with further 

sampling. Another worth noting phenomenon is that the variance or SD is often more biased than the free 

energy itself.146 Therefore, checking the time-evolution of the SD profile could provide many useful 

information that cannot be obtained from other statistics (e.g. PMF). Thus, we then check the time-dependence 

of the SD profile in Fig. 3d. Obviously, in the first several iterations, there are fluctuations in the values of 

SDs. The 10th iteration seems to be a nice starting point that all SDs decrease monotonically with further 

sampling. Therefore, the time-dependence of the SD profile also tells us that 50 samples are required for 

convergence in nonequilibrium stratification.  

Therefore, all of the three convergence-check statistics mentioned above indicate that 50 samples should 

be the minimum sample size for convergence. Therefore, it is used in the later calculation of the efficiency of 

the nonequilibrium technique. As for the results under the bsc0 force field, we summarized them in Fig. S3 

and Fig. S4. The convergence behavior of the simulation under the bsc0 force field is a little better than that 

under OL15. However, to avoid exaggeration of the performance of the nonequilibrium method, we still 

estimate the minimum sample size as 50.  

Equilibrium vs nonequilibrium. After checking the convergence behavior of the equilibrium and 

nonequilibrium free energy simulations, we then turn to check the consistency of the free energy estimates 

obtained from these two methods. In Fig. 4 and Fig. S5, we presented direct comparisons of the free energy 

profiles constructed from these two free energy methods for the wild-type DNA duplex and the TNA mutant 

described with the OL15 and bsc0 force fields. We can see that the agreement between the free energy profiles 

is very good, which indicates the validity and applicability of the nonequilibrium method in constructing the 

thermodynamic information in the base flipping process of DNA-related systems.  

The consistency check provides no information about the efficiency of the method. Therefore, we 

calculate the simulation time required for convergence in each method and summarize the statistics in Table 

2. The equilibrium umbrella sampling requires about 4 ns per umbrella window and 72 windows to converge, 

which gives a total simulation time of 288 ns. As for the nonequilibrium method, previously we have 

concluded that 50 samples (i.e. 10 iterations) are needed for convergence and 180 stratification segments are 

needed, leading to a total simulation time of 27 ns. This indicates that the nonequilibrium method could be 
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much faster than the equilibrium method in constructing the thermodynamic profiles in base flipping. In our 

previous work, we also observed that sometimes the nonequilibrium work method could be faster than the 

equilibrium method.64, 84 However, these observation does not necessarily indicate that the nonequilibrium 

method is preferred than the equilibrium one, as there are some non-rigorous parts in the timing data 

processing. For instance, neither the spacing of the umbrella window nor the stratification spacing is optimal, 

which is a potential influencing factor of the efficiency comparison. Further, neither the equilibration time in 

each umbrella window nor that in each configurational state in nonequilibrium simulations is included in the 

calculation, which could also influence the efficiency of each method. Thus, a modest conclusion should be 

that the nonequilibrium techniques could be used to obtain the thermodynamic profiles with a similar accuracy 

and efficiency of the equilibrium method.  

Sugar-moiety-mutation-induced variation of the thermodynamic stability of the base pair. The main 

difference between DNA and TNA duplexes lies in the sugar moiety. The inter-nucleotide linkages in the wild-

type DNA system are from the 5’ side to the 3’ one, while in TNA there is a shift in the position, leading to a 

quasi trans-diaxial 3’-’2’ phosphodiester linkages. The number of covalent bonds connecting the consecutive 

phosphates is thus decreased from 6 in DNA to 5 in TNA.4, 7, 11-12 Experimental observations indicate that 

DNA and TNA duplexes are of similar thermodynamic stability.2, 26 Whether this behavior could be reproduced 

in computational modelling is then investigated.  

In Fig. 5, we provide comparisons between the free energy profiles along the base flipping pathway in 

DNA and TNA duplexes described with three AMBER force fields in the net-neutral and excess-salt 

simulations. From the free energy profiles in Fig. 5, we know that the positions of the global minima in both 

DNA and TNA in different force fields under different salt concentrations are almost the same, which indicates 

that different force fields describe the canonical structure in a similar fashion. Therefore, in brute-force 

simulation, the dynamics in the base-paired state are similar in different force fields. It is worth noting that 

when simulating the system with only the brute-force method, the phase space region explored is very close 

to the canonical structure. Although different developed force fields have good performance in many 

benchmarks with long unbiased simulations,66 they may have different behaviors in regions with higher free 

energy, which could be of great significances in the simulation of biological processes. Therefore, we then 

focus on the height of the free energy barrier and the shape of the free energy profile.  

In Fig. 5a, we can see that under both salt concentrations, the free energy barriers in DNA and TNA base 

flipping are of different heights, which indicates that under OL15, the two types of base pair are of different 

stabilities. Note that the difference between the heights of free energy barriers is not significant. Thus, we 
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believe that the OL15 force field is still usable. Under bsc1 in Fig. 5b, by contrast, the free energy profiles in 

DNA and TNA become more similar, and the salt concentration only has a little effect on the relative stability 

of DNA and TNA base pairs. The situation is significantly different in the bsc0 case shown in Fig. 5c, where 

the free energy profile of TNA is much lower than that of DNA, regardless of the salt concentration. Therefore, 

the bsc1 force field could reproduce the experimental findings in the most accurate way among the three force 

fields, the OL15 force field is usable, and the bsc0 one is unable to describe the DNA-to-TNA mutation 

properly and is not recommend in any modern application, especially when dealing with the TNA case.  

Salt-concentration dependence. After discussing the system-dependence of the thermodynamic profile, 

we then focus on the influence of the salt concentration. In net-neutral simulations, only Na+ counter ions are 

added to neutralize the system, enabling simulations with the periodic boundary condition. More ion pairs are 

added to achieve the physiological ion concentration to provide an excess-salt system. In the current case, we 

add 90 mM NaCl ion pairs to reproduce the experimental condition. Many simulation reports observe that the 

results obtained from net-neutral and excess-salt simulations are similar. However, due to the time-scale 

limitation in the previous studies, the phase space regions explored are close to the canonical structure. In our 

enhanced sampling simulations, the high-free-energy regions are also visited in order to construct the free 

energy profile along the base flipping pathway. In these high-energy regions, the conclusion from previous 

simulations may not be applicable. Therefore, we then investigate whether the base-flipping free energy profile 

is invariant upon the addition of the excess salt.  

The comparison could still be done in Fig. 5. In Fig. 5a, when the force field is fixed to OL15, for both 

DNA and TNA duplexes, the free energy barriers are elevated upon the addition of the excess salt. The 

increases are similar for different systems. Therefore, if the focus of the comparison is the relative stability of 

DNA and TNA duplexes, there will not be obvious alteration in the conclusion. This phenomenon is also 

observed in our previous study focusing on the sulfur-substitution effect in DNA duplex.84 In Fig. 5b, under 

the bsc1 force field, the free energy profiles for DNA and TNA systems also change due to the increase of the 

salt concentration. However, the increases in the free energy barrier are smaller than the OL15 case. The bsc0 

results in Fig 5c behave similarly, compared with bsc1 ones. It is worth noting that the position of the free 

energy minimum describing the base-paired state remains untouched in the addition of the ion pairs. Therefore, 

it is expected that the unbiased simulations are unable to observe the above differences in the free energy 

profiles. Therefore, we conclude that the salt concentration does have an effect on the thermodynamics of the 

system, especially when the high-energy regions are explored in free energy simulations. This emphasizes the 

importance of the addition of sufficient salts to reproduce the experimental condition in a more accurate way.  
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Force-field-dependence. With converged phase space sampling, the force field is the main factor 

determining the accuracy of the modelling. We then discuss the behaviors of different force fields when the 

system and the salt concentration are invariable. Clearer comparisons between force fields when fixing the 

salt concentration are provided in Fig. 6.  

When the salt concentration is set to the minimal net-neutralizing condition, as shown in Fig. 6a, for DNA 

duplex, the shapes of the free energy profiles under bsc1 and bsc0 are similar, and the height of the free energy 

barrier along the flipping pathway in bsc0 is very similar to that in bsc1. The OL15 one is significantly lower 

than the other. Upon the DNA-to-TNA mutation, the system described with OL15 experiences a modest 

destabilization, while the bsc0 one is significantly destabilized. The change in the free energy profile under 

bsc1 is relatively small. The resulting rank of the height of the free energy barrier in TNA duplex is bsc1 > 

OL15 > bsc0. Therefore, even for the same system, different force fields provide different thermodynamic 

profiles along the base flipping pathway, which emphasizes the significance of the selection of the force fields 

in base flipping simulations. As the rank of the heights of the free energy barriers in different force fields 

changes with the system (i.e. DNA or TNA), the system-dependence is also observed. Thus, testing the 

behaviors of different force fields would be valuable in practical applications. The excess-salt simulations 

seem to differentiate different force fields better. In Fig. 6b, for the DNA duplex, the height of the free energy 

barrier has the rank bsc1 > bsc0 > OL15. Namely, in excess-salt simulations, the thermodynamic behaviors of 

bsc1 and bsc0 are distinguished more clearly. When it comes to the TNA duplex, again the stability of the 

base-paired state in bsc0 decreases significantly and the stability rank is bsc1 > OL15 > bsc0.  

Therefore, considering the discussion about the salt-concentration and system dependence, either under 

the net-neutral condition or in the excess-salt simulation, the bsc1 force field is preferred for a stable base-

paired state, regardless of the system under investigation. The bsc1 force field also performs very well in 

describing the similarity of the stabilities of DNA and TNA duplexes. The OL15 force field is also usable as 

its thermodynamic profile shows relatively small dependence on the system or the salt concentration, which 

indicates that OL15 could describe the similar stabilities of the two systems in an appropriate way. The bsc0 

PMF shows significant variations when the DNA-to-TNA mutation happens, which is inconsistent with the 

experimental observations. Also, as it is the oldest version of AMBER modifications, we do not recommend 

its practical application in modern computational study.  

 

Conclusion  

Compared with the natural nucleic acids of DNA and RNA, TNA has higher chemical stability, less 
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reactive groups, a smaller number of hydroxyl groups, and less enantiomeric pairs of diastereoisomers. It was 

simpler than RNA and thus was assumed to be a good predecessor of RNA in the pre-RNA world. It could 

also be more suitable for information storage due to its reduced conformational flexibility compared with 

RNA. The canonical conformation was observed to be unaltered in the DNA-to-TNA mutation. The 

interaction networks in DNA and TNA were similar. The thermodynamic stability was also observed to be 

unperturbed. In our work, we performed equilibrium and nonequilibrium free energy simulations to construct 

the free energy profiles along the base flipping pathway, aiming at investigating whether the thermodynamic 

profile during conformational change in TNA was also similar to that in DNA. Three most popular AMBER 

force fields were benchmarked and the effect of ion concentrations was studied.  

The equilibrium and nonequilibrium free energy simulation methods were found to be of similar 

efficiency and accuracy in our previous work. In the current work, we still observed that these two simulation 

methods could provide the base-flipping free energy profiles within similar amounts of simulation time. The 

agreement was observed regardless of systems and force fields. Therefore, the nonequilibrium stratification 

method could be a nice alternative to the equilibrium free energy simulation methods in base flipping 

simulations.  

The investigation of the variation of the sugar moiety was then performed. We compared the free energy 

profiles of base flipping in DNA and TNA duplex and found that all of the three force fields provided similar 

descriptions of the base-paired state. However, the flipping-out states under different force fields differed 

significantly. Under the bsc1 force field, the free energy profiles in DNA and TNA were similar, while under 

OL15 some differences were observed. The bsc0 force field provided significantly different thermodynamic 

profiles in base flipping in DNA and TNA duplex, which deviates from the experimental observations. Thus, 

the bsc0 force field would not be applied to any case in modern nucleotide simulations. As bsc1 was shown 

to have a good description of the base-paired state in several benchmarks, the bsc1 force field was 

recommended in base flipping simulations in DNA and TNA duplexes.  

It has been observed in many MD simulations that there was no marked difference in the nucleic acid 

structural dynamics under net-neutral and excess-salt conditions. However, previous investigations relied on 

unbiased simulations, where the phase space regions explored were close to the canonical structure. In our 

free energy simulation constructing the free energy profiles along the base flipping pathway, the high-energy 

regions were also explored. The thermodynamic behavior of these regions could be influenced by the salt 

concentration. Therefore, we checked the validity of the previous conclusion in the base flipping cases. 

Notably, in our results, the ion concentration had a significant effect on the thermodynamics in the base 
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flipping process in DNA and TNA duplexes. The free energy barrier along the base-flipping pathway without 

excess salts showed obvious difference, compared with that under the experimental excess-salt concentration 

of 0.09 M. Such a phenomenon emphasized the needs of adding excess salts to reproduce the experimental 

ensemble precisely. Note that the PMFs under the bsc1 and bsc0 force fields were not significantly perturbed 

by the excess salts. Therefore, considering this salt-concentration stability, these two force fields were 

preferred in base flipping simulations. As bsc1 was superior to bsc0 in a number of benchmark studies and 

was an updated version of bsc0, we recommended using bsc1 in practice. 

In the last part of our study, we focused on the force-field comparison, identifying the difference between 

free energy profiles of the same system described with different force fields when the salt concentration was 

fixed. The base-flipping free energy profiles were different in different force fields. The base-paired state was 

of the highest stability under the bsc1 force field. As the base-paired state was found to be described better 

with bsc1 and OL15 than bsc0 in many benchmark studies, the bsc1 force field would be preferred.  

Therefore, considering our investigations of the force-field dependence and the salt-concentration 

dependence of the simulation results, we recommended using the bsc1 force field and adding sufficient excess 

salts to reproduce the experimental condition in practical application of the base flipping simulations.  
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The Current State of AMBER Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12 (8), 4114-4127. 

68. Dans, P. D.; Danilāne, L.; Ivani, I.; Dršata, T.; Lankaš, F.; Hospital, A.; Walther, J.; Pujagut, R. I.; Battistini, F.; Gelpí, J. L., 

Long-timescale Dynamics of The Drew–Dickerson Dodecamer. Nucleic acids research 2016, 44 (9), 4052-4066. 

69. Priyakumar, U. D.; Mackerell, A. D., Base Flipping in a GCGC Containing DNA Dodecamer:  A Comparative Study of 

the Performance of the Nucleic Acid Force Fields, CHARMM, AMBER, and BMS. J. Chem. Theory Comput. 2006, 2 (1), 187-

200. 

70. Hooft, R. W.; van Eijck, B. P.; Kroon, J., An Adaptive Umbrella Sampling Procedure in Conformational Analysis using 

Molecular Dynamics and Its Application to Glycol. J. Chem. Phys. 1992, 97 (9), 6690-6694. 

71. Mezei, M., Adaptive Umbrella Sampling: Self-consistent Determination of the Non-Boltzmann Bias. J. Comput. Phys. 

1987, 68 (1), 237-248. 

72. Kästner, J., Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1 (6), 932-942. 

73. Fukunishi, H.; Watanabe, O.; Takada, S., On the Hamiltonian replica exchange method for efficient sampling of 

biomolecular systems: Application to protein structure prediction. J. Chem. Phys. 2002, 116 (116), 9058-9067. 

74. Itoh, S. G.; Damjanovic, A.; Brooks, B. R., pH replica-exchange method based on discrete protonation states. Proteins 

2011, 79 (12), 3420-36. 

75. Okur, A.; Wickstrom, L.; Layten, M.; Geney, R.; Song, K.; Hornak, V.; Simmerling, C., Improved Efficiency of Replica 

Exchange Simulations through Use of a Hybrid Explicit/Implicit Solvation Model. J. Chem. Theory Comput. 2006, 2 (2), 420. 

76. T, G.; CM, S., Mechanism of Amyloid-β Fibril Elongation. Biochemistry 2014, 53 (44), 6981-91. 

77. Sugita, Y.; Okamoto, Y., Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314 

(1-2), 141-151. 

78. Sugita, Y.; Kitao, A.; Okamoto, Y., Multidimensional replica-exchange method for free-energy calculations. J. Chem. 

Phys. 2000, 113 (15), 6042-6051. 

79. Wang, X.; Xingzhao, T.; Boming, D.; John Z. H., Z.; Sun, Z., BAR-based Optimum Adaptive Steered MD for 

Configurational Sampling. J. Comput. Chem. 2019, 40 (12), 1270-1289. 

80. Wang, X.; Tu, X.; Zhang, J. Z. H.; Sun, Z., BAR-based Optimum Adaptive Sampling Regime for Variance Minimization in 

Alchemical Transformation: The Nonequilibrium Stratification. Phys. Chem. Chem. Phys. 2018, 20 (3), 2009-2021. 

81. Wang, X.; He, Q.; Sun, Z., BAR-Based Multi-Dimensional Nonequilibrium Pulling for Indirect Construction of a QM/MM 

Free Energy Landscape. Phys. Chem. Chem. Phys. 2019, 21 (12), 6672-6688  

82. Sun, Z. X.; Wang, X. H.; Zhang, J. Z. H., BAR-based Optimum Adaptive Sampling Regime for Variance Minimization in 

Alchemical Transformation. Phys. Chem. Chem. Phys. 2017, 19 (23), 15005-15020. 

83. Sun, Z., BAR-based multi-dimensional nonequilibrium pulling for indirect construction of QM/MM free energy 

landscapes: from semi-empirical to ab initio. Phys. Chem. Chem. Phys. 2019, 21 (39), 21942-21959  

84. Sun, Z.; Wang, X.; Zhang, J. Z. H.; He, Q., Sulfur-substitution-induced base flipping in the DNA duplex. Phys. Chem. 

Chem. Phys. 2019, 21, 14923-14940. 

85. Benner, S. A.; Karalkar, N. B.; Hoshika, S.; Laos, R.; Shaw, R. W.; Matsuura, M.; Fajardo, D.; Moussatche, P., Alternative 

Watson–Crick synthetic genetic systems. Cold Spring Harbor perspectives in biology 2016, 8 (11), a023770. 

86. Ferencic, M.; Reddy, G.; Wu, X.; Guntha, S.; Nandy, J.; Krishnamurthy, R.; Eschenmoser, A., Base‐Pairing Systems Related 

to TNA Containing Phosphoramidate Linkages: Synthesis of Building Blocks and Pairing Properties. Chem. Biodivers. 2004, 

1 (7), 939-979. 

87. Yu, H.; Zhang, S.; Dunn, M. R.; Chaput, J. C., An efficient and faithful in vitro replication system for threose nucleic acid. 

J. Am. Chem. Soc. 2013, 135 (9), 3583-3591. 



 21 / 41 

 

88. Egli, M.; Pallan, P. S., Crystallographic studies of chemically modified nucleic acids: a backward glance. Chem. Biodivers. 

2010, 7 (1), 60-89. 

89. Boer, D. R.; Canals, A.; Coll, M., DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. 

Dalton Transactions 2008, 3 (3), 399-414. 

90. Chaput, J. C.; Yu, H.; Zhang, S., The emerging world of synthetic genetics. Chem. Biol. 2012, 19 (11), 1360-1371. 

91. Joyce, G. F., Toward an alternative biology. Science 2012, 336 (6079), 307-308. 

92. Herdewijn, P.; Marliere, P., Toward safe genetically modified organisms through the chemical diversification of nucleic 

acids. Chem. Biodivers. 2009, 6 (6), 791-808. 

93. Pinheiro, V. B.; Holliger, P., The XNA world: progress towards replication and evolution of synthetic genetic polymers. 

Curr. Opin. Chem. Biol. 2012, 16 (3-4), 245-252. 

94. Ferrantini, A.; Carlon, E., Anomalous zipping dynamics and forced polymer translocation. Journal of Statistical 

Mechanics Theory & Experiment 2011, 2011 (2), P02020. 

95. Manghi, M.; Palmeri, J.; Destainville, N., Coupling between denaturation and chain conformations in DNA: stretching, 

bending, torsion and finite size effects. Physics 2008, 21 (3), 034104-034104. 

96. Chakrabarti, B.; Levine, A. J., Nonlinear elasticity of an α-helical polypeptide: Monte Carlo studies. Physical Review E 

2006, 74 (3), 031903. 

97. Benham, C. J., The equilibrium statistical mechanics of the helix–coil transition in torsionally stressed DNA. J. Chem. 

Phys. 1980, 72 (6), 3633-3639. 

98. Wildes, A.; Theodorakopoulos, N.; Valle-Orero, J.; Cuesta-López, S.; Garden, J.-L.; Peyrard, M., Structural Correlations 

and Melting of B-DNA Fibers. Physical Review E 2011, 83 (6), 061923. 

99. Velizhanin, K. A.; Chien, C.-C.; Dubi, Y.; Zwolak, M., Driving Denaturation: Nanoscale Thermal Transport as A Probe of 

DNA Melting. Physical Review E 2011, 83 (5), 050906. 

100. Peyrard, M.; Cuesta-Lopez, S.; James, G., Nonlinear Analysis of The Dynamics of DNA Breathing. Journal of biological 

physics 2009, 35 (1), 73. 

101. Pechlaner, M.; Donghi, D.; Zelenay, V.; Sigel, R. K., Protonation‐Dependent Base Flipping at Neutral pH in the Catalytic 

Triad of a Self‐Splicing Bacterial Group II Intron. Angew. Chem. Int. Ed. 2015, 54 (33), 9687-9690. 

102. Blake, R.; Bizzaro, J., Jd; Day, G.; Delcourt, S.; Knowles, J.; Marx, K.; Santalucia, J. J., Statistical Mechanical Simulation of 

Polymeric DNA Melting with MELTSIM. Bioinformatics 1999, 15 (5), 370-375. 

103. Takeno, S.; Homma, S., Topological Solitons and Modulated Structure of Bases in DNA Double Helices: A Dynamic 

Plane Base-Rotator Model. Prog. Theor. Phys. 1983, 70 (1), 308-311. 

104. Wartell, R. M.; Montroll, E. W., Equilibrium denaturation of natura and of periodic synthetic DNA molecules. Adv. Chem. 

Phys. 1970, 22, 129-203. 

105. Dauxois, T.; Peyrard, M.; Bishop, A. R., Entropy-driven DNA Denaturation. Physical Review E 1993, 47 (1), R44-R47. 

106. Muto, V.; Lomdahl, P.; Christiansen, P., Two-dimensional Discrete Model for DNA Dynamics: Longitudinal Wave 

Propagation and Denaturation. Phys. Rev. A 1990, 42 (12), 7452-7458. 

107. Alexandrov, B. S.; Gelev, V.; Monisova, Y.; Alexandrov, L. B.; Bishop, A. R.; Rasmussen, K. O.; Usheva, A., A nonlinear 

dynamic model of DNA with a sequence-dependent stacking term. Nucleic Acids Res. 2009, 37 (7), 2405-10. 

108. Joyeux, M.; Buyukdagli, S., Dynamical Model based on Finite Stacking Enthalpies for Homogeneous and 

Inhomogeneous DNA Thermal Denaturation. Physical Review E 2005, 72 (5), 051902. 

109. Frank-Kamenetskii, M. D.; Prakash, S., Fluctuations in the DNA double helix: A critical review. Physics of Life Reviews 

2014, 11 (2), 153-170. 

110. ZdravkoviĆ , S., Helicoidal Peyrard–Bishop Model of DNA Dynamics. Journal of Nonlinear Mathematical Physics 2011, 

18 (sup2), 463-484. 

111. Deng, M. L.; Zhu, W. Q., Stochastic Dynamics and Denaturation of Thermalized DNA. Physical Review E 2008, 77 (2), 

021918. 

112. Šponer, J.; Riley, K. E.; Hobza, P., Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. 



 22 / 41 

 

Phys. 2008, 10 (19), 2595-2610. 

113. Vedenov, A.; Dykhne, A. M.; Frank-Kamenetskiĭ, M., The helix-coil transition in DNA. Soviet Physics Uspekhi 1972, 14 

(6), 715-736. 

114. Zimm, B. H., Theory of ``Melting'' of The Helical Form in Double Chains of The DNA Type. J. Chem. Phys. 1960, 33 (5), 

1349-1356. 

115. Kalosakas, G.; Rasmussen, K. Ø.; Bishop, A. R., Non-exponential Decay of Base-pair Opening Fluctuations in DNA. Chem. 

Phys. Lett. 2006, 432 (1-3), 291-295. 

116. Yakushevich, L. V., Is DNA A Nonlinear Dynamical System where Solitary Conformational Waves are Possible? J. Biosci. 

(Bangalore) 2001, 26 (3), 305-313. 

117. Baird, N. C., Simulation of Hydrogen Bonding in Biological Systems: Ab initio Calculations for NH3  NH3 and NH3  

NH4+. Int. J. Quantum Chem 1974, 8 (S1), 49-54. 

118. Wong, K.; Pettitt, B., The Pathway of Oligomeric DNA Melting investigated by Molecular Dynamics Simulations. Biophys. 

J. 2008, 95 (12), 5618. 

119. Travers, A., DNA Dynamics: bubble ‘n’flip for DNA Cyclisation? Curr. Biol. 2005, 15 (10), R377-R379. 

120. Alexandrov, B. S.; Fukuyo, Y.; Lange, M.; Horikoshi, N.; Gelev, V.; Rasmussen, K. Ø.; Bishop, A. R.; Usheva, A., DNA 

Breathing Dynamics Distinguish Binding from Nonbinding Consensus Sites for Transcription Factor YY1 in Cells. Nucleic 

acids research 2012, 40 (20), 10116-10123. 

121. Zeida, A.; Machado, M. R.; Dans, P. D.; Pantano, S., Breathing, Bubbling, and Bending: DNA Flexibility from 

Multimicrosecond Simulations. Physical Review E 2012, 86 (2), 021903. 

122. Ivani, I.; Dans, P. D.; Noy, A.; Pérez, A.; Faustino, I.; Hospital, A.; Walther, J.; Andrio, P.; Goñi, R.; Balaceanu, A., Parmbsc1: 

A Refined Force Field for DNA Simulations. Nat. Methods 2016, 13 (1), 55. 

123. Zgarbová, M.; Šponer, J.; Otyepka, M.; Iii, T. E. C.; Galindomurillo, R.; Jureč ka, P., Refinement of the Sugar–Phosphate 

Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 

11 (12), 5723-5736. 
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Table 1. The summarization of the simulation times in umbrella sampling simulations in the current work. 

The wild type denotes the T group in DNA, while the mutation TFT represents the mutated T group with 3’-

2’ linkages in TNA. The net-neutral salt concentration means the counter-ions are added to neutralize the 

system, while the excess-salt salt concentration indicates that aside from the salts to achieve the net-neutral 

condition, excess salts (sodium chloride ion pairs) are added to achieve an excess-salt concentration of 0.09 

M, corresponding to the experimental condition. Here the equilibrium sampling time only includes the 

production run after the initial equilibration in each umbrella window.  

salt 

concentration 

            Terms              

                   

System   

equilibrium umbrella sampling 

Sampling 

time in 

each 

umbrella 

window 

(ns) 

Number 

of 

umbrella 

windows 

Total 

simulation 

time (ns)  

net-neutral 

OL15 wild type 32 

72 

2304 

OL15 mutation TFT 32 2304 

bsc1 wild type 28 2016 

 bsc1 mutation TFT 36 2592 

bsc0 wild type 28 2016 

bsc0 mutation TFT 32 2304 

excess-salt 

OL15 wild type 36 2592 

OL15 mutation TFT 40 2880 

bsc1 wild type 32 2304 

 bsc1 mutation TFT 32 2304 

bsc0 wild type 40 2880 

bsc0 mutation TFT 32 2304 
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Table 2. For the net-neutral systems, the comparison between the minimum simulation times required for 

converged PMF estimates from equilibrium umbrella sampling and nonequilibrium stratification. In 

equilibrium umbrella sampling, there are 72 umbrella windows and in each window 4 ns sampling time is 

required. Thus, the sampling time is about 288 ns. In nonequilibrium stratification, the total sampling time in 

nonequilibrium stratification is given by segments traj NEW eq* *( )N N   , where 
segmentsN  denotes the number of 

segments, trajN  represents the number of realizations per 2° segment, eq  is the statistical inefficiency in 

the equilibrium ensemble, and NEW  is the pulling time during the nonequilibrium realization. In each pulling 

segment, 50 samples are required for converged PMF estimation. Thus, the minimum sampling time in 

nonequilibrium stratification is about 27 ns. 

            

Terms              

     

 

 

               

                   

Systems 

equilibrium umbrella sampling nonequilibrium stratification 

Sampling 

time in 

each 

umbrella 

window 

(ns) 

Number 

of 

umbrella 

windows 

Total 

simulation 

time (ns)  

eq  for each 

initial 

configuration 

(ps) 

NEW  in 

each 

segment 

(ps) 

Number 

of 

segments 

Number of 

realizations 

per 

segment 

Total 

simulation 

time (ns)  

OL15 wild type 

4 72 288.00  2.00  0.5x2=1 180.00  50.00  27.00  

OL15 mutation 

TFT 

bsc0 wild type 

bsc0 mutation 

TFT 
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Fig. 1. a) An illustration of the flipping of the 7th residue of T/TFT at the middle of the TNA/DNA duplex and 

the comparison between the T residue in DNA and the TFT residue in TNA. b) The definition of the CV used 

to describe the flipping event. The COMs of the 4 groups (heavy atoms only) in circle are used to define the 
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dihedral.   
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Fig. 2. Under the force field of OL15, the convergence behavior of free energy profiles constructed from 

equilibrium umbrella sampling simulations with vFEP reweighting in a-b) net-neutral and c-d) excess-salt 

simulations.  
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Fig. 3. In the TNA mutant described with the OL15 force field in net-neutral simulations, a) the statistical 

inefficiency in each configurational state, b) the comparison between dimensionless SD profiles and the 

overlap profile in nonequilibrium stratification, c) the convergence behavior of free energy profiles from 

nonequilibrium stratification on the sample size, and d) the time-evolution of state-specified SD. The 

standard deviation in the ith state is the sum of the components contributed by samples initiated from that 

state, namely 
   , 1 1,

2 2 2 2

, 1 1,

Var Vari i i i

i

i i i i i i

f f

n f n f


 

 

  , where 
in  represents the number of independent samples in 

state i, f  refers to the Fermi function, ( )ji ji ij j
f f W C  , ( )ij ij ij i

f f W C  , j equals i+1, and ijW  is 

the reduced (dimensionless) work for nonequilibrium pulling initiated from state i and ended in state j. The 

initial sample size is 5 and in each iteration further 5 samples are added to the dataset. There are obvious 

differences between the 5-sample PMF and the later ones. Since the 10th iteration (i.e. 50 samples), the 

fluctuation of the PMF is very small, the SDs in all states decrease monotonically with further sampling, and 

the dimensionless SD profile is much smaller than the overlap profile. Thus, we define this sample size (50 

samples) as the minimum sample size required for convergence.   
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Fig. 4. Under the OL15 force field, the comparisons between the free energy profiles of base flipping in a) the 

wild-type DNA duplex and b) the TNA mutant constructed from nonequilibrium stratification and equilibrium 

umbrella sampling with vFEP reweighting. 
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Fig. 5. Comparison between the free energy profiles of the wild-type DNA and the TNA mutant described 

with the same force field under different ion concentrations (i.e. net-neutral and excess-salt simulations). a) 

OL15, b) bsc1, and c) bsc0.  
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Fig. 6. Comparison between the free energy profiles of the wild-type DNA and the TNA mutant described 

with the different force fields under the same ion concentration. a) net-neutral and b) excess-salt simulations.  
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Fig. S1. Under the force field of bsc1, the convergence behavior of free energy profiles constructed from 

equilibrium umbrella sampling simulations with vFEP reweighting in a-b) net-neutral and c-d) excess-salt 

simulations.  
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Fig. S2. Under the force field of bsc0, the convergence behavior of free energy profiles constructed from 

equilibrium umbrella sampling simulations with vFEP reweighting in a-b) net-neutral and c-d) excess-salt 

simulations.  
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Fig. S3. In the wild-type DNA system described with the bsc0 force field in net-neutral simulations, a) the 

convergence behavior of free energy profiles from nonequilibrium stratification on the sample size, b) the 

time-evolution of state-specified SD, and c) the comparison between dimensionless SD profiles and overlap 

profile in nonequilibrium stratification. The standard deviation in the ith state is the sum of the components 

contributed by samples initiated from that state, namely 
   , 1 1,

2 2 2 2

, 1 1,

Var Vari i i i

i

i i i i i i

f f

n f n f


 

 

  , where 
in  

represents the number of independent samples in state i, f  refers to the Fermi function, 

( )ji ji ij j
f f W C  , ( )ij ij ij i

f f W C  , j equals i+1, and ijW  is the reduced (dimensionless) work for 

nonequilibrium pulling initiated from state i and ended in state j. The initial sample size is 5 and in each 

iteration further 5 samples are added to the dataset. There are obvious differences between the 5-sample 

PMF and the later ones. Since the 10th iteration (i.e. 50 samples), the fluctuation of the PMF is very small. 

To avoid exaggeration of the performance of the nonequilibrium technique, we define this sample size (50 

samples) as the minimum sample size required for convergence. 
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Fig. S4. In the TNA mutant described with the bsc0 force field in net-neutral simulations, a) the 

convergence behavior of free energy profiles from nonequilibrium stratification on the sample size, b) the 

time-evolution of state-specified SD, and c) the comparison between dimensionless SD profiles and overlap 

profile in nonequilibrium stratification. The standard deviation in the ith state is the sum of the components 

contributed by samples initiated from that state, namely 
   , 1 1,

2 2 2 2

, 1 1,

Var Vari i i i

i

i i i i i i

f f

n f n f


 

 

  , where 
in  

represents the number of independent samples in state i, f  refers to the Fermi function, 

( )ji ji ij j
f f W C  , ( )ij ij ij i

f f W C  , j equals i+1, and ijW  is the reduced (dimensionless) work for 

nonequilibrium pulling initiated from state i and ended in state j. The initial sample size is 5 and in each 

iteration further 5 samples are added to the dataset. There are obvious differences between the 5-sample 

PMF and the later ones. Since the 10th iteration (i.e. 50 samples), the fluctuation of the PMF is very small. 

To avoid exaggeration of the performance of the nonequilibrium stratification method, we define this sample 

size (50 samples) as the minimum sample size required for convergence. 
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Fig. S5. Under the bsc0 force field, the comparisons between the free energy profiles of base flipping in a) the 

wild-type DNA duplex and b) the TNA mutant constructed from nonequilibrium stratification and equilibrium 

umbrella sampling with vFEP reweighting. 

 

 


