Microbial cleavage of C–F bonds in per- and polyfluoroalkyl substances via dehalorespiration

Yaochun Yu¹, Kunyang Zhang¹, Zhong Li², Changxu Ren³, Jinyong Liu³, Yujie Men^{1,4*}

¹Department of Civil and Environmental Engineering, University of Illinois at Urbana-

Champaign, Urbana, IL, USA.

²Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

³Department of Chemical and Environmental Engineering, University of California, Riverside,

Riverside, CA, USA.

⁴Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

*Correspondence to: <u>ymen2@illinois.edu</u>

Abstract

Regarding the emerging concerns of the widely occurring and environmentally persistent per- and polyfluoroalkyl substances (PFASs), one intriguing and unsolved scientific question for environmental microbiologists, chemists, and engineers is whether microbial reductive defluorination of perfluorinated compounds exists in nature. Due to the strong dissociation energy of carbon–fluorine (C–F) bonds in PFASs, no convincing evidence has ever been reported regarding biological cleavage of C–F bonds from $> C_2$ perfluorinated structures. We, for the first time, show C–F bond cleavage via reductive defluorination by an organohalide-respiring microbial community for two PFASs, perfluoro(4-methylpent-2-enoic acid) and 4,5,5,5tetrafluoro-4-(trifluoromethyl)-2-pentenoic acid. Comprehensive biotransformation pathways are further elucidated. This study brings valuable fundamental knowledge into microbial dehalorespiration, which opens avenues for the future exploration of PFAS environmental fate and bioremediation strategies.

One Sentence Summary

Microbial dehalorespiration of two C₆ per- and polyfluorinated structures.

1	Global concerns on per- and polyfluoroalkyl substances (PFASs) have been rapidly
2	emerging over the past decade due to their wide applications, environmental persistence,
3	bioaccumulation, and toxicity to public health and ecosystems (1). PFASs have diverse structures
4	and ionization forms (anionic, cationic, zwitterionic, and neutral) determined by the chain length
5	and head groups (2, 3). Thousands of PFAS compounds are on the global market, and a fraction
6	of them have been identified in representative products such as aqueous film-forming foams
7	(AFFFs) and commercial goods (1). A number of those identified PFASs, including the legacy
8	perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and the alternative GenX,
9	have been detected in surface and subsurface drinking water sources, sewage, biosolids, as well
10	as in humans and animals (4-8). The United States Environmental Protection Agency (USEPA)
11	has set drinking water health advisory levels for PFOA and PFOS at 70 ng/L (9). Tremendous
12	efforts have been and are being made to understand the environmental fate and transport of the
13	structurally diverse PFAS compounds and to develop effective removal strategies. Due to the
14	strong Carbon-Fluorine (C–F) bond, the most effective defluorination of PFASs to date is via
15	physiochemical destruction, including advanced oxidation and reduction, electrochemical,
16	thermolysis, and plasma-based treatment (10-14). Nonetheless, sporadic reports on microbial
17	defluorination can be dated back to the 1960s, when aerobic microbial defluorination of
18	monofluoroacetate via glycolate-forming, C-F bond hydrolysis was observed, and the
19	corresponding hydrolytic dehalogenase was identified (15). Stepwise reductive defluorination of
20	trifluoroacetate (TFA, CF ₃ COOH) to acetate via di- and monofluoroacetate in a methanogenic
21	microbial community was documented two decades ago (16, 17). However, no follow-up study
22	investigated the responsible microorganisms, enzymes, or the defluorination mechanisms. In
23	addition to fluoroacetates, monofluoroaromatics such as 2- and 4-fluorobenzoate have been

24	observed to undergo biodefluorination under denitrifying conditions by enoyl-CoA
25	hydratases/hydrolases and an ATP-dependent class I BzCoA reductase, respectively (18, 19).
26	However, regarding typical PFASs with carbon chains longer than TFA, microbial defluorination
27	has only been observed for telomeric structures (with -CH2 groups on the carbon backbone) and
28	their polymers rather than perfluorinated ones (20-24). Fluorotelomer alcohols (FTOHs),
29	carboxylic acids (FTCAs) and sulfonic acids (FTSAs) are all found to be partially
30	biotransformed into perfluoroalkyl acids (PFAAs) under both aerobic and anaerobic conditions,
31	suggesting potential sources of PFAAs (25, 26). The responsible microorganisms/enzymes and
32	the underlying mechanisms are still unknown.
33	The question that has been scientifically and practically intriguing but not well addressed
34	is this: can microbes break down perfluorinated compounds longer than TFA or not at all?
35	Although reductive defluorination of perfluorinated compounds is biologically feasible
36	according to the thermodynamic calculations (27) , to our best knowledge, there is no convincing
37	evidence reported for microbial cleavage of the C-F bond in non-TFA perfluorinated
38	compounds, in terms of both fluoride ion release and the corresponding transformation product
39	formation (26). Inspired by the very recent studies, in which abiotic reductive defluorination of
40	branched PFASs slowly occurred in a vitamin B_{12} -Ti ^{III} catalytic system at room temperature (10,
41	28), we hypothesized that biological reductive defluorination of branched PFASs could be
42	carried out by organohalide-respiring microorganisms that possess B12-dependent reductive
43	dehalogenases (29, 30). In this study, we fill the knowledge gap by demonstrating the occurrence
44	of microbial reductive defluorination of branched, unsaturated per- and polyfluoroalkyl
45	structures and identifying the corresponding defluorination pathways. These groundbreaking
46	findings open new avenues of investigating and developing PFAS biodegradation technologies to

47 remediate contaminated subsurface environments. The structural specificity of microbial
48 reductive defluorination can also guide the design of more environmentally friendly PFAS
49 structures.

50	Reductive defluorination of select PFASs by a dechlorinating enrichment. The
51	dehalorespiration of PFASs was investigated in the subsequent transfers (10%, v/v) of a well-
52	studied and commercially available dechlorinating enrichment culture KB-1® (SiREM, Ontario,
53	Canada). Five PFAS structures were tested: three perfluorinated ones, i.e., PFOA (linear,
54	saturated, long-chain, C ₈), perfluoro-3,7-dimethyloctanoic acid (PFdiMeOA; branched,
55	saturated, long-chain, C10), and perfluoro(4-methylpent-2-enoic acid) (PFMeUPA; branched,
56	unsaturated, short-chain, C ₆), as well as two polyfluorinated ones structurally similar to
57	PFMeUPA: 4,5,5,5-tetrafluoro-4-(trifluoromethyl)-2-pentenoic acid (FTMeUPA; branched,
58	unsaturated, short-chain, C ₆) and 4,5,5,5tetrafluoro-4-(trifluoromethyl) pentanoic acid (FTMePA;
59	branched, saturated, short-chain, C ₆) (Table S1). Given the difficulty to break C–F bonds in
60	PFASs, it is extraordinarily fascinating to obtain strong evidence in terms of the parent
61	compound removal and F ⁻ release for microbial reductive defluorination of the two unsaturated
62	C ₆ PFASs, particularly the perfluorinated PFMeUPA (Fig. 1A–D). Both of them can serve as the
63	sole electron acceptor with not only organic carbons like lactate but also hydrogen (Fig. S1) as
64	the primary electron donor, which is evident for reductive defluorination. The defluorination was
65	much slower compared to the dechlorination of trichloroethene (TCE) by the same culture (Fig.
66	S2). It took ~ 130 days for the complete removal of 75 μ M PFMeUPA, while only ~ 70 days for
67	the same molar concentration of polyfluorinated FTMeUPA. It is not surprising to see faster
68	microbial anaerobic degradation of the telomeric PFASs (20, 26), which are more readily
69	degradable than perfluorinated ones due to the presence of Carbon-Hydrogen (C-H) bonds.

Moreover, the lack of observed microbial defluorination for the saturated FTMePA (Fig. S3A) suggests that the presence of the double bond (C=C) facilitated the microbial defluorination of PFMeUPA and FTMeUPA. For the tested long-chain PFASs, i.e., PFOA and PFdiMeOA, no microbial defluorination was observed (Fig. S3B–C). The recalcitrance of PFOA to microbial defluorination is consistent with the findings from other studies (*26, 31*). The branched structure in PFdiMeOA seems not to enhance its biodegradability by the investigated culture.

Fig. 1. Decay and fluoride ion release of PFMeUPA (A & B) and FTMeUPA (C & D) in the dehalorespiring microbial community.

81

82	Transformation product (TP) analysis reveals the C–F bond cleavage positions and
83	the biodegradation pathways of PFMeUPA and FTMeUPA. According to the suspect and
84	non-target TP screening criteria (see Materials and Methods in the SI), twelve TPs of PFMeUPA
85	and six TPs of FTMeUPA were identified (Table S1), indicating that the two PFASs underwent
86	multiple biotransformation pathways besides reductive defluorination. For TPs with the
87	reference compounds available, their structures were confirmed by matched tandem mass
88	spectrometry (MS ²) fragments to the MS ² spectra of the authentic standard. For TPs without
89	available standards, their structures were inferred according to the MS ² spectra and the similarity
90	to the ones predicted by a web-based competitive fragment modeling tool CFM-ID 2.0 (see
91	Materials and Methods in the SI) (Fig. S4–S22, Table S1) (32). Confirmed and plausible
92	structures of TPs are given in Fig. 3 & 4. Only TPs with authentic standards were quantified. For
93	the other TPs, peak areas were used to interpret their formation trend over a time course. We are
94	aware of the difference in MS ionization efficiency among different PFASs and their TPs. As
95	such differences among the available reference compounds were less than 10-fold (Table S2), the
96	same ionization efficiency was used for a rough estimation of the relative abundance among TPs
97	with more than one order of magnitude difference in peak areas.
98	For PFMeUPA, TP256 (-F+H from PFMeUPA) is the corresponding TP from the first
99	step of reductive defluorination (Fig. 2A and Reaction 1 in Fig. 3). TP256 has an MS ² fragment
100	of $C_3F_7^-$ (Fig. S5), indicating that the first C–F bond cleavage was at the sp^2 C–F bond on one of
101	the unsaturated carbons in PFMeUPA. Similarly, the first C-F bond cleaved during the B12-
102	catalyzed abiotic defluorination of 2,3,3,3-tetrafluoropropene was also at the sp^2 C–F bond on
103	the unsaturated carbon (33). Additionally, it is worth noting that although the tertiary sp^3 C–F

bond in PFMeUPA has the lowest bond dissociation energy (BDE) (Fig. 3), the formation of

105	TP256 indicates that the sp^2 C–F bonds are more microbially active. Due to the very similar BDE
106	values for the two sp^2 C–F bonds in PFMeUPA (Fig. 3), it is not clear which of the two C–F
107	bonds first underwent the F \rightarrow H exchange. The MS ² profile of TP256 does not provide any
108	clearer evidence, either. The microbial reductive defluorination of PFMeUPA is much slower
109	and to a lower defluorination extent than the chemical reductive defluorination of PFMeUPA
110	with a B_{12} -Ti ^{III} catalytic system (10). This could be due to different defluorination mechanisms
111	between biological and abiotic systems or to the low enzyme abundance and activity.

Fig. 2. TP formation during the biotransformation of PFMeUPA (A) and FTMeUPA (B) by the
 dehalorespiring community (arrows indicate TPs formed from defluorination reactions).

112

As PFMeUPA was being continuously transformed, TP256 was accumulated during the first 90 days, followed by a significant decrease, suggesting secondary biotransformation (Fig. 2A). The secondary biotransformation includes multiple routes. One major pathway was the formation of TP212 from decarboxylation of TP256 (Reaction 3 in Fig. 3). TP212 was only slightly accumulated, and further transformed into several downstream defluorination products (i.e., TP195, TP192, TP174, and TP154). Unlike TP256 and TP212, the second C–F bond cleavage products, TP195 and TP192, did not show the MS² fragment of C₃F₇⁻ (Table S1 and

123	Fig. S12). This suggests that rather than the remaining sp^2 C–F bond on the unsaturated carbon,
124	the second defluorination occurred within the $-C_3F_7$ group. TP195 was likely from the reductive
125	defluorination of TP212 (Reactions 6 in Fig. 3), which was highly accumulated after the 150-day
126	incubation period (Fig. 2A). The sp^3 C–F bond in the –C ₃ F ₇ group has the lowest BDE, thus
127	more likely to be cleaved. Furthermore, the behavior of TP195 on the LC-HRMS/MS was
128	different from the authentic standard of the sp^2 C–F cleavage product (3-(trifluoromethyl)-
129	3,4,4,4-tetrafluorobutene-1) (Table S1), indicating a different structure of TP195. TP192, as well
130	as the third and fourth C-F bond cleavage products (TP174 and TP154) were at relatively low
131	abundances (Fig. 2A & S23). Due to their unclear structures, the formation routes of these three
132	TPs are ambiguous and hypothetical (Reactions 7, $13 - 16$ in Fig. 3).

Fig. 3. Proposed biotransformation pathways of PFMeUPA in the dehalorespiring community (defluorination positions are shaded in blue; dashed arrows for Reaction 6 represent reductive defluorination of a saturated perfluorinated carboxylic acid; the red number next to a C–F bond is the calculated bond dissociation energy in kJ/mol); gray box: the major biotransformation pathway of PFMeUPA; dashed box: tentative downstream pathways.

139	Besides the major reductive defluorination route, PFMeUPA also underwent a branched
140	route of bioreduction (a.k.a. hydrogenation) forming a saturated fluorinated carboxylic acid
141	TP276 (Fig. 2 and Reaction 2 in Fig. 3). Similarly, another saturated TP (TP259) was formed,
142	likely from the partial hydrogenation of TP256 (Fig. 2 and Reaction 4 in Fig. 3). The
143	hydrogenation of unsaturated polyfluorinated substances has also been observed in both aerobic
144	and anaerobic sludges (20, 22). The hydrogenation of α , β -unsaturated carboxylic anions forming
145	the corresponding saturated carboxylic acids can be catalyzed by enoate reductases with
146	nicotinamide adenine dinucleotide (NADH) as the cofactor from anaerobic microorganisms such
147	as Clostridium kluyveri (34). Flavin-based ene-reductases from the "Old Yellow Enzyme" family
148	possessed by a variety of microorganisms may also carry out the reduction of activated alkenes
149	with carboxylic acid as the electron withdrawing group (EWG) when there is an additional EWG
150	such as a halogen (35) . It is still unclear whether such hydrogenation reactions are energy-
151	yielding and metabolically essential to sustain the growth of the carrying microorganisms (34) .
152	Besides the hydrogenation pathway, TP259 could also be formed from another route via
153	microbial defluorination of TP276 (Reaction 5 in Fig. 3). The BDE values of the two C-F bonds
154	on Carbon 2 and Carbon 3 in TP276 are similar to the BDE values of the other C-F bonds in
155	TP276 (Fig. 3), as well as the C-F BDE values in the structurally similar saturated FTMePA
156	(Fig. 4). As FTMePA did not undergo any defluorination reaction (Fig. S3A), the microbial
157	reductive defluorination of TP276 is thus less likely.
158	Another secondary TP of PFMeUPA is TP238, which was confirmed to be FTMeUPA
159	(Fig. S13). TP238 was possibly formed directly from the reductive defluorination of TP256
160	(Reaction 9 in Fig. 3) or from hydrogenation of TP256 followed by HF elimination (Reactions 4
161	& 8 in Fig. 3). Both pathways have been previously shown in the biotransformation of 8:2 and

162	6:2 fluorotelomeric alcohols/acids in anaerobic sludges (22, 24). The HF elimination reactions
163	may occur both abiotically and biologically (mediated by enzymes like acyl-CoA
164	dehydrogenases) (36). The maximum concentration of TP238 (i.e., FTMeUPA) in the
165	PFMeUPA biotransformation samples was less than 3 μ M (< 4% of the added PFMeUPA).
166	Given that FTMeUPA can be biotransformed by the same community (Fig. 1C), the low level of
167	FTMeUPA (TP238) during PFMeUPA biotransformation could be attributed to a secondary
168	degradation. To elucidate this, we analyzed the TPs during FTMeUPA biotransformation and
169	their formation during PFMeUPA biotransformation.

Fig. 4. Proposed biotransformation pathways of FTMeUPA in the dehalorespiring community
 (defluorination positions are shaded in blue; dashed arrows represent unknown reactions; the red
 number next to a C–F bond is the calculated bond dissociation energy in kJ/mol).

174

Like PFMeUPA, FTMeUPA underwent two major primary biotransformation pathways, reductive defluorination at the *sp*³ C–F bond (with the lowest BDE) forming TP221) and hydrogenation forming TP241 (confirmed to be FTMePA) (Fig. 4). TP241 was accumulated along with incubation, consistent with the recalcitrance of FTMePA to microbial degradation

179	(Fig. 2B & S3A). TP221 was in relatively low abundance likely due to the rapid conversion to
180	secondary TPs via decarboxylation and/or HF elimination (Fig. 2B & 4). Among all FTMeUPA
181	TPs, only TP241 was slightly detected in the PFMeUPA biotransformation samples, indicating
182	that the FTMeUPA formation (Reactions 8 & 9 in Fig. 3) was only a minor pathway of
183	PFMeUPA biotransformation.
184	Another minor route during PFMeUPA biotransformation is the conjugation of TP256
185	and TP276, forming their dimers, i.e., TP514 and TP554, respectively (Reactions 10 and 11 in
186	Fig. 3). TP536 from the conjugation of TP276 and TP259 was also formed (Reaction 12 in Fig.
187	3). TP514 significantly decreased after 90 days (Fig. S23), likely being back-transformed to
188	TP256 while TP256 was being further converted to the downstream TPs (Fig. 2A).
189	Collectively, PFMeUPA first underwent both reductive defluorination (the first C-F
190	bond cleavage) and hydrogenation pathways, which should result in a total defluorination less
191	than what would have been expected if all PFMeUPA was subject to the first C-F bond cleavage
192	(11%). The actual observed ~11% total defluorination is thus attributed to further defluorination
193	(more than one C-F bond cleavage). FTMeUPA underwent the same major pathways as
194	PFMeUPA. The large formation of the hydrogenation TP (TP241) in addition to the
195	defluorination TPs agrees with the 4% total defluorination of FTMeUPA, which corresponds to
196	less than one fluorine released per molecule (the total theoretical defluorination is 14% if all
197	FTMeUPA underwent the first C-F bond cleavage). Notably, Reactions 1 & 6 in Fig. 3 and
198	Reaction 16 in Fig. 4 are novel microbial reductive defluorination reactions. Unveiling the
199	microbial capabilities of breaking the "hardest-ever" carbon-halogen bond via reductive
200	dehalogenation and elucidating the overall pathways are of great scientific significance and

technological importance for the understanding of PFAS biodegradability and the development of treatment strategies.

203	Dehalococcoides spp. were not responsible for the defluorination, while
204	Dehalobacter spp. were likely involved in downstream biotransformation pathways. The
205	dominant dechlorinator in the investigated KB-1 culture is Dehalococcoides spp. (37). The
206	versatility of B12-dependent reductive dehalogenases of Dehalococcoides spp. in metabolizing
207	various organohalides makes them the most promising candidates capable of microbial reductive
208	defluorination of the two PFASs (38). Thus, we first looked at the growth and activities of
209	Dehalococcoides spp. in the PFMeUPA/FTMeUPA-fed culture. Unexpectedly, no
210	Dehalococcoides activity or growth was observed during the incubation period when
211	PFMeUPA/FTMeUPA was provided as the sole electron acceptor, in terms of the 16S rRNA
212	gene abundance and its transcription level, as well as the transcription levels of 14 identified
213	reductive dehalogenase (RDase) genes in the same community (39) (Fig. 5A & B, Fig. S24A &
214	B, and Fig. S25). The lack of growth of <i>Dehalococcoides</i> was also reflected by the decrease in
215	the total bacterial growth (Fig. 5C). In comparison, cultures with TCE addition exhibited active
216	growth of <i>Dehalococcoides</i> (Fig. 5A & B). Theoretically, the energy generated from the added
217	PFMeUPA/FTMeUPA (75 μ M) can sustain the growth of <i>Dehalococcoides</i> via reductive
218	dehalogenation if it occurs. Therefore, the dominant chloroethene-respiring Dehalococcoides
219	spp. in the community were not responsible for the reductive defluorination of
220	PFMeUPA/FTMeUPA. Corroboratively, the two isolated Dehalococcoides strains, D. mccartyi
221	FL2 and BAV1, were not able to cleave F^- from PFMeUPA while the cells exhibited
222	dechlorination activities (Fig. S26).

Instead of contributing to defluorination, the presence of TCE and/or dechlorination 223 activity of *Dehalococcoides* inhibited the defluorination of PFMeUPA after 30 – 50 days (Fig. 224 1A & B), while no inhibition for FTMeUPA during the entire incubation period (Fig. 1C & D). 225 The inhibition was less likely caused by substrate competition because the substrate lactate was 226 added intermittently in excess throughout the entire incubation period. Thus, we inferred that 227 228 different microbial groups were involved in the defluorination of the two compounds, and TCE specifically inhibited the PFMeUPA-defluorinating species. 229

- Dehalococcoides spp. activities as the 16S rRNA copy numbers (B), and the total bacterial 233
- growth as the total 16S rRNA gene copy numbers (C). 234

236	We then looked at the growth of another two dechlorinators in this community: the
237	second dominant TCE-dechlorinating species Geobacter spp. in addition to Dehalococcoides
238	(37) and the recently identified trichlorobenzene (TCB)-dechlorinating species Dehalobacter spp
239	(40). Again, Geobacter spp. showed no growth in the PFMeUPA-fed culture, hence were not
240	responsible for the reductive defluorination. Nevertheless, we observed significantly higher
241	growth and activities (in terms of cell densities and 16S rRNA levels) of Dehalobacter in the
242	PFMeUPA/FTMeUPA-fed culture compared to the TCE-fed ones (Fig. 6 and Fig. S24C). One
243	should note that the initial abundance of Dehalobacter in the seed culture fed with TCE was
244	extremely low (< 10^3 /mL). Such low <i>Dehalobacter</i> abundance was consistent with what was
245	observed in the TCE-fed subcultures of the same microbial community (40) . Several
246	Dehalobacter strains have been demonstrated to biodegrade chlorinated compounds such as
247	TCE, trichloroethane (TCA), and TCB (40-42). A similar emergence of Dehalobacter population
248	with a significant decrease of Dehalococcoides population was observed when the terminal
249	electron acceptor was switched from TCE to 1,2,4-TCB (41). The abilities of Dehalobacter spp.
250	to utilize diverse chlorinated compounds to alleviate substrate competition with other
251	dehalorespiring microorganisms make them likely involved in the defluorination of PFMeUPA
252	and FTMeUPA. Thus, we further examined the defluorination capabilities of the pure culture of
253	Dehalobacter restrictus strain PER-K23, the closest one to Dehalobacter spp. in the community
254	(40), but we did not detect any F ⁻ release from PFMeUPA and FTMeUPA (Fig. S27A & B).
255	Nonetheless, one may still not exclude the possibility that the actual Dehalobacter spp. in the
256	community were able to carry out the reductive defluorination of PFMeUPA or the
257	biotransformation intermediates of PFMeUPA, such as the first C-F bond cleavage product
258	TP256. Because there was not a sufficient amount of authentic or isolated TP256 available, the

actual role of *Dehalobacter* spp. on the PFMeUPA and FTMeUPA

defluorination/biotransformation remains elusive.

Fig. 6. The growth of *Dehalobacter* spp. as its 16S rRNA gene copy numbers (A), *Dehalobacter* spp. activities as the 16S rRNA copy numbers (B).

264

261

260

265 According to this study, unsaturated perfluorinated compounds seem to be more bioavailable, and the first C-F bond cleavage at the sp2 position is crucial for the following 266 267 stepwise defluorination to occur. As the dominant dechlorinating species in the community were not responsible for the PFMeUPA/FTMeUPA defluorination, the actual defluorinating 268 microorganisms are likely in low abundance in this community, rendering the slow activities for 269 270 the two compounds. The low abundance might also cause no defluorination for the other tested long-chain and saturated PFASs, because the defluorination can be kinetically limited for those 271 more recalcitrant structures. Thus, higher activities and perhaps a wider PFAS substrate range is 272 273 expected for enriched, isolated, and acclimated PFMeUPA/FTMeUPA-defluorinating microorganisms. While the enrichment, identification, and isolation are still ongoing due to the 274 slow growth of the defluorinating culture, considering the commercial use and environmental 275

276	occurrence of unsaturated PFASs (43, 44), the present findings already open various
277	opportunities for PFAS management and treatment in the future. These include finding
278	alternative PFASs with more readily biodegradable structures, assessing the environmental fate
279	of branched and unsaturated PFASs, and developing biotechnologies and treatment train systems
280	for PFAS removal and destruction.
281	
282	REFERENCES AND NOTES
283	(1) Wang, Z.; DeWitt, J. C.; Higgins, C. P.; Cousins, I. T. A never-ending story of per- and
284	polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 51, 2508-2518 (2017).
285	(2) D'Agostino, L. A.; Mabury, S. A. Identification of novel fluorinated surfactants in
286	aqueous film forming foams and commercial surfactant concentrates. Environ. Sci. Technol. 48,
287	121-129 (2014).
288	(3) Xiao, F.; Golovko, S. A.; Golovko, M. Y. Identification of novel non-ionic, cationic,
289	zwitterionic, and anionic polyfluoroalkyl substances using UPLC-TOF-MS(E) high-resolution
290	parent ion search. Anal. Chim. Acta. 988, 41-49 (2017).
291	(4) Xiao, F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: a
292	review of current literature. Water Res. 124, 482-495 (2017).
293	(5) Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson, M.; Kearns, B.; Pickett,
294	A.; Smith, C.; Knappe, D. R. U. Legacy and emerging perfluoroalkyl substances are important
295	drinking water contaminants in the Cape Fear River watershed of North Carolina. Environ. Sci.
296	Technol. Lett. 3, 415-419 (2016).

297	(6) Boulanger, B.; Vargo, J. D.; Schnoor, J. L.; Hornbuckle, K. C. Evaluation of
298	perfluorooctane surfactants in a wastewater treatment system and in a commercial surface
299	protection product. Environ. Sci. Technol. 39, 5524-5530 (2005).
300	(7) Lindstrom, A. B.; Strynar, M. J.; Delinsky, A. D.; Nakayama, S. F.; McMillan, L.;
301	Libelo, E. L.; Neill, M.; Thomas, L. Application of WWTP biosolids and resulting perfluorinated
302	compound contamination of surface and well water in Decatur, Alabama, USA. Environ. Sci.
303	Technol. 45, 8015-8021 (2011).
304	(8) Sepulvado, J. G.; Blaine, A. C.; Hundal, L. S.; Higgins, C. P. Occurrence and fate of
305	perfluorochemicals in soil following the land application of municipal biosolids. Environ. Sci.
306	Technol. 45, 8106-8112 (2011).
307	(9) U.S. Environmental Protection Agency, (EPA). "PFOA & PFOS drinking water health
308	advisories"; (Publication 800-F-16-003, EPA, 2016, www.epa.gov/sites/production/files/2016-
309	06/documents/drinkingwaterhealthadvisories_pfoa_pfos_updated_5.31.16.pdf).
310	(10) Liu, J.; Van Hoomissen, D. J.; Liu, T.; Maizel, A.; Huo, X.; Fernández, S. R.; Ren, C.;
311	Xiao, X.; Fang, Y.; Schaefer, C. E.; Higgins, C. P.; Vyas, S.; Strathmann, T. J. Reductive
312	defluorination of branched per- and polyfluoroalkyl substances with cobalt complex catalysts.
313	Environ. Sci. Technol. Lett. 5, 289-294 (2018).
314	(11) Schaefer, C. E.; Choyke, S.; Ferguson, P. L.; Andaya, C.; Burant, A.; Maizel, A.;
315	Strathmann, T. J.; Higgins, C. P. Electrochemical transformations of perfluoroalkyl acid (PFAA)
316	precursors and PFAAs in groundwater impacted with aqueous film forming foams. Environ. Sci.
317	Technol. 52, 10689-10697 (2018).

318	(12) Vecitis, C. D.; Park, H.; Cheng, J.; Mader, B. T.; Hoffmann, M. R. Treatment
319	technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA).
320	Front. Environ. Sci. Eng. 3, 129-151 (2009).
321	(13) Stratton, G. R.; Dai, F.; Bellona, C. L.; Holsen, T. M.; Dickenson, E. R. V.; Mededovic
322	Thagard, S. Plasma-based water treatment: Efficient transformation of perfluoroalkyl substances
323	in prepared solutions and contaminated groundwater. Environ. Sci. Technol. 51, 1643-1648
324	(2017).
325	(14) Bentel, M. J.; Yu, Y. C.; Xu, L. H.; Li, Z.; Wong, B. M.; Men, Y. J.; Liu, J. Y.
326	Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons:
327	structural dependence and implications to PFAS remediation and management. Environ. Sci.
328	Technol. 53, 3718-3728 (2019).
329	(15) Goldman, P. The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. <i>J</i> .
330	<i>Biol. Chem.</i> 240 , 3434-3438 (1965).
331	(16) Visscher, P. T.; Culbertson, C. W.; Oremland, R. S. Degradation of trifluoroacetate in
332	oxic and anoxic sediments. Nature 369, 729-731 (1994).
333	(17) Kim, B. R.; Suidan, M. T.; Wallington, T. J.; Du, X. Biodegradability of trifluoroacetic
334	acid. Environ. Eng. Sci. 17, 337-342 (2000).
335	(18) Tiedt, O.; Mergelsberg, M.; Eisenreich, W.; Boll, M. Promiscuous defluorinating enoyl-
336	CoA hydratases/hydrolases allow for complete anaerobic degradation of 2-fluorobenzoate.
337	Front. Microbiol. 8, 2579 (2017).
338	(19) Tiedt, O.; Mergelsberg, M.; Boll, K.; Muller, M.; Adrian, L.; Jehmlich, N.; von Bergen,
339	M.; Boll, M. ATP-dependent C-F bond cleavage allows the complete degradation of 4-
340	fluoroaromatics without oxygen. Mbio 7, e00990-16 (2016).

341	(20)	Wang, N.; Szostek, B.; Buck, R. C.; Folsom, P. W.; Sulecki, L. M.; Capka, V.; Berti, W.
342	R.; Ga	nnon, J. T. Fluorotelomer alcohol biodegradation-direct evidence that perfluorinated
343	carbon	chains breakdown. Environ. Sci. Technol. 39, 7516-7528 (2005).
344	(21)	Shaw, D. M. J.; Munoz, G.; Bottos, E. M.; Duy, S. V.; Sauve, S.; Liu, J.; Van Hamme, J.
345	D. Deg	gradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2
346	fluorot	elomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions. Sci.
347	Total.	Environ. 647, 690-698 (2019).
348	(22)	Zhang, S.; Szostek, B.; McCausland, P. K.; Wolstenholme, B. W.; Lu, X.; Wang, N.;
349	Buck,	R. C. 6:2 and 8:2 fluorotelomer alcohol anaerobic biotransformation in digester sludge
350	from a	WWTP under methanogenic conditions. Environ. Sci. Technol. 47, 4227-4235 (2013).
351	(23)	Lee, H.; D'eon, J.; Mabury, S. A. Biodegradation of polyfluoroalkyl phosphates as a
352	source	of perfluorinated acids to the environment. Environ. Sci. Technol. 44, 3305-3310 (2010).
353	(24)	Li, F.; Su, Q. F.; Zhou, Z. M.; Liao, X. B.; Zou, J.; Yuan, B. L.; Sun, W. J. Anaerobic
354	biodeg	gradation of 8:2 fluorotelomer alcohol in anaerobic activated sludge: metabolic products
355	and pa	thways. <i>Chemosphere</i> 200, 124-132 (2018).
356	(25)	Butt, C. M.; Muir, D. C.; Mabury, S. A. Biotransformation pathways of fluorotelomer-
357	based	polyfluoroalkyl substances: a review. Environ. Toxicol. Chem. 33, 243-267 (2014).
358	(26)	Liu, J.; Mejia Avendano, S. Microbial degradation of polyfluoroalkyl chemicals in the
359	enviro	nment: a review. Environ. Int. 61, 98-114 (2013).
360	(27)	Parsons, J. R.; Sáez, M.; Dolfing, J.; de Voogt, P. "Biodegradation of perfluorinated
361	compo	ounds" in Reviews of environmental contamination and toxicology, Whitacre, D. M., Ed.
362	(Spring	ger US, 2008); vol. 196 pp. 53-71.

363	(28)	Park, S.; de Perre, C.; Lee, L. S. Alternate reductants with VB ₁₂ to transform C8 and C6
364	perflu	oroalkyl sulfonates: limitations and insights into isomer specific transformation rates,
365	produc	cts and pathways. Environ. Sci. Technol. 51, 13869-13877 (2017).
366	(29)	Fincker, M.; Spormann, A. M. Biochemistry of catabolic reductive dehalogenation. Annu.
367	Rev. B	<i>Biochem.</i> 86 , 357-386 (2017).
368	(30)	Schubert, T.; Adrian, L.; Sawers, R. G.; Diekert, G. Organohalide respiratory chains:
369	compo	osition, topology and key enzymes. FEMS Microbiol. Ecol. 94, (2018).
370	(31)	Ochoa-Herrera, V.; Field, J. A.; Luna-Velasco, A.; Sierra-Alvarez, R. Microbial toxicity
371	and bi	odegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and
372	polyfl	uoroalkyl substances (PFASs). Environ. Sci. Process. Impacts 18, 1236-1246 (2016).
373	(32)	Pon, A.; Wishart, D.; Wilson, M.; Greiner, R.; Allen, F. CFM-ID: a web server for
374	annota	ation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic
375	Acids	<i>Res.</i> 42 , W94-W99 (2014).
376	(33)	Im, J.; Walshe-Langford, G. E.; Moon, J. W.; Löffler, F. E. Environmental fate of the
377	next g	eneration refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf). Environ. Sci. Technol. 48,
378	13181	-13187 (2014).
379	(34)	Tischer, W.; Bader, J.; Simon, H. Purification and some properties of a hitherto-unknown
380	enzym	he reducing the carbon-carbon double bond of α , β -unsaturated carboxylate anions. <i>Eur. J.</i>
381	Bioche	em. 97 , 103-112 (1979).
382	(35)	Winkler, C. K.; Tasnádi, G.; Clay, D.; Hall, M.; Faber, K. Asymmetric bioreduction of
383	activat	ted alkenes to industrially relevant optically active compounds. J. Biotechnol. 162, 381-
384	389 (2	.012).

385	(36) Dinglasan, M. J. A.; Ye, Y.; Edwards, E. A.; Mabury, S. A. Fluorotelomer alcohol
386	biodegradation yields poly- and perfluorinated acids. Environ. Sci. Technol. 38, 2857-2864
387	(2004).
388	(37) Duhamel, M.; Edwards, E. A. Microbial composition of chlorinated ethene-degrading
389	cultures dominated by Dehalococcoides. FEMS Microbiol. Ecol. 58, 538-549 (2006).
390	(38) Löffler, F. E.; Yan, J.; Ritalahti, K. M.; Adrian, L.; Edwards, E. A.; Konstantinidis, K. T.;
391	Müller, J. A.; Fullerton, H.; Zinder, S. H.; Spormann, A. M. Dehalococcoides mccartyi gen.
392	nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling
393	and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order
394	Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum
395	Chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625-635 (2015).
396	(39) Waller, A. S.; Krajmalnik-Brown, R.; Löffler, F. E.; Edwards, E. A. Multiple reductive-
397	dehalogenase-homologous genes are simultaneously transcribed during dechlorination by
398	Dehalococcoides-containing cultures. Appl. Environ. Microbiol. 71, 8257-8264 (2005).
399	(40) Puentes Jácome, L. A.; Edwards, E. A. A switch of chlorinated substrate causes
400	emergence of a previously undetected native Dehalobacter population in an established
401	Dehalococcoides-dominated chloroethene-dechlorinating enrichment culture. FEMS Microbiol.
402	<i>Ecol.</i> 93 , fix141 (2017).
403	(41) Nelson, J. L.; Jiang, J.; Zinder, S. H. Dehalogenation of chlorobenzenes,
404	dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. Environ. Sci. Technol. 48,

405 3776-3782 (2014).

406	(42) Alfán-Guzmán, R.; Ertan, H.; Manefield, M.; Lee, M. Isolation and characterization of
407	Dehalobacter sp. strain TeCB1 including identification of TcbA: a novel tetra- and
408	trichlorobenzene reductive dehalogenase. Front. Microbiol. 8, 558 (2017).
409	(43) Bao, Y. X.; Qu, Y. X.; Huang, J.; Cagnetta, G.; Yu, G.; Weber, R. First assessment on
410	degradability of sodium <i>p</i> -perfluorous nonenoxybenzene sulfonate (OBS), a high volume
411	alternative to perfluorooctane sulfonate in fire-fighting foams and oil production agents in China.
412	RSC Adv. 7, 46948-46957 (2017).
413	(44) Washington, J. W.; Jenkins, T. M.; Weber, E. J. Identification of unsaturated and 2H
414	polyfluorocarboxylate homologous series and their detection in environmental samples and as
415	polymer degradation products. Environ. Sci. Technol. 49, 13256-13263 (2015).
416	(45) Men, Y. J.; Feil, H.; VerBerkmoes, N. C.; Shah, M. B.; Johnson, D. R.; Lee, P. K. H.;
417	West, K. A.; Zinder, S. H.; Andersen, G. L.; Alvarez-Cohen, L. Sustainable syntrophic growth of
418	Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and
419	Methanobacterium congolense: global transcriptomic and proteomic analyses. ISME J. 6, 410-
420	421 (2012).
421	(46) He, J.; Holmes, V. F.; Lee, P. K.; Alvarez-Cohen, L. Influence of vitamin B ₁₂ and
422	cocultures on the growth of Dehalococcoides isolates in defined medium. Appl. Environ.
423	Microbiol. 73 , 2847-2853 (2007).
424	(47) Yu, Y. C.; Han, P.; Zhou, L. J.; Li, Z.; Wagner, M.; Men, Y. J. Ammonia
425	monooxygenase-mediated cometabolic biotransformation and hydroxylamine-mediated abiotic
426	transformation of micropollutants in an AOB/NOB coculture. Environ. Sci. Technol. 52, 9196-
427	9205 (2018).

428	(48) Zhou, L. J.; Han, P.; Yu, Y.; Wang, B.; Men, Y.; Wagner, M.; Wu, Q. L. Cometabolic
429	biotransformation and microbial-mediated abiotic transformation of sulfonamides by three
430	ammonia oxidizers. Water Res. 159, 444-453 (2019).
431	(49) Men, Y.; Han, P.; Helbling, D. E.; Jehmlich, N.; Herbold, C.; Gulde, R.; Onnis-Hayden,
432	A.; Gu, A. Z.; Johnson, D. R.; Wagner, M.; Fenner, K. Biotransformation of two
433	pharmaceuticals by the ammonia-oxidizing archaeon Nitrososphaera gargensis. Environ. Sci.
434	<i>Technol.</i> 50 , 4682-4692 (2016).
435	(50) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J.
436	Chem. Phys. 98, 5648-5652 (1993).
437	(51) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy
438	formula into a functional of the electron density. Phys. Rev. B 37, 785-789 (1988).
439	(52) Stephens, P.; Devlin, F.; Chabalowski, C.; Frisch, M. J. Ab initio calculation of
440	vibrational absorption and circular dichroism spectra using density functional force fields. J.
441	Phys. Chem. 98, 11623-11627 (1994).
442	(53) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation
443	energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200-1211
444	(1980).
445	(54) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion
446	corrected density functional theory. J. Comput. Chem. 32, 1456-1465 (2011).
447	(55) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute
448	electron density and on a continuum model of the solvent defined by the bulk dielectric constant
449	and atomic surface tensions. J. Phys. Chem. B 113, 6378-6396 (2009).

450	(56) Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time
451	quantitative PCR and the $2^{-\Delta\Delta CT}$ method. <i>Methods</i> 25, 402-408 (2001).
452	(57) Mei, R.; Narihiro, T.; Nobu, M. K.; Kuroda, K.; Liu, W. T. Evaluating digestion
453	efficiency in full-scale anaerobic digesters by identifying active microbial populations through
454	the lens of microbial activity. Sci Rep. 6, 34090 (2016).
455	(58) Sonthiphand, P.; Neufeld, J. D. Evaluating primers for profiling anaerobic ammonia
456	oxidizing bacteria within freshwater environments. PLoS One 8, e57242 (2013).
457	(59) Seshadri, R.; Adrian, L.; Fouts, D. E.; Eisen, J. A.; Phillippy, A. M.; Methe, B. A.; Ward,
458	N. L.; Nelson, W. C.; Deboy, R. T.; Khouri, H. M.; Kolonay, J. F.; Dodson, R. J.; Daugherty, S.
459	C.; Brinkac, L. M.; Sullivan, S. A.; Madupu, R.; Nelson, K. T.; Kang, K. H.; Impraim, M.; Tran,
460	K.; Robinson, J. M.; Forberger, H. A.; Fraser, C. M.; Zinder, S. H.; Heidelberg, J. F. Genome
461	sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307, 105-
462	108 (2005).
463	(60) MaymoGatell, X.; Chien, Y. T.; Gossett, J. M.; Zinder, S. H. Isolation of a bacterium that
464	reductively dechlorinates tetrachloroethene to ethene. Science 276, 1568-1571 (1997).
465	(61) Holmes, V. F.; He, J. Z.; Lee, P. K. H.; Alvarez-Cohen, L. Discrimination of multiple
466	Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive
467	dehalogenase genes. Appl. Environ. Microbiol. 72, 5877-5883 (2006).
468	(62) Grostern, A.; Edwards, E. A. Characterization of a <i>Dehalobacter</i> coculture that
469	dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive
470	dehalogenase gene. Appl. Environ. Microbiol. 75, 2684-2693 (2009).
471	

473 **ACKNOWLEDGEMENTS**

Funding: This study is supported by the National Science Foundation (Award No. CHE-474 1709286 for Y.M., Y.Y., and K.Z., and CHE-1709719 for C.R. and J.L.); Author contributions: 475 Y.Y., K.Z., J.L., and Y.M. designed the experiments; Y.Y. and K.Z. conducted the experiments; 476 Y.Y. measured fluoride by an ion selective electrode and cell growth and activity by qPCR and 477 RT-qPCR; R.C. validated the fluoride results using ion chromatography; Z.L. conducted the LC-478 HRMS/MS measurement; R.C. carried out the C-F BDE calculation; Y.Y. and Y.M. analyzed 479 the data and prepared the manuscript draft; All authors reviewed and edited the original draft. 480 Y.M. supervised the entire project. J.L. supervised the analyses done by R.C. and provided 481 thoughtful suggestion and discussion on the project. Competing interests: The authors declare 482 no conflicts of interest. Data and materials availability: All data is available in the main text or 483 the supplementary materials. 484

485

486 SUPPLEMENTARY MATERIALS:

487 Materials and Methods

488 Tables S1–S3

489 Figs. S1–S27

490 References (*45-62*)

Supplementary Materials for

Microbial cleavage of C–F bonds in per- and polyfluoroalkyl substances via dehalorespiration

Yaochun Yu, Kunyang Zhang, Zhong Li, Changxu Ren, Jinyong Liu, Yujie Men*

*Correspondence to: <u>ymen2@illinois.edu</u>

This PDF file includes:

Materials and Methods Tables S1 to S3 Figs. S1 to S27 References

Table of Content

Materials and Methods
Table S1. Standards and TPs information. 11
Table S2. Comparison of selected PFASs ionization efficiency. 16
Table S3. Primer sets information
Fig. S1. Fluoride ion release from PFMeUPA (100 µM) with hydrogen/lactate as the primary
electron donor
Fig. S2. Monitoring of TCE, cis-DCE, and VC in different conditions (A: control with only
TCE added; B: control with both TCE and PFMeUPA added), green arrows indicated the times
when TCE was re-added
Fig. S3. Fluoride ion release from 100 µM of FTMePA (A), PFdiMeOA (B), and PFOA (C) in
the dechlorinating microbial community
Fig. S4. MS ² fragments of PFMeUPA
Fig. S5. TP256 structure elucidation
Fig. S6. TP514 structure elucidation
Fig. S7. TP276 structure elucidation24
Fig. S8. TP554 structure elucidation25
Fig. S9. TP259 structure elucidation
Fig. S10. TP536 structure elucidation27
Fig. S11. TP212 structure elucidation
Fig. S12. TP195 structure elucidation
Fig. S13. TP238 structure elucidation
Fig. S14. TP192 structure elucidation
Fig. S15. TP174 structure elucidation
Fig. S16. TP154 structure elucidation
Fig. S17. TP241 structure elucidation
Fig. S18. TP221 structure elucidation
Fig. S19. TP177 structure elucidation
Fig. S20. TP287 structure elucidation
Fig. S21. TP200 structure elucidation
Fig. S22. TP180 structure elucidation
Fig. S23. Formation of minor PFMeUPA TPs
Fig. S24. Total bacterial growth (A), the growth of <i>Dehalococcoides</i> spp. (B), and <i>Dehalobacter</i>
spp. (C) after 70 days in FTMeUPA defluorination experiments (* indicates significant
difference between the two samples, $p < 0.05$, $n = 3$)
Fig. S25. Fold changes (91d/0d) of RDH gene copy numbers (A) and relative gene expression
levels (transcripts) of RDH genes in PFMeUPA-added samples in comparison to those in TCE-
added samples on 77d (B) (16S rRNA gene is the reference gene, n=3, *: no gene expression).42
Fig. S26. Biotransformation of PFMeUPA by FL2 (A) and BAV1 (B)

1 Materials and Methods

2	Chemicals. Standard compounds of perfluoro-n-octanoic acid (CAS number: 335-67-1, PFOA),
3	perfluoro-3,7-dimethyloctanoic acid (CAS number: 172155-07-6, PFdiMeOA), (E)-perfluoro(4-
4	methylpent-2-enoic acid) (CAS number: 103229-89-6, PFMeUPA), 4,5,5,5-tetrafluoro-4-
5	(trifluoromethyl)-2-pentenoic acid (CAS number: 243139-64-2, FTMeUPA), 4,5,5,5-tetrafluoro-
6	4-(trifluoromethyl) pentanoic acid (CAS number: 243139-62-0, FTMePA), and 3-
7	(trifluoromethyl)-3,4,4,4-tetrafluorobutene-1 (CAS number: 88562-41-8, polyfluorobutene) were
8	purchased form Synquest Laboratories and used without further purification. For PFOA,
9	PFdiMeOA, PFMeUPA, FTMeUPA, and FTMePA, 10 mM stock solutions of each standard were
10	prepared anaerobically in autoclaved Milli-Q water in 160 mL sealed serum bottles and stored at
11	room temperature until use. For the polyfluorobutene, methanol was used to dissolve the
12	compound for MS ² analysis.
13	Cultures and growth conditions. The Dehalococcoides-containing TCE-dechlorinating
14	enrichment (KB1) was generously provided by SiREM Lab (<u>https://www.siremlab.com/</u>). Pure
15	Dehalococcoides mccartyi BAV1 (ATCC BAA-2100) and FL2 (ATCC BAA-2098) were
16	purchased from American Type Culture Collection (ATCC). Pure Dehalobacter restrictus was
17	purchased from DSMZ (DSM-9455). All cultures were maintained in 160 mL sealed serum
18	bottles containing 100 mL sterile anaerobic basal medium with 100 μ g/L vitamin B ₁₂ as
19	previously described (45, 46) and 60 mL Ar/CO ₂ headspace. For the maintenance of KB1
20	culture, 5 mM lactate and 2 μL neat TCE (ca. 220 $\mu M)$ were added as electron donor and

21 electron acceptor, respectively, and were re-added periodically. For Dehalococcoides mccartyi 22 BAV1, 5 mM acetate, 2 µL neat *cis*-DCE were supplied upon depletion. For *Dehalococcoides* 23 mccartyi FL2 and Dehalobacter restrictus, 5 mM acetate, 2 µL neat TCE were supplied upon 24 depletion. H₂/Ar/CO₂ headspace was used for the three dechlorinating pure cultures. All cultures 25 were incubated at 34 °C in a dark incubator without shaking. 26 Biodefluorination experiments. Ten mL of the dechlorinating enrichment or pure culture was inoculated into 90 mL sterile fresh medium as described above. The electron acceptor was added 27 28 in three scenarios: (1) 75 μ M individual PFAS species as the sole electron acceptor; (2) 75 μ M 29 PFAS with 220 µM TCE (or cis-DCE for BAV1) as the co-substrate, and TCE/cis-DCE was re-

30 added upon depletion; (3) 220 µM TCE/*cis*-DCE as the sole electron acceptor with reamendment

31 upon depletion as culture activity control. Headspace and aqueous samples were taken

32 subsequently during the incubation period for the measurement of chloroethenes, PFASs and F⁻.

33 Briefly, four mL culture suspension was centrifuged at 16,000 \times g (4 °C for 30 min). Two mL

34 supernatant was used for F⁻ measurement. The rest 2 mL was collected for LC-HRMS/MS

35 measurement. Cell pellets were stored properly for DNA (- 20 °C) and RNA (- 80 °C)

36 extraction, respectively. Heat-inactivated biomass (two cycles of autoclavation at 121 °C for 20

37 min) control and biomass-free sterile fresh medium control were set up in the same way as

described above, both controls were amended with the same nutrients. All experimental groups

39 and controls were set up in triplicates.

40 Fluoride ion measurement. The concentration of fluoride ion (F⁻) in culture supernatant was

41	determined by an ion selective electrode (ISE, HACH, Loveland, CO) connected with a HQ30D
42	Portable Multi Meter (HACH). A 100 µg fluoride ionic strength adjustment powder (HACH) was
43	added into 2 mL culture supernatant, and the F ⁻ concentration was then measured with the ISE-
44	Multi Meter system. The ISE was calibrated each time before sample measurement according to
45	manufacturer's instructions. In addition, ion chromatography (IC) was used to validate the
46	fluoride measurement by ISE. The two methods exhibited consistent fluoride concentrations in
47	the tested samples.
48	Gas chromatography coupled to mass selective detector (GC-MSD) analysis. Chlorinated
49	ethenes and ethene in all experimental samples fed with TCE/cis-DCE were regularly measured
50	by injecting 500 μ L headspace sample into a GC-MSD (6850 Network GC system, 5975C VL
51	MSD, Agilent, Santa Clara, CA) equipped with a Rtx-200 capillary column (30 m \times 250 μm \times
52	1 μ m; Shimadzu, Columbia, MD). The oven temperature was programmed to hold at 45 °C for 1
53	minute, increased to 200 °C in 3.44 minutes, and hold at 200 °C for 1 minute. The temperatures
54	of injector and detector were maintained at 220 °C and 250 °C, respectively.
55	High-performance liquid chromatography coupled to high-resolution tandem mass
56	spectrometry (HPLC-HRMS/MS) analysis. Concentrations of parent compound and
57	transformation products were analyzed by high performance liquid chromatography coupled to a
58	high-resolution quadrupole orbitrap mass spectrometer (HPLC-HRMS/MS, Q Exactive, Thermo
59	Fisher Scientific, Waltham, MA) in the Metabolomics Lab of Roy J. Carver Biotechnology
60	Center at University of Illinois at Urbana-Champaign. For HPLC analysis, a 50 µL sample were

61	loaded onto a Zorbax SB-Aq column (particle size 5μ m, 4.6×50 mm, Agilent), and eluted with
62	10 mM ammonia formate (A) and methanol (B) at a flow rate of 350 μ L/min. The linear gradient
63	for LC separation was set as: 100% A for 0 – 1 min, 100% – 2% A for 2 – 15 min, 2% – 100 %
64	A in 1 min, and 100% A for 16 – 21 min. For HRMS, mass spectra were acquired in full scan
65	mode at a resolution of 70,000 at m/z 200 and a scan range of m/z $50 - 750$ under
66	negative/positive switch ionization (ESI) mode. The Xcalibur 4.0 and TraceFinder 4.1 EFS
67	(Thermo Fisher Scientific) were used for data acquisition and analysis. The limit of
68	quantification (LOQ) for each investigated compound is determined as the lowest concentration
69	of calibration standards with a detection variation $< 20\%$, which was listed in Table S1.
70	Transformation product (TP) identification. Both suspect screening and nontarget screening
71	were conducted to identify transformation products as previously described (47, 48). Suspect
72	screening was done by TraceFinder 4.1 EFS and Xcalibur 4.0 software (Thermo Fisher
73	Scientific). TP suspect lists were generated by an automated metabolites mass prediction script
74	(49), which was modified to specifically predict the defluorination products via different
75	biological reaction pathways including a number of known reduction reactions, hydrolysis
76	reactions, and conjugation reactions at both primary and secondary levels. Plausible
77	transformation products were selected based on the following criteria: (i) mass accuracy
78	tolerance < 5 ppm; (ii) isotopic pattern score > 90%; (iii) peak area > 10 ⁸ ; (iv) increasing trend
79	along time or first increase then decrease; (v) no formation in heat-inactivated controls and
80	absent in biological samples without any PFAS addition. For non-target screening, software

81	Sieve 2.2 (Thermo Fisher Scientific) was used for data analysis. The potential TPs were selected
82	based on the same criteria as suspect screening. For TPs with authentic standards, MS ² fragment
83	profiles of both standard compounds and TP candidates were acquired using data-dependent MS ²
84	scan based on the exact mass of the precursor ion to elucidate the structures of TPs. MS ²
85	fragment profiles of TPs without available authentic standards were compared with the predicted
86	fragments by Competitive Fragmentation Modeling for Metabolite Identification (CFM-ID,
87	http://cfmid.wishartlab.com/).
88	Bond dissociation energy (BDE) calculation. GAUSSIAN 09 quantum chemistry package was
89	used to obtain the C-F BDEs for the parent and daughter PFASs examined in Fig. 3 and 4. All
90	molecular structures were optimized at the B3LYP/6-311+G(2d,2p) level of theory (50-53).
91	Grimme's empirical dispersion correction with Becke-Johnson damping (GD3-BJ) was
92	employed to approximate the dispersion interaction between molecules (54). The SMD
93	continuum solvation model was selected to simulate the solvent effect implicitly (55). Frequency
94	examinations of all optimized geometries were done to confirm that the local minima were
95	reached instead of obtaining the first-order saddle point. The BDE for each C-F bond was
96	calculated through a previously reported formula:
97	$BDE = (H^*_{radical[PFASminusF]} + H^*_{radicalF}) - H^*_{parentPFAS}$

where H^* represents the enthalpy of formation (10). 98

DNA extraction and quantitative polymerase chain reaction (qPCR). Biomass from 0.5 mL 99 100 culture were sampled from each biological replicate. Microbial genomic DNA was extracted by

101	DNeasy PowerSoil Kit (QIAGEN, Germantown, MD) according to manufacturer's instructions.
102	Cell growth was measured by qPCR using primers targeting universal bacterial 16S rRNA genes,
103	and 16S rRNA genes of Dehalococcoides spp., Dehalobacter spp., and Geobacter spp. (Table
104	83). Genomic DNA of Dehalococcoides mccartyi FL2 and Dehalobacter restrictus were
105	quantified by NanoDrop One (Thermo Fisher Scientific) and served as qPCR standards. The
106	relative abundance of reductive dehalogenase (RDH) genes was determined by qPCR using the
107	primers listed in Table S3. PowerUp SYBR Green reagents (Thermo Fisher Scientific) were used
108	for qPCR according to the manufacturer's instructions. Briefly, every $20-\mu L$ reaction mixture
109	contained 2.5 μL of gDNA sample or serially diluted standard, 10 μL of 2 \times PowerUp SYBR
110	Green master mix solution, and 1.25 μ L 10 μ M of forward and reverse primers. The PCR
111	procedure included an initial deactivation at 95 °C for 2 min, followed by 40 thermal cycles at
112	95 °C for 1 s, then at 60 °C for 30 s.
113	Reverse-transcription qPCR (RT-qPCR). RNA was extracted using acid-phenol: chloroform:
114	isoamyl alcohol (25: 24: 1), and precipitated in ethanol at -20 °C as described previously (49).
115	RNA was cleaned up using the RNeasy PowerClean Pro CleanUp Kit (QIAGEN) according to
116	the manufacturer's instructions. Contaminating DNA in the RNA samples was removed by Turbo
117	DNase Kit (Thermo Fisher Scientific) following the manufacturer's instructions. qPCR was
118	carried out to verify the removal of genomic DNA contamination from the purified RNA. The
119	quality of RNA was examined by agarose gel electrophoresis.
120	SuperScript III First-Strand Synthesis System (Thermo Fisher Scientific) was applied for

121	cDNA synthesis according to the manufacturer's instructions. In general, the 10 μL cDNA					
122	synthesis mix containing 8 μ L of RNA sample, 1 μ L of primer and 1 μ L of 10 mM dNTP mix					
123	was incubated at 65 °C for 5 min, then placed on iced for 1 min. The cDNA synthesis mix was					
124	added to each RNA/primer mixture and incubated at 25 °C for 10 min then 50 °C for 50 min.					
125	The reaction was terminated at 85 °C for 5 min, then the entire tube was chilled on ice. At last, 1					
126	μL of RNase H was added to each tube and incubated at 37 °C for 20 min. The cDNA synthesis					
127	products were stored at -20 °C for qPCR measurement using primers listed in Table S3.					
128	Double delta Ct method (calculated by Equation 1) was used to determine the relative gene					
129	expression of RDH genes with <i>Dehalococcoides</i> 16S rRNA gene as the reference gene (56).					
130	Equation: Fold Change of Transcript Abundance = $2^{-\Delta\Delta Ct}$, where					
131	$\Delta\Delta Ct = \Delta Ct_{PAFS-added \ sample} - \Delta Ct_{TCE-only \ control}, \ \Delta Ct = Ct_{RDH \ gene} - Ct_{16S \ rRNA \ gene}$					
132						
Compound ID	Formula	[M–H] [–]	Observed Fragments	Predicted Fragments	Structure	LOQ (µM)
-------------	--	-----------------------	---	---	--	-------------
PFOA	C ₈ HF ₁₅ O ₂	412.9664	368.9765 ; 218.9858; 168.9883; 118.9914	368.9766; 268.9830	F F F F F F O F F F F F F F O F F F F F	0.01
PFdiMeOA	C ₁₀ HF ₁₉ O ₂	512.9600	468.9706 ; 318.9804 ; 268.9833; 218.9854; 168.9883; 118.9912	468.9702; 318.9798; 68.9958	F_{3C} F	0.01
PFMeUPA	C ₆ HF ₉ O ₂	274.9760	230.9859 ; 180.9892; 68.9942	230.9862 ; 168.9894	F F F F F	0.01
TP256	C ₆ H ₂ F ₈ O ₂ 256.9854			212.9956; 192.9894; 168.9894		
			212.9952;	236.9792; 212.9956; 192.9894; 186.9824; 168.9894; 142.9926		n.a.
		192.9887; 168.9884	236.9792; 212.9956; 192.9894; 150.9988	F F H F F F F		
				236.9792; 212.9956; 192.9894; 150.9988; 106.9950		n.a.

Table S1. Standards and TPs information

Compound ID	Formula	[M–H] ⁻	Observed	Predicted	Structure	LOQ (µM)	
TP276	C ₆ H ₃ F ₉ O ₂	276.9917	212.9949 ; 192.9886	258.9811; 256.9854; 233.0018; 230.9862; 212.9956 ; 206.9886; 168.9894; 162.9988		n.a.	
TD212	CHE 21	1	92.9887;	192.9894; 168.9894			
1P212	C ₅ H ₂ F ₈ 212.9952		168.9884	192.9894; 168.9894; 142.9926		n.a.	
3- (Trifluoromethyl)- 3,4,4,4- tetrafluorobutene-1	C ₅ H ₃ F ₇	195.0043	n.d.	174.9988; 168.9894; 154.9926; 125.0020; 104.9958		n.a.	
TP195				174.9988; 154.9926; 150.9987; 130.9926			
	C5H3F7 195.0043	174.9980; 154.9915	174.9988; 154.9926; 150.9988; 130.9926; 125.0020; 104.9957		n.a.		

Table S1. Standards and TPs information (continue)

Compound ID	Formula	[M–H] [–]	Observed	Predicted	Structure	LOQ (µM)
				240.9905;		
				238.9949 ;		
				215.0112;		
				212.9956;		
				195.0050;		
			238.9951 ;	188.9980;		
				170.9875;		
				168.9918 ;		
TD 35 0	CHEO	250 0011	195.0043;	145.0082		
12259	$C_6H_4F_8O_2$	259.0011	1/4.9960;	240.9905;		n.a.
			168.9985;	238.9949 ;		
			154.9915	215.0112;		
				212.9956;		
				195.0050;	F J F J - H	
				188.9980;	F F F F	
				170.9875;		
				168.9918;		
				145.0082		
				220.9843;		
	$C_6H_3F_7O_2$	238.9949	218.9879; 198.9815; 174.9977; 168.9883; 154.9913; 132.9895	218.9886;		0.01
				198.9824 ;		
				195.0050;		
TP238 (FTMeUPA)				192.9894;		
				174.9988;		
				168.9894 ;		
				148.9856;		
				125.0020		
					F F F F	_
TP192	C ₅ HF ₇ 192.9881	192.9881	no fragment	no fragment		n.a.
TP174	$C_5H_2F_6$	174.9974	154.9915	154.9926		n.a.

 Table S1. Standards and TPs information (continue)

Compound ID	Formula	[M–H] ⁻	Observed	Predicted	Structure	LOQ (µM)
TP154	C5HF5	154.9915	no fragment	no fragment		n.a.
				222.9999;		
			221.0059;	221.0043;	0,	
TD341 (ETM-DA)		241 0105	200.9978;	202.9934;	г гон	0.01
1 P 241 (F 1 MePA)	$C_6H_5F_7O_2$	241.0103	180.9911;	200.9980;	F	0.01
			177.0137	197.0203;	F F F	
				177.0144		
				202.9937;		
				200.9980;		
				182.9875;		
		C ₆ H ₄ F ₆ O ₂ 221.0043		180.9918;		n.a.
			200.9974;	177.0144;		
			180.9910;	174.9988;		
			152.9958;	168.9918;		
			132.9895;	157.0082;		
			130.9917;	154.9926;		
			108.9893;	151.0012;		
			104.9943	132.9907;		
				130.9926;		
TD221	CHEO			125.0020;		
1 P 2 2 1	$C_6H_4F_6O_2$			107.0114;		
				104.9958		
				202.9937;		n.a.
				200.9980 ;		
			200.9974;	182.9875;		
			180.9910;	180.9918;		
			152.9958;	177.0144;		
			132.9895;	174.9988;		
			130.9917 ;	157.0082;		
			108.9893;	154.9926;		
			104.9943	151.0012;		
				130.9926;		
				107.0114		

Table S1. Standards and TPs information (contin

Compound ID	Formula	[M–H] [–]	Observed	Predicted	Structure	LOQ (µM)
TP177	C5H4F6	177.0133	137.0008 ; 116.9944	157.0082; 150.9988; 137.0020; 130.9926; 125.0020; 107.0114; 104.9958 157.0082; 150.9988; 137.0020; 130.9926; 107.0114	$F \xrightarrow{F}_{F} \xrightarrow{H}_{F} \xrightarrow{H}_{F}$	n.a.
TP287	C7H7F7O4	287.0163	241.0106 ; 206.3808; 200.9973; 180.9911; 177.0137	269.0054; 254.9898; 241.0105 ; 229.0105; 210.9999; 196.9843; 168.9894;	HO P F F F F F F F F F F F F	n.a.
TP200	C ₆ H ₃ F ₅ O ₂	200.9978	180.9912 , 160.9850, 152.9960, 132.9896, 108.9894,	182.9874, 180.9918 , 157.0082, 154.9926, 137.0019, 130.9950, 130.9926, 110.9887		n.a.

n.a.: not available; n.d.: not detected; TP names in **bold** are those with confirmed (confidence level 1) or highly plausible (confidence level 2b) structures.

Compound	Ionization efficiency ratio	
FTMeUPA: PFMeUPA	5.69	
FTMePA: PFMeUPA	0.57	
FTMeUPA: FTMePA	9.93	

Table S2. Comparison of selected PFASs ionization efficiency.

Gene target	Primer name	Sequence (5'-3')	References
Universal bacteria	Unibac_341f	CCTACGGGAGGCAGCAG	(57 50)
16S rRNA gene	Unibac_518r	ATTACCGCGGCTGCTGG	(57, 58)
Dehalococcoides 16	S Dhc_f	GGTAATACGTAGGGAAGCAAGCG	(50.64)
rRNA gene	Dhc_r	CCGGTTAAGCCGGGAAATT	(59-67)
Dehalobacter 16S	Dhb_447f	GATTGACGGTACCTAACGAGG	(62)
rRNA gene	Dhb_647r	TACAGTTTCCAATGCTTTACGG	(02)
Geobacter_1 16S	Geo_f	CTTGCTCTTTCATTTAGTGG	(27)
rRNA gene	Geo_r	AAGAAAACCGGGTATTAACC	(37)
rdh A 1	rdhA1_246f	ATCGGAGCTGCACAAGTAGG	(20)
IdiiA1	rdhA1_336r	TCTTGTGAGCGGTGTCTTTG	(39)
rdh 4 2	rdhA2_720f	CAAAGGAGATGTTCCGGTGT	(20)
runAz	rdhA2_985r	CAGGTGGAAAAGACCGGTTA	(39)
rdh A 2	rdhA3_1149f	CATTCTCCGGGAAGAAAACA	(20)
runAS	rdhA3_1379r	CCAGGCTTCCTTGTCTTCAG	(39)
rdh A A	rdhA4_754f	TTGTTATGCCGCCAATATGA	(20)
TUIIA4	rdhA4_925r	TCTATCCATTTCGCCCAGAC	(39)
rdh 4 5	rdhA5_1017f	GATGCAGGCATTTACCGTTT	(20)
IdiiAS	rdhA5_1137r	GTCTCTTTGCCTTCGGTCAG	(39)
rdh A 6	rdhA6_318f	ATTTAGCGTGGGCAAAACAG	(20)
IdiiAo	rdhA6_555r	CCTTCCCACCTTGGGTATTT	(39)
rdh A 7	rdhA7_1391f	GCTAAAGAGCCGTCATCCTG	(30)
IdiiA7	rdhA7_1539r	GCAGTAACAACAGCCCCAAT	(39)
rdh A 9	rdhA8_845f	CCCAAGGTAGGTGTGCAGAT	(20)
TullAo	rdhA8_1016r	CCCGGTTAGTTACCCCGTAT	(33)
rdh A Q	rdhA9_251f	CTGACCTTGAAACCCCTGAA	(30)
IuliA)	rdhA9_425r	TTGCCACCCATTTCCATATT	(00)
rdh A 10	rdhA10_710f	GCTGAAACACCCACCAAACT	(30)
IuliATO	rdhA10_860r	CGACAAAGGGGAATCTTTGA	(53)
rdh A 11	rdhA11_429f	TAATGGCAACCGGAGGTAAG	(30)
	rdhA11_609r	TCTACCGGTATGGCCTGAAC	(00)
rdh A 1 2	rdhA12_864f	AGGAGTTCCTGTGGGGGACTT	(30)
IuliA12	rdhA12_994r	TTTGGGGGTCATAACTGCTC	(55)
rdh A 13	rdhA13_1356f	CAGGGTACCTGTCCCTTCAA	(30)
1011/115	rdhA13_1493r	AGGGTTCTTCCGTCCGTACT	(00)
rdh A 1.4	rdhA14_642f	GAAAGCTCAGCCGATGACTC	(30)
ranA14	rdhA14_846r	TGGTTGAGGTAGGGTGAAGG	(33)

Table S3. Primer sets information.

Supplementary Figures.

Fig. S1. Fluoride ion release from PFMeUPA (100 μ M) with hydrogen/lactate as the primary

electron donor.

Fig. S2. TCE, *cis*-DCE, and VC in the culture with only TCE added (A) and the culture with both TCE and PFMeUPA added (B) (green arrows indicate the times when TCE was re-added).

Fig. S3. Fluoride ion release from 100 μ M of FTMePA (A), PFdiMeOA (B), and PFOA (C) in the dechlorinating microbial community.

Structure:

Fig. S4. MS² fragments of PFMeUPA

Atomic Modification: -F +H of PFMeUPA

Confidence level: 2b

Fig. S5. TP256 structure elucidation

Formula: C₁₂H₄F₈O₄

Atomic Modification: Conjugate of two molecules of TP256

Confidence level: 2b

Fig. S6. TP514 structure elucidation

Formula: C₆H₃F₈O₂

Atomic Modification: +2H of PFMeUPA

Confidence level: 2b

Fig. S7. TP276 structure elucidation

Formula: C₁₂H₆F₁₈O₄

Atomic Modification: Conjugate of two molecules of TP276

Confidence level: 2b

Fig. S8. TP554 structure elucidation

Formula: C₆H₄F₈O₂

Atomic Modification: -F +3H of PFMeUPA

Confidence level: 2b

Fig. S9. TP259 structure elucidation

Formula: C₁₂H₇F₁₇O₄

Atomic Modification: Conjugate of TP259 and TP276

Confidence level: 2b

Fig. S10. TP536 structure elucidation

Formula: C₅H₂F₈

Atomic Modification: -F +H -CO2 of PFMeUPA

Confidence level: 2b

Fig. S11. TP212 structure elucidation

Formula: C₅H₃F₇

Atomic Modification: -2F +2H -CO2 of PFMeUPA

Hypothetical Structure:

Confidence level: 2b

Fig. S12. TP195 structure elucidation

Formula: C₆H₃F₇O₂

Atomic Modification: -2F +2H of PFMeUPA

Confirmed Structure:

Confidence level: 1

Fig. S13. TP238 structure elucidation

Formula: C₅HF₇

Atomic Modification: -CO2-2F of PFMeUPA

Confidence level: 3

Fig. S14. TP192 structure elucidation

Formula: C₅H₂F₆

Atomic Modification: -CO2 -3F +H of PFMeUPA

Confidence level: 3

Fig. S15. TP174 structure elucidation

Formula: C₅HF₅

Atomic Modification: -CO2 -4F of PFMeUPA

Confidence level: 3

Fig. S16. TP154 structure elucidation

Formula: C₆H₅F₇O₂

Atomic Modification: +2H of FTMeUPA

Confidence level: 1

Confirmed Structure:

Fig. S17. TP241 structure elucidation

Formula: $C_6H_4F_6O_2$

Atomic Modification: -F +H of FTMeUPA

Confidence level: 2b

Fig. S18. TP221 structure elucidation

Formula: C₅H₄F₆

Atomic Modification: -F +H -CO2 of FTMeUPA

Confidence level: 2b

Fig. S19. TP177 structure elucidation

Formula: C₇H₇F₇O₄ Atomic Modification: +C +4H of FTMeUPA Confidence level: 3

Fig. S20. TP287 structure elucidation

Formula: C₆H₃F₅O₂

Atomic Modification: -2F of FTMeUPA

Confidence level: 3

Fig. S21. TP200 structure elucidation

Formula: C₆H₃F₅O₂

Atomic Modification: -3F -H of FTMeUPA

Confidence level: 3

Fig. S22. TP180 structure elucidation

Fig. S23. Formation of minor PFMeUPA TPs.

Fig. S24. Total bacterial growth (A), the growth of *Dehalococcoides* spp. (B), and *Dehalobacter* spp. (C) after 70 days in FTMeUPA defluorination experiments (* indicates significant difference between the two samples, p < 0.05, n = 3).

Fig. S25. Fold changes (91d/0d) of RDH gene copy numbers (A) and relative gene expression levels (transcripts) of RDH genes in PFMeUPA-added samples in comparison to those in TCE-added samples on 77d (B) (16S rRNA gene is the reference gene; n=3; *: no gene expression).

Fig. S26. Biotransformation of PFMeUPA by FL2 (A) and BAV1 (B).

Fig. S27. Biotransformation of PFMeUPA (A) and FTMeUPA (B) by Dehalobacter restrictus.

References

(1) Wang, Z.; DeWitt, J. C.; Higgins, C. P.; Cousins, I. T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? *Environ. Sci. Technol.* 51, 2508-2518 (2017).

(2) D'Agostino, L. A.; Mabury, S. A. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. *Environ. Sci. Technol.* 48, 121-129 (2014).

(3) Xiao, F.; Golovko, S. A.; Golovko, M. Y. Identification of novel non-ionic, cationic, zwitterionic, and anionic polyfluoroalkyl substances using UPLC-TOF-MS(E) high-resolution parent ion search. *Anal. Chim. Acta.* 988, 41-49 (2017).

(4) Xiao, F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: a review of current literature. *Water Res.* **124**, 482-495 (2017).

(5) Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson, M.; Kearns, B.; Pickett, A.;
Smith, C.; Knappe, D. R. U. Legacy and emerging perfluoroalkyl substances are important
drinking water contaminants in the Cape Fear River watershed of North Carolina. *Environ. Sci. Technol. Lett.* 3, 415-419 (2016).

(6) Boulanger, B.; Vargo, J. D.; Schnoor, J. L.; Hornbuckle, K. C. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. *Environ. Sci. Technol.* 39, 5524-5530 (2005).

(7) Lindstrom, A. B.; Strynar, M. J.; Delinsky, A. D.; Nakayama, S. F.; McMillan, L.; Libelo, E.L.; Neill, M.; Thomas, L. Application of WWTP biosolids and resulting perfluorinated

compound contamination of surface and well water in Decatur, Alabama, USA. *Environ. Sci. Technol.* **45**, 8015-8021 (2011).

(8) Sepulvado, J. G.; Blaine, A. C.; Hundal, L. S.; Higgins, C. P. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. *Environ. Sci. Technol.* 45, 8106-8112 (2011).

 (9) U.S. Environmental Protection Agency, (EPA). "PFOA & PFOS drinking water health advisories"; (Publication 800-F-16-003, EPA, 2016, www.epa.gov/sites/production/files/2016-06/documents/drinkingwaterhealthadvisories pfoa pfos updated 5.31.16.pdf).

(10) Liu, J.; Van Hoomissen, D. J.; Liu, T.; Maizel, A.; Huo, X.; Fernández, S. R.; Ren, C.; Xiao,

X.; Fang, Y.; Schaefer, C. E.; Higgins, C. P.; Vyas, S.; Strathmann, T. J. Reductive defluorination of branched per- and polyfluoroalkyl substances with cobalt complex catalysts. *Environ. Sci. Technol. Lett. 5*, 289-294 (2018).

(11) Schaefer, C. E.; Choyke, S.; Ferguson, P. L.; Andaya, C.; Burant, A.; Maizel, A.; Strathmann, T. J.; Higgins, C. P. Electrochemical transformations of perfluoroalkyl acid (PFAA) precursors and PFAAs in groundwater impacted with aqueous film forming foams. *Environ. Sci. Technol. 52*, 10689-10697 (2018).

(12) Vecitis, C. D.; Park, H.; Cheng, J.; Mader, B. T.; Hoffmann, M. R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). *Front. Environ. Sci. Eng. 3*, 129-151 (2009).

(13) Stratton, G. R.; Dai, F.; Bellona, C. L.; Holsen, T. M.; Dickenson, E. R. V.; Mededovic
Thagard, S. Plasma-based water treatment: Efficient transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater. *Environ. Sci. Technol.* **51**, 1643-1648 (2017).

(14)Bentel, M. J.; Yu, Y. C.; Xu, L. H.; Li, Z.; Wong, B. M.; Men, Y. J.; Liu, J. Y. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. *Environ. Sci. Technol.* 53, 3718-3728 (2019).

(15)Goldman, P. The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. *J. Biol. Chem.* **240**, 3434-3438 (1965).

(16) Visscher, P. T.; Culbertson, C. W.; Oremland, R. S. Degradation of trifluoroacetate in oxic and anoxic sediments. *Nature* **369**, 729-731 (1994).

(17)Kim, B. R.; Suidan, M. T.; Wallington, T. J.; Du, X. Biodegradability of trifluoroacetic acid. *Environ. Eng. Sci.* 17, 337-342 (2000).

(18) Tiedt, O.; Mergelsberg, M.; Eisenreich, W.; Boll, M. Promiscuous defluorinating enoyl-CoA hydratases/hydrolases allow for complete anaerobic degradation of 2-fluorobenzoate. *Front. Microbiol.* 8, 2579 (2017).

(19) Tiedt, O.; Mergelsberg, M.; Boll, K.; Muller, M.; Adrian, L.; Jehmlich, N.; von Bergen, M.;
Boll, M. ATP-dependent C-F bond cleavage allows the complete degradation of 4fluoroaromatics without oxygen. *Mbio 7*, e00990-16 (2016).

(20) Wang, N.; Szostek, B.; Buck, R. C.; Folsom, P. W.; Sulecki, L. M.; Capka, V.; Berti, W. R.;

Gannon, J. T. Fluorotelomer alcohol biodegradation-direct evidence that perfluorinated carbon chains breakdown. *Environ. Sci. Technol.* **39**, 7516-7528 (2005).

(21) Shaw, D. M. J.; Munoz, G.; Bottos, E. M.; Duy, S. V.; Sauve, S.; Liu, J.; Van Hamme, J. D. Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by *Gordonia* sp. strain NB4-1Y under sulfur-limiting conditions. *Sci. Total. Environ.* 647, 690-698 (2019).

(22)Zhang, S.; Szostek, B.; McCausland, P. K.; Wolstenholme, B. W.; Lu, X.; Wang, N.; Buck,

R. C. 6:2 and 8:2 fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions. *Environ. Sci. Technol.* 47, 4227-4235 (2013).

(23)Lee, H.; D'eon, J.; Mabury, S. A. Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment. *Environ. Sci. Technol.* 44, 3305-3310 (2010).

(24)Li, F.; Su, Q. F.; Zhou, Z. M.; Liao, X. B.; Zou, J.; Yuan, B. L.; Sun, W. J. Anaerobic biodegradation of 8:2 fluorotelomer alcohol in anaerobic activated sludge: metabolic products and pathways. *Chemosphere* **200**, 124-132 (2018).

(25)Butt, C. M.; Muir, D. C.; Mabury, S. A. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review. *Environ. Toxicol. Chem.* **33**, 243-267 (2014).

(26)Liu, J.; Mejia Avendano, S. Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. *Environ. Int.* **61**, 98-114 (2013).

(27)Parsons, J. R.; Sáez, M.; Dolfing, J.; de Voogt, P. "Biodegradation of perfluorinated compounds" in *Reviews of environmental contamination and toxicology*, Whitacre, D. M., Ed.

(Springer US, 2008); vol. 196 pp. 53-71.

(28)Park, S.; de Perre, C.; Lee, L. S. Alternate reductants with VB₁₂ to transform C8 and C6 perfluoroalkyl sulfonates: limitations and insights into isomer specific transformation rates, products and pathways. *Environ. Sci. Technol.* **51**, 13869-13877 (2017).

(29) Fincker, M.; Spormann, A. M. Biochemistry of catabolic reductive dehalogenation. *Annu.Rev. Biochem.* 86, 357-386 (2017).

(30) Schubert, T.; Adrian, L.; Sawers, R. G.; Diekert, G. Organohalide respiratory chains: composition, topology and key enzymes. *FEMS Microbiol. Ecol.* **94**, (2018).

(31)Ochoa-Herrera, V.; Field, J. A.; Luna-Velasco, A.; Sierra-Alvarez, R. Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs). *Environ. Sci. Process. Impacts* **18**, 1236-1246 (2016).

(32)Pon, A.; Wishart, D.; Wilson, M.; Greiner, R.; Allen, F. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. *Nucleic Acids Res.* 42, W94-W99 (2014).

(33)Im, J.; Walshe-Langford, G. E.; Moon, J. W.; Löffler, F. E. Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf). *Environ. Sci. Technol.* 48, 13181-13187 (2014).

(34)Tischer, W.; Bader, J.; Simon, H. Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of α , β -unsaturated carboxylate anions. *Eur. J. Biochem.* **97**, 103-112 (1979).

(35) Winkler, C. K.; Tasnádi, G.; Clay, D.; Hall, M.; Faber, K. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. *J. Biotechnol.* 162, 381-389 (2012).

(36)Dinglasan, M. J. A.; Ye, Y.; Edwards, E. A.; Mabury, S. A. Fluorotelomer alcohol
biodegradation yields poly- and perfluorinated acids. *Environ. Sci. Technol.* 38, 2857-2864
(2004).

(37) Duhamel, M.; Edwards, E. A. Microbial composition of chlorinated ethene-degrading cultures dominated by *Dehalococcoides*. *FEMS Microbiol*. *Ecol.* **58**, 538-549 (2006).

(38) Löffler, F. E.; Yan, J.; Ritalahti, K. M.; Adrian, L.; Edwards, E. A.; Konstantinidis, K. T.;

Müller, J. A.; Fullerton, H.; Zinder, S. H.; Spormann, A. M. *Dehalococcoides mccartyi* gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, *Dehalococcoidia* classis nov., order *Dehalococcoidales* ord. nov. and family *Dehalococcoidaceae* fam. nov., within the phylum *Chloroflexi. Int. J. Syst. Evol. Microbiol.* **63**, 625-635 (2015).

(39) Waller, A. S.; Krajmalnik-Brown, R.; Löffler, F. E.; Edwards, E. A. Multiple reductivedehalogenase-homologous genes are simultaneously transcribed during dechlorination by *Dehalococcoides*-containing cultures. *Appl. Environ. Microbiol.* **71**, 8257-8264 (2005).

(40)Puentes Jácome, L. A.; Edwards, E. A. A switch of chlorinated substrate causes emergence of a previously undetected native *Dehalobacter* population in an established *Dehalococcoides*dominated chloroethene-dechlorinating enrichment culture. *FEMS Microbiol. Ecol.* **93**, fix141 (2017).

(41)Nelson, J. L.; Jiang, J.; Zinder, S. H. Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three *Dehalobacter* spp. *Environ. Sci. Technol.* **48**, 3776-3782 (2014).

(42) Alfán-Guzmán, R.; Ertan, H.; Manefield, M.; Lee, M. Isolation and characterization of *Dehalobacter* sp. strain TeCB1 including identification of TcbA: a novel tetra- and trichlorobenzene reductive dehalogenase. *Front. Microbiol.* **8**, 558 (2017).

(43)Bao, Y. X.; Qu, Y. X.; Huang, J.; Cagnetta, G.; Yu, G.; Weber, R. First assessment on degradability of sodium *p*-perfluorous nonenoxybenzene sulfonate (OBS), a high volume alternative to perfluorooctane sulfonate in fire-fighting foams and oil production agents in China. *RSC Adv.* 7, 46948-46957 (2017).

(44) Washington, J. W.; Jenkins, T. M.; Weber, E. J. Identification of unsaturated and 2H polyfluorocarboxylate homologous series and their detection in environmental samples and as polymer degradation products. *Environ. Sci. Technol.* **49**, 13256-13263 (2015).

(45)Men, Y. J.; Feil, H.; VerBerkmoes, N. C.; Shah, M. B.; Johnson, D. R.; Lee, P. K. H.; West, K. A.; Zinder, S. H.; Andersen, G. L.; Alvarez-Cohen, L. Sustainable syntrophic growth of *Dehalococcoides ethenogenes* strain 195 with *Desulfovibrio vulgaris Hildenborough* and *Methanobacterium congolense*: global transcriptomic and proteomic analyses. *ISME J.* 6, 410-421 (2012).

(46)He, J.; Holmes, V. F.; Lee, P. K.; Alvarez-Cohen, L. Influence of vitamin B₁₂ and cocultures on the growth of *Dehalococcoides* isolates in defined medium. *Appl. Environ. Microbiol.* **73**, 2847-2853 (2007).

(47) Yu, Y. C.; Han, P.; Zhou, L. J.; Li, Z.; Wagner, M.; Men, Y. J. Ammonia monooxygenase-mediated cometabolic biotransformation and hydroxylamine-mediated abiotic transformation of micropollutants in an AOB/NOB coculture. *Environ. Sci. Technol.* 52, 9196-9205 (2018).
(48) Zhou, L. J.; Han, P.; Yu, Y.; Wang, B.; Men, Y.; Wagner, M.; Wu, Q. L. Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. *Water Res.* 159, 444-453 (2019).

(49) Men, Y.; Han, P.; Helbling, D. E.; Jehmlich, N.; Herbold, C.; Gulde, R.; Onnis-Hayden, A.;
Gu, A. Z.; Johnson, D. R.; Wagner, M.; Fenner, K. Biotransformation of two pharmaceuticals by
the ammonia-oxidizing archaeon *Nitrososphaera gargensis*. *Environ. Sci. Technol.* 50, 46824692 (2016).

(50)Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993).

(51)Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 37, 785-789 (1988).

(52) Stephens, P.; Devlin, F.; Chabalowski, C.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.*98, 11623-11627 (1994).

(53) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Can. J. Phys.* 58, 1200-1211

(1980).

(54)Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **32**, 1456-1465 (2011).

(55) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* 113, 6378-6396 (2009).

(56)Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods* **25**, 402-408 (2001).

(57)Mei, R.; Narihiro, T.; Nobu, M. K.; Kuroda, K.; Liu, W. T. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity. *Sci Rep.* **6**, 34090 (2016).

(58)Sonthiphand, P.; Neufeld, J. D. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments. *PLoS One* **8**, e57242 (2013).

(59) Seshadri, R.; Adrian, L.; Fouts, D. E.; Eisen, J. A.; Phillippy, A. M.; Methe, B. A.; Ward, N.

L.; Nelson, W. C.; Deboy, R. T.; Khouri, H. M.; Kolonay, J. F.; Dodson, R. J.; Daugherty, S. C.;

Brinkac, L. M.; Sullivan, S. A.; Madupu, R.; Nelson, K. T.; Kang, K. H.; Impraim, M.; Tran, K.;

Robinson, J. M.; Forberger, H. A.; Fraser, C. M.; Zinder, S. H.; Heidelberg, J. F. Genome

sequence of the PCE-dechlorinating bacterium *Dehalococcoides ethenogenes*. *Science* **307**, 105-108 (2005).

(60) MaymoGatell, X.; Chien, Y. T.; Gossett, J. M.; Zinder, S. H. Isolation of a bacterium that

reductively dechlorinates tetrachloroethene to ethene. Science 276, 1568-1571 (1997).

(61)Holmes, V. F.; He, J. Z.; Lee, P. K. H.; Alvarez-Cohen, L. Discrimination of multiple *Dehalococcoides* strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. *Appl. Environ. Microbiol.* **72**, 5877-5883 (2006).

(62)Grostern, A.; Edwards, E. A. Characterization of a *Dehalobacter* coculture that dechlorinates
1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. *Appl. Environ. Microbiol.* 75, 2684-2693 (2009).

54