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Abstract

It is well known that inclusion of dynamical correlation is needed in order to reach

quantitative agreement with experiment for molecular systems with multi-reference

character. In this work, we start from a non-orthogonal configuration interaction

(NOCI) framework that accounts for the static correlation and incorporate dynamical

correlation by including singles and doubles excitations out of each reference deter-

minant resulting in a NOCISD wavefunction. The equations defining the NOCISD

wavefunction commonly require the solution a poorly condition generalized eigenvalue

problem, which we avoid by projecting the equations to a small dimension space de-

fined by the CISD eigenvectors of each reference determinant. We show that NOCISD

results are in good qualitative agreement with other state-of-the-art method for chal-

lenging problems such as the electron transfer in the ethylene dimer radical cation and

LiF, as well as the description of the Jahn-Teller distortion in the cyclopentadienyl and

nitrogen trioxide radicals.
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1 Introduction

While it is well understood how to properly account for the static correlation present in

systems with multi-reference character, further incorporation of dynamical correlation, in a

computationally e�cient manner, constitutes one of the challenges in quantum chemistry.

Interesting chemical systems that require a multi-reference description include, but are not

limited to, molecules that undergo Jahn-Teller distortions and molecules whose reactivity is

a↵ected by the presence of conical intersections (or avoided crossings).

Most common approaches capable of producing high accuracy results in multi-reference

systems build upon a multi-configuration reference space. While many methods exist for

defining the configurations included in the reference space, the field is mainly dominated by

the use of complete active space (CAS) wavefunctions. One benefit of CAS type reference

spaces is the natural way in which one can determine the active space based on chemical in-

tuition. However, CAS wavefunctions become intractable once the number of orbitals needed

approaches 16 due to the number of configurations growing exponentially. Other approaches

such as density matrix renormalization group (DMRG) techniques have been e↵ective at re-

ducing the computational burden of including a large number of states in the wavefunction1.

Yet another approach to formulating wavefunctions with su�cient multi-reference character

while minimizing the size of the expansion has been to consider an expansion consisting of

non-orthogonal determinants.

The construction of non-orthogonal configuration interaction (NOCI) wavefunctions is

far from a new idea2,3, but it never garnered the proliferation achieved by its orthogonal

counterparts. The advantage of NOCI is that the number of determinants can be controlled

a priori, thus enabling its use in large systems. The determinants chosen can intuitively

correlate to the expected dominant configurations, such as the use of Hartree–Fock (HF)

optimized excited states of a molecular system, while also incorporating orbital relaxation

e↵ects from the onset. One can further optimize the reference determinants in the presence

of each other in a resonating HF-type framework4–7. In addition to the study of ground state

2



properties, NOCI based methods have also been used to study low-lying excited states using

a handful of HF determinants, making the methods attractive for studying excited states of

systems too large for traditional multi-references methods8–10.

While the benefits of describing complicated systems with only a handful of configurations

is attractive for large molecular systems, the lack of black box selection of configurations

and the increased computational complexity of NOCI based approaches have limited their

widespread adoption. The main di�culty with packaging NOCI into an easy to use interface

is the lack of CAS-like simplicity in terms of selection of configurations, since the major

advantage of needing few configurations requires that the configurations selected capture the

important aspects of the system while minimizing redundant information. New developments

in finding unique non-orthogonal HF determinants for a system are improving the techniques

and strategies for finding good determinants to build NOCI wavefunctions9,11.

The increased computational complexity of non-orthogonal based approaches becomes

evident as one intends to perform correlated calculations using the NOCI wavefunction as

a reference. While NOCI based wavefunctions can, if properly constructed, easily account

for the static correlation, the lack of significant dynamic correlation in NOCI wavefunctions

limits their applications to qualitative comparisons. Just as in CAS-based approaches, inclu-

sion of dynamic correlation is necessary to reach quantitative agreement with experimental

results. Previous attempts to add dynamic correlation have focused on a second-order pertur-

bation theory correction to the NOCI wavefunction12–14. We note that in those approaches

the required matrix elements were evaluated using a resolution-of-the-identity approach.

Due to computational constraints, higher order terms were not calculated exactly, requir-

ing carefully constructed higher order approximation to preserve size-extensivity13. This

is a reasonable trade-o↵ since the calculation of higher and higher order excitation terms

can quickly negate any computational saving brought about by the use of non-orthogonal

determinants.

Here we present the formalism for constructing wavefunctions accounting for dynamic
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correlation by the formulation of the non-orthogonal analog of multi-reference configura-

tion interaction (MRCI). This results in the non-orthogonal configuration interaction with

singles and doubles (NOCISD). Although similar approaches have appeared before (mostly

using a perturbation expansion rather than a diagonalization approach), we calculate ma-

trix elements between non-orthogonal determinants using Wick’s theorem rather than using

a resolution-of-the-identity approach. While this method can be formulated to include any

number of higher excitation states, here we truncated at doubles for computational e�-

ciency. To assess the utility of this approach, we have compared NOCISD to other orthogo-

nal multi-reference methods on small molecule systems with interesting ground and excited

state potential energy surfaces.

2 Formalism

2.1 Non-Orthogonal Configuration Interaction (NOCI)

The building block of NOCISD is the NOCI wavefunction, which takes the form

| i =
X

↵

f
↵ |�↵i, (1)

where {f} is the set of linear coe�cients obtained from the diagonalization of the Hamiltonian

among the determinants {�}. The determinants {�} in the expansion are in general non-

orthogonal, i.e., h�i|�ji 6= 0. In principle one can work with an arbitrary set of determinants,

though in this work we use determinants {�} that constitute HF solutions, i.e., they are

stationary points of the HF energy functional.

2.2 Non-Orthogonal Singles and Doubles Expansion

In order to account for dynamic electron correlation we expand the NOCI wavefunction to

include all possible singles and doubles excitations from the reference determinants, similar
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in spirit to the how MRCI constitutes an expansion from a reference MC-SCF wavefunction.

The NOCISD wavefunction then takes the form

| i =
X

↵

f
↵ |�↵i+

X

↵

X

i,a

(f↵)ai |(�↵)ai i+
X

↵

X

i<j,a<b

(f↵)abij |(�↵)abij i. (2)

Here, i, j label occupied orbitals and a, b label virtual orbitals. The coe�cients f↵, (f↵)i,a,

and (f↵)ij,ab are determined from the ground state solution to the generalized eigenvalue

problem

HF = SF ", (3)

where H is the Hamiltonian matrix, S is the overlap matrix, and F and " are the matrices

of eigenvectors and eigenvalues, respectively. Naturally, the solution to Eq. 3 also provides

access to low-energy excited states with a wavefunction analogous to that in Eq. 2. In

this work, we use Wick’s theorem (see appendix) to evaluate all the required overlap and

Hamiltonian matrix elements.

2.3 Practical Implementation

Given a set of non-orthogonal reference determinants, the NOCISD wavefunctions and ener-

gies are obtained by solving the generalized eigenvalue problem of Eq. 3. A direct solution

of Eq. 3 is di�cult due to the typically large dimension of the matrices and the fact that

the overlap matrix can easily develop near or exact singularities.

Iterative approaches to Eq. 3 rely on solving the linear equation problem Sx = b or a

related one. We have found that many of the common iterative algorithms converge slowly

when S is poorly conditioned. In most of our test cases, the large dimension of the NOCISD

matrices yield overlap matrices with many small eigenvalues. We note that the direct removal

of all small eigenvalues of S by a diagonalization of the full matrix is impractical given the

typical dimensions of the NOCISD problem.

We have therefore opted for a contracted scheme: rather than attempting a direct so-
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lution to Eq. 3, we use only the lowest n eigenvectors and eigenvalues of the standard

CISD problem (with n being small) associated with each reference determinant. The CISD

problems are easier to solve with a conventional Davidson algorithm15 given that they are

standard eigenvalue problems. We then transform Eq. 3 to the small basis of n ⇥m CISD

eigenvectors, with m being the number of reference determinants. A full solution to the

generalized eigenvalue problem in the small basis is then feasible.

3 Computational Details

We discuss in the next section calculations on LiF, C5H5, NO3, fulvene, and the ethylene

dimer radical cation. Unless otherwise noted, Gaussian 1616 was used to carry out geometry

optimizations using an unrestricted HF (UHF) wavefunction and to perform state-specific

and state-averaged (SA) CASSCF calculations.

The reference determinants used in the NOCI expansion were obtained using an in-house

code using a Newton-Raphson algorithm to find HF solutions. The use of Newton-Raphson

avoids collapse to the lowest energy determinant, thereby allowing us to have several reference

determinants for each system.

Our NOCISD calculations were done using a Python code that retrieves integrals from

Gaussian 16 via its Python interface. We solve each CISD eigenvalue problem using the

PRIMME iterative eigenvalue problem library17,18. Our current code requires us to hold all

two-electron integrals in memory, which prevents us from using large basis sets. We use the

cc-pVDZ basis set for calculations on C5H5, NO3, and fulvene. While this is a rather small

basis set, it is su�cient to allow a qualitative comparison with previous literature results on

the same systems. The ethylene dimer radical cation calculations use the 6-31+G basis set

to match the benchmark studies by Pieniazek et al.19. The LiF calculations use the custom

basis used by Bauschlicher and Langho↵20.
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4 Results and Discussion

4.1 Ethylene Dimer Radical Cation

The ethylene dimer radical cation is a useful prototype model for electron transfer reactions.

The stable formation of the dimer combined with the modest computational requirements

needed has made the (C2H4 –C2H4
+) system ideal for benchmarking electronic structure

methods used to study electron transfer mechanisms. In this work, we focus on the parallel

stacked orientation to test the quality of NOCISD potential energy curves in the electron

transfer process between monomers.

The reaction coordinate (RXC) used for the (C2H4)2
+ system follows the procedure

outlined by Pieniazek et al.19 Briefly, a linearly interpolated RXC was constructed from

independently optimized C2H4 and C2H4
+ structures. The monomers were arranged in two

parallel ⇡-stacked configurations (C2H4 - C2H4
+ and C2H4

+ - C2H4) with a fixed intermolec-

ular distance, and a linearly interpolated RXC was formed from the two configurations. The

structures of C2H4 and C2H4
+ match those of Pieniazek et al. The determinants used in the

NOCI expansion correspond to UHF solutions where the charge is localized in either of the

fragments.

As discussed above, our practical implementation of NOCISD proceeds by choosing a

number n of eigenvectors retained out of the CISD problem for each reference determinant.

The exact NOCISD solution is recovered as n tends to the dimension of each CISD matrix.

Table 1 tabulates the dependence of the NOCISD energy with respect to the number of

eigenvectors retained for the (C2H4)2
+ system at RXC= 0.5. In this case, using only n = 2

yields the converged NOCISD energies with sub-milliHartree accuracy. We used n = 1 in

this system as the changes in the plots in Fig. 1 are minimal when increasing to n = 2.

Figure 1 shows the CISD and NOCISD energies along the RXC. Naturally, the CISD

profiles correspond to the two crossing solutions while NOCISD couples them to yield the

expected avoided crossing. At 6 Å, the diabatic CISD curves are close to the adiabatic NO-
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CISD ones when RXC is close to 0 or 1. On the other hand, at 4 Å the coupling is substantial

along the entire RXC. The coupling energy depends strongly interfragment separation: at

6 Å, the coupling energy at RXC= 0.5 is only 0.76 mHartree while it is 6.71 mHartree at

4 Å.

Comparing the NOCISD results to previous studies in the literature, other computational

methods are in agreement with the monomer distance dependence of the dimer stabilization

energy. Compared to the EOM-IP-CCSD, EOM-IP-CC(2,3), and MR-CISD+Q calculations

by Pieniazek et al19, the NOCISD absolute energies are higher by ⇡ 50 mHartree. However,

the shape of the potential energy surface along the reaction coordinate, and the well depth

of the NOCISD ground state of 1.96 mHartree compare favorably with the EOM-IP-CC(2,3)

and MR-CISD+Q energies of 2.26 mHartree and 2.05 mHartree respectively.

Table 1: NOCISD energies (in a.u.) of the ground (E0) and excited (E1) states of the
ethylene dimer radical cation at 4 Åand RC= 0.5 as a function of the number of CISD
eigenvectors n retained per reference determinant.

n E0 E1

1 -156.03511503 -156.01353058
2 -156.03534128 -156.01410873
15 -156.03534131 -156.01410874
30 -156.03534342 -156.01411123
45 -156.03535089 -156.01411401
60 -156.03535129 -156.01411442

4.2 Lithium Fluoride

Lithium fluoride (LiF) has long been used as a prototype system to study avoided crossings

and electron transfer. Bauschlicher et al.20 mapped out the potential energy surface using full

configuration interaction (FCI) calculations; such results have become a benchmark against

which approximate methods can be validated.

In our work, we study the energy profile of LiF as a function of bond distance near

the expected avoided crossing. We used three determinants in the NOCI expansion: the
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Figure 1: CISD and NOCISD absolute energies for the ground and excited states along
the reaction path corresponding to electron transfer from neutral C2H4 to C2H4

+ for dimer
separation distances of 4 Å (left) and 6 Å (right).

restricted HF (RHF) solution which dissociates into ionic fragments, and two UHF solutions

(with opposite spin alignments) which dissociate into neutral fragments. We scanned the

Li–F bond length from 3.3 Å to 8 Å as our reaction coordinate; we note that the UHF

solution becomes unstable (and does not smoothly evolve into the RHF solution) for bond

distances shorter than 3.3 Å.

In Figure 2, the relative ground state energy curves are compared for NOCI and NOCISD

(using n = 1) as well as FCI and SA-CASSCF and SA-MRCI. Here, SA-CASSCF and SA-

MRCI results from Ref.20 use the (2,2) minimal active space. We would like to stress that in

Ref.20 the use of state averaging was found to be critical in CASSCF and MRCI calculations

(see, for instance, Fig. 4).

As expected, methods which include dynamic correlation have closer agreement to the

FCI curve compared to the methods without (CASSCF and NOCI). Qualitatively, the SA-

MRCI curve has the closest agreement with FCI. The CISD curve has an incorrect curvature

past 6 Å which reflects the inappropriate nature of the RHF reference for large bond lengths.

We note that the FCI and SA-MRCI results from Ref.20 were carried out using a frozen core

approximation, complicating a direct comparison between our NOCISD results and FCI.

Examining the di↵erence between the NOCI and NOCISD LiF curves (see Fig. 3) high-
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Figure 2: Ground state energies of LiF (relative to the energy at 6 Å) as a function of the
Li–F bond distance. FCI, CAS, and MRCI data is adapted from Ref.20.

lights the improvement due to the inclusion of dynamic correlation to the NOCI wave-

function. Comparing the set of curves representing those wavefunctions without dynamic

correlation (the HF curves and NOCI curves) vs those with dynamic correlation (CISD and

NOCISD curves), both sets show the expected diabatic vs adiabatic curves for the indepen-

dent wavefunctions and non-orthogonal wavefunctions respectively. The diabatic crossing

point for the HF curves is about 3.6 Å while the CISD curves cross at ⇡ 5.5 Å. By allowing

the separate wavefunctions to mix in the NOCI based wavefunction, the expected avoided

crossing develops near the diabatic crossing point. The NOCISD curves very closely follow

the CISD curves except in the small region near the crossing point, compared to the NOCI

curves which have a large section where the NOCI curves deviate from the HF solutions.

Note also that using n = 2 in NOCISD calculations only changes the excited state profile

(with respect to n = 1) at short Li–F bond lengths; using larger n only changes the energy

profiles minimally.

Compared to experimental estimates as well as FCI and SA-MRCI (with larger active

spaces) calculations, the NOCISD crossing point is underestimated by up to 1.6 Å. Looking

at the dipole moment as a function of bond length (see Fig. 4), the NOCISD (using n = 1)

curve is shifted left of the SA-MRCI curve by 0.5 Å (a similar shift is seen between the NOCI

and SA-CASSCF curves). Comparing the SA-CAS/SA-MRCI dipole moment curves with
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Figure 3: NOCI and NOCISD (with n = 1 and n = 2) energies as a function of the Li–F
bond distance. The energies are plotted relative to the RHF energy at equilibrium.

the NOCI/NOCISD curves, the NOCI gives similar behavior to SA-CAS. Adding single and

double excitations to both CAS and NOCI gives similar improvements. From the energy and

dipole moment curves, the NOCISD method captures a significant portion of the correlation

missing from the NOCI wavefunction. Obtaining NOCISD curves that better match the

experimental crossing point clearly need more than the two determinants used in the NOCI

expansion, similar to the improvement seen in the previous of the MRCI dipole moment

curves upon use of larger active spaces20.

Figure 4: Dipole moment of LiF as a function of Li–F bond distance with various methods.
FCI, CAS, and MRCI data is adapted from Ref.20.
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4.3 Cyclopentadienyl Radical

The cyclopentadienyl radical has attracted experimental and theoretical interest over half

a century due to its central role for understanding ⇡-conjugated systems. The Jahn-Teller

distortion along a C2 axis of the molecule has been the center of investigations into the

equilibrium structure of the radical as well as the nature of the vibrational modes contributing

to the Jahn-Teller distortion (see, for instance, Refs.21–23).

In this work we study the cyclopentadienyl radical along a Jahn-Teller distortion coor-

dinate. We start by converging the UHF equilibrium geometry under both D5h and C2v

symmetries. In the latter case, one can find five di↵erent such geometries with distortion

along di↵erent C2 axis. In order to produce our reference set of determinants, we drive each

of the five di↵erent solutions back to the symmetric D5h structure. We then proceed to

take each of those five UHF solutions and distort along a given C2 axis; this constitutes our

reaction coordinate (RXC). The use of the Newton-Rapshon optimization is crucial to avoid

collapse to the lowest-energy HF solution. We cannot drive all five di↵erent solutions along

RXC to completion: solutions start to collapse down for large values of RXC. We thus only

study from RXC= 0 (the D5h structure) to RXC= 0.4 (2/5 of the way to the fully distorted

UHF C2v structure).

As shown in Fig. 5, at the D5h symmetric configuration CISD yields a non-degenerate

ground state and leads to a lowest excitation energy of ⇡ 600 mHartree. This is in sharp con-

trast to a SA-CASSCF (5,5) calculation which yields 5 low energy states, closely reproduced

by NOCI. Upon inclusion of dynamical correlation in NOCISD, the shape of the low-energy

spectrum is mostly preserved: a doubly degenerate ground state (of E 00 symmetry) with

low-lying excitations of ⇡ 150 mHartree (A symmetry) and ⇡ 200 mHartree (E 0 symmetry).

This indicates that dynamic correlation only has a minor impact in the low-lying excitation

energies. We also note that n = 10 is su�cient to converge the excitation energies, while

n = 1 predicts excitation energies that are ⇡ 30 mHartree too high.

The NOCI, NOCISD (using n = 10), and SA-CASSCF energy profiles along the Jahn-
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Figure 5: Low-energy spectrum of the cyclopentadienyl radical at the symmetric D5h struc-
ture predicted with di↵erent methods.

Teller distortion pathway are shown in Fig. 6. The relative spacing, splitting, and curvature

of each NOCI follows the lowest five NOCISD states. Upon closer inspection, we note that

NOCI predicts a minimum in the ground state profile at RXC= 0.3 while NOCISD predicts a

minimum for larger RXC (beyond RXC= 0.4). The SA-CASSCF ground state profile shows

a minimum at RXC= 0.9. At RXC= 0.4 SA-CASSCF, NOCI, and NOCISD only display

slight di↵erences in their Jahn-Teller stabilization energies of 5.06, 3.30, and 1.35 mHartree,

respectively. The low-energy scale of the ground state profile suggests that even higher-level

methods may be required to yield a quantitative prediction of the Jahn-Teller distortion

energy.

Figure 6 also demonstrates di↵ering excited state behavior between the non-orthogonal

methods and the CAS calculation: the SA-CASSCF excitation energies are lower than the

non-orthogonal methods and exhibit smaller changes along the distortion pathway. In-

terestingly, both NOCI and NOCISD excitation energies show a significant increase near

RXC= 0.4, possible indicating the need for even for more reference determinants with large

RXC. The experimental excitation of the transition Ã
2
A  X̃

2
E

00 is 29 572 cm�1 24 while

the NOCI, NOCISD, and SA-CASSCF excitation energies at the D5h structure are 30 229,

32 236, and 28 840 cm�1, respectively. Ignoring the zero point energy contribution in the

experimental value as well as any Jahn-Teller distortions, the theoretical excitation values
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are in qualitative agreement with experimental observations.

Figure 6: SA-CASSCF (5,5), NOCI, and NOCISD energies (relative to the D5h structure)
along the Jahn-Teller distortion pathway to the C2v UHF structure of the cyclopentadienyl
radical.

4.4 Fulvene

Due to its lack of radiative decay upon excitation, fulvene has been used as a prototypical

system to study conical intersections (CI). Two separate geometric distortion motifs have

been identified associated with intersection: the stretching of the ethyl group attached to

the apex of the cyclopentane ring and the torsional rotation between the ring and ethyl

group25. The combination of these distortions lead to the formation of a conical intersection

seam. For the purposes of this paper, we have limited our study of this system to the planar

geometry, leading to a single conical intersection.

To facilitate comparison with the literature, we have chosen to use the CASSCF/cc-

pVDZ structures for the S0 and S1 minima and the planar CI from the work of Deeb and

coworkers26. In our calculations we sample the paths S0 ! S1, S1 ! CI, and CI! S0 by a

linear interpolation of the structures.

Our NOCI calculations use four di↵erent reference determinants. The lowest-energy UHF

solution on the S0 (or the S1) structure has a frustrated anti-ferromagnetic spin arrangement

with an unfavorable ferromagnetic interaction between carbons 5 and 1 (see Scheme 7).
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Three degenerate, symmetry-related determinants can be formed by the combination of a

C2 operation on the solution and a spin flip.

1

2 3

4
5

6

Figure 7: Fulvene structure with UHF placement of unpaired electrons shown as arrows.

Previous studies on fulvene have characterized the S1 equilibrium structure as a shallow

minimum25. CAS-MP2 calculations with a (6,6) active space yields similar features to pre-

vious CASSCF results with the S1 state having excitation energies of 60.8 and 61.2 kcal/mol

respectively and the CI having an excitation energy of 66.8 and 69.4 kcal/mol, respectively.

The NOCISD curves for the S1 state lack the local minimum at the S1 geometry, and in-

stead have a smooth downward path towards the CI. The excitation energies of the 1
B1 at

the S1 and CI geometries with respect to the 1
A1 state at the S0 geometry are 76.5 and

67.1 kcal/mol respectively. The NOCISD wavefunction reproduces many of the important

features of the planar fulvene system, including the conical intersection. We note that in

this case n = 4 determinants are needed to converge the NOCISD potential energy surfaces,

particularly the S1 energy near the S0 structure.

4.5 Nitrogen Trioxide

The nitrogen trioxide radical has been the focus of many studies due to its importance in

atmospheric chemistry. The electronic structure of the ground state has been controversial

for some time. Early theoretical studies found a C2v distorted structure as the minimum

structure of NO3 rather than a D3h structure (see, for instance, Ref.27).

The ground state potential energy profile between the D3h and C2v structures of NO3

has been found from previous ab initio calculations to be very flat27–29. Careful ground state

studies by Eisfeld and Morokuma have lead to the current consensus that the D3h geometry
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Figure 8: NOCISD (using n = 1 and n = 4) and CAS-MP2 energies along the linearly
interpolated path S0!S1!CI!S0. The energies are relative to the S0 energy at the S0

structure.

is the equilibrium structure29,30.

As with cyclopentadienyl radical, we used UHF optimized structures under D3h and C2v

symmetry to define the Jahn-Teller distortion pathway. We obtained three di↵erent UHF

solutions (by following the lowest-energy solutions along the di↵erent C2 distortion axis),

which were used as the reference determinants in the NOCI calculations. Just as in the case

of C5H5, we were unable to drive all HF determinants to RXC= 1, and therefore only sample

from RXC= 0 to RXC= 0.6.

The NOCISD ground state potential energy surface along the distortion pathway (see

Fig. 9) is in agreement with previous calculations in that the curve is nearly flat. NOCISD

predicts the D3h structure to be a minimum along the distortion pathway, consistent with

previous CCSD, CCSD(T), and MRCI calculations28,29,31. Just as in the case of C5H5, n = 4

is needed to converge the low-energy spectrum as RXC gets large. In Fig. 9 we also show

SA-CASSCF (5,4) calculations which incorrectly predict a fairly large stabilization energy:

a significantly larger active space and inclusion of dynamical correlation is required to yield

a nearly flat potential energy along the distortion pathway.

Experimentally, there are two known low energy excitations with E
0 and E

00 symmetry.

For the E
0 state, the NOCISD excitation energy is 74.2 mHartree. This compares well with
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MRCI+Q and EOM-CC energies of 74.9 mHartree and 74.2 mHartree respectively32. We do

not report NOCISD results for the E
00 state as those are not available in NOCI: only three

reference determinants were used. It would then be appropriate to extend the reference

determinant selection to appropriately sample states of E 00 symmetry.

Figure 9: NOCISD (n = 1 and n = 4) and SA-CASSCF (5,4) energies with respect to the
Jahn-Teller distortion pathway from the D3h to the C2v structure in NO3.

5 Conclusions

This work discusses the extension of NOCI, by inclusion of singles and doubles excitations,

to account for dynamical correlation in multireference systems. The inclusion of dynamical

correlation can be crucial to obtain results that agree quantitatively with experimental results

or higher level calculations, as shown in the case of LiF.

Solving for the low-energy spectrum of the NOCISD Hamiltonian required the use of

a contracted strategy where we first solve for n eigenstates of each reference determinant.

This results in a perturb-then-diagonalize (though not really “perturb”) framework where

the coe�cients of the reference determinants are readjusted in the presence of dynamical

correlation. In most of the cases studied, a very small n yielded converged results, implying

that it is mainly the coupling of the first few CISD eigenvectors that determine the shape of

the low energy spectrum. Yet this is not guaranteed for most systems.
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In some of the systems studied it is clear that the reference determinants used are still not

su�cient to really achieve quantitative agreement with higher-level results. The use of even

more NOCI determinants, as well as a state-averaged strategy to obtain those determinants,

are current avenues of investigation in our laboratory.

Overall, we find that NOCISD can yield results of comparable accuracy to MRCI. We

think that there are a number of systems where NOCI can be more useful as a zeroth-order

reference than CAS as it avoids the exponential wall associated with the latter. Just as

MRCI, the diagonalization approach used in NOCISD is not size extensive. As proven by

the commonplace use of MRCI, this detrimental feature need not render NOCISD as a useless

method.

6 Appendix

In this appendix we briefly discuss how the evaluation of matrix elements of the NOCISD

Hamiltonian can be carried out.

We start with the Hamiltonian Ĥ written as

Ĥ =
X

µ�

hµ�a
†
µa� +

1

4

X

µ⌫��

hµ⌫|v|��ia†µa†⌫a�a� (4)

where h and v are the tensors of one- and (antisymmetrized) two-electron integrals respec-

tively and a and a
† are creation and annihilation operators. We assume in what follows that

an orthonormal basis is used. It is well known33 that Wick’s theorem can be applied in the

evaluation of matrix elements between two non-orthogonal determinants |�Li and |�Ri (i.e.,

h�L|�Ri 6= 0). All the non-vanishing contractions can be expressed in terms of the transition

density matrix ⇢
L,R defined as

⇢
L,R
�µ ⌘

h�L|a†µa�|�Ri
h�L|�Ri

. (5)

Explicit expressions for overlap and Hamiltonian matrix elements between two non-
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orthogonal determinants |�Li and |�Ri are provided below. Let CL be the (rectangular)

M ⇥ N matrix of occupied orbitals in |�Li and CR be the corresponding set of occupied

orbitals in |�Ri. Similarly, let DL and DR be the (rectangular) M ⇥ (M � N) matrices of

virtual orbitals in |�Li and |�Ri. Overlap and Hamiltonian matrix elements are given by

sL,R ⌘ h�L|�Ri = detX, (6)

hL,R ⌘
h�L|Ĥ|�Ri
h�L|�Ri

=
1

2
Tr

⇥
⇢
L,R

�
h+ F

L,R
�⇤

, (7)

with X = C
†
L CR and with ⇢

L,R and F
L,R evaluated as

⇢
L,R = CR X

�1
C

†
L, (8)

F
L,R
µ� = hµ� +

X

⌫�

hµ⌫|v|��i ⇢L,R�⌫ . (9)

The evaluation of matrix elements between excited determinants can also make use of

Wick’s theorem. For example, the overlap between |�Li and |(�R)abmni is given by

h�L|(�R)abmni
h�L|�Ri

=
X

µ⌫��

(CR)µa(CR)
⇤
�m(CR)⌫b(CR)

⇤
�n [⇢

L,R
�µ ⇢

L,R
�⌫ + ⇢

L,R
�µ (1� ⇢

L,R)�⌫ ]. (10)

Defining Z = C
†
R ⇢

L,R
DR, this can be written as

h�L|(�R)abmni
h�L|�Ri

= ZmaZnb � ZnaZmb. (11)
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Similarly, the Hamiltonian overlap between |�Li and |(�R)abmni is given by

h�L|Ĥ|(�R)abmni
h�L|�Ri

= hL,R [ZmaZnb � ZnaZmb]

+ Zma[V F
L,R

W ]nb + Znb[V F
L,R

W ]ma

� Zna[V F
L,R

W ]mb � Zmb[V F
L,R

W ]na

+
X

µ⌫��

hµ⌫|v|��iVnµ Vm⌫ W�b W�a, (12)

where V = C
†
R ⇢

L,R and W =
�
1� ⇢

L,R
�
DR.
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Matrix Renormalization Group for Ab Initio Calculations and Associated Dynamic

Correlation Methods: A Review of Theory and Applications. Int. J. Quantum Chem.

2015, 115, 283–299.

(2) Jackels, C. F.; Davidson, E. R. The Two Lowest Energy 2A0 States of NO2. J. Chem.

Phys. 1976, 64, 2908–2917.

(3) Voter, A. F.; Goddard, W. A. A Method for Describing Resonance between Generalized

Valence Bond Wavefunctions. Chem. Phys. 1981, 57, 253–259.

(4) Schmid, K. W.; Zheng Ren-Rong,; Grümmer, F.; Faessler, A. Beyond Symmetry-
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