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ABSTRACT: Deoxyfluorination is a primary method for the for-
mation of C–F bonds. Bespoke reagents are commonly used due to 
issues associated with the low reactivity of metal fluorides. Here, 
we report the development of a simple strategy for deoxyfluorina-
tion using first-row transition metal fluorides that overcomes these 
limitations. Using CuF2 as an exemplar, activation of an O-alkyli-
sourea adduct formed in situ allows effective nucleophilic fluoride 
transfer to a range of primary and secondary alcohols. Spectro-
scopic investigations have been used to probe the origin of the en-
hanced reactivity of CuF2. The utility of the process towards ena-
bling 18F-radiolabeling is also presented. 

The installation of C–F bonds is a fundamental approach towards 
the modulation of molecular properties within agrochemicals, phar-
maceuticals, and materials.1 Electronic effects imparted by fluorine 
have become integral within pharmaceutical and agrochemical de-
velopment, e.g., enhancing metabolic stability or for radiolabeling 
applications. In addition, the well-known non-covalent interactions 
introduced by C–F bonds (e.g., the gauche effect),2 provides con-
formational control in a variety of cyclic and acyclic systems and, 
in turn, exploration of molecular space through the variation in to-
pology that this affords. Accordingly, methods for C–F bond for-
mation are highly valuable and continue to be advanced.  

Deoxyfluorination is one of the most widely used methods for 
conversion of alcohols to the corresponding fluorides, achieved by 
nucleophilic displacement of the activated alcohol by F– (Scheme 
1a).3 This suggests that cheap, readily available metal fluorides 
(MFn) would be the ideal reagent for deoxyfluorination. However, 
the intrinsic properties of MFn have meant that their direct use in 
these processes is underdeveloped. These species are generally 
highly solvated, polymeric, hygroscopic, basic, have high lattice 
energies, and are often poorly soluble in organic solvents.1d,3b,4 To 
circumvent these issues, a number of bespoke reagents have been 
developed for deoxyfluorination,3,5 including diethylaminosulfur 
trifluoride (DAST),5c PhenoFluorTM,5k and PyFluor,5l amongst oth-
ers (Scheme 1a). These reagents offer the combined advantages of 
in situ activation of the alcohol with an activating group (AG), 
while simultaneously addressing the solubility and reactivity prob-
lems of fluoride by allowing use of more compatible (organic) me-
dia.  

Overcoming the problems with the use of MFn salts remains a 
major challenge in this field. There are limited examples of the use 
of alkali metal fluorides (KF and CsF) for deoxyfluorination.6 Re-
cent seminal studies by Gouverneur demonstrated that KF and CsF 
can also be used for nucleophilic additions,7a including asymmetric 
ring opening of thionium and aziridinium ions.7b,7c Here, the poor 
reactivity of F– is overcome by the use of a chiral H-bonding phase 
transfer catalyst that facilitates F– transfer. However, the general 
challenges of MFn use in deoxyfluorination remain and, despite 

recent advances with alkali metal fluorides, readily available tran-
sition metal fluorides remain overlooked.8 Here we show the de-
velopment of a simple method for deoxyfluorination with typically 
unreactive transition metal (TM) fluorides, using CuF2 as an exam-
ple (Scheme 1b).  

 

Scheme 1. (a) Deoxyfluorination using bespoke reagents. (b) This work. 
Deoxyfluorination using CuF2. AG, activating group; DIC, N,N’-diiso-
propylcarbodiimide. 

Our approach was based on the proposal that a group used for 
activation of an alcohol, typical of deoxyfluorination,3,5 could be 
used as a coordinating group for MFn. Variation of the activating 
group would provide a Lewis basic site that could, in principle, be 
tuned for coordination to a specific metal. This approach may assist 
in overcoming solubility and hydration issues by providing a vector 
for chelate-directed F– transfer, potentially offsetting the issues 
with F– reactivity when used in an intermolecular process.  

An initial screen of TM fluorides and alcohol activating groups 
revealed CuF2 and DIC-derived O-alkylisourea as a promising sys-
tem for the deoxyfluorination of benchmark substrate 1a (Table 1; 
see SI for full details). Optimization delivered a system where 
Cu(I)-catalyzed formation of O-alkylisourea9 followed by deox-
yfluorination using CuF2 at 100 ºC gave 2a in 78% isolated yield 
and with clean SN2 (entry 1).10-12  

Several optimization points are worth noting (for full optimiza-
tion, see Supporting Information): (1) The reaction required for-
mation of the O-alkylisourea prior to addition of CuF2. Signifi-
cantly reduced efficiency was observed in experiments where all 
reagents were combined from the outset (entry 2). (2) The addition 
of H2O to anhydrous CuF2 was essential. Removal of H2O or use 
of the known (commercial) dihydrate was less effective (entries 4 
and 5; vide infra). (3) Alternative activating groups were less effec-
tive – acetate, tosylate, methyl xanthate, trichloroacetimidate were 
largely ineffective (entries 6-10). (4) The urea byproduct was found 
to inhibit the reaction, suggesting an absence of advantageous 
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urea•F– H-bonding (entry 10).7 The inhibitory effect may be related 
to interference with substrate-Cu(II) ligation by formation of 
Cu(II)•urea complexes;13 (5) It was possible to use an exogenous 
fluoride (KF) with stoichiometric Cu(OTf)2 (entry 11), providing 
utility within Positron Emission Tomography (PET) radiolabeling 
(vide infra). This process does not operate in the absence of 
Cu(OTf)2; however, attempts to render this process catalytic in 
Cu(OTf)2 were unsuccessful, possibly due to Cu(II) inhibition as 
noted above. 
Table 1. Reaction development. 

 
Entry Deviation from ‘optimized conditions’ Yield (%)a 
1 None 78b (94% es)c 
2 All reagents present from start 21 (19)d 
3 Second stage temperature = 80 ºC 34 
4 No water 22 
5 CuF2•2H2O 27 
6 Activating group = acetate 0 
7 Activating group = tosylate 16 
8 Activating group = methyl xanthate 0 
9 Activating group = trichloroacetimidate 32 
10 N,N’-diisopropylurea (1 equiv) additive 38 
11 Cu(OTf)2 (1 equiv), KF (2 equiv), 18-

crown-6 (2 equiv), 110 ºC, 1 h 
57 

Reactions performed on 1 mmol scale. a Determined by 1H NMR using an 
internal standard. b Isolated yield. c Determined by HPLC using a chiral sta-
tionary phase. d 100 ºC from start. CPME, cyclopentyl methyl ether. 

Finally, while CuF2 was selected as an exemplar system, the 
same process allows deoxyfluorination to proceed using a range of 
other first row TM fluorides (e.g., Scheme 2). These unoptimized 
results suggest the method is a viable general approach for devel-
oping deoxyfluorination protocols using these atypical fluoride 
sources (see SI for full details). 

 
Scheme 2. Use of other MFn under CuF2 ‘optimized conditions’. Reactions 
performed on 1 mmol scale. a Determined by 1H NMR using an internal 
standard. 

The generality of the optimized CuF2 process was assessed by 
deoxyfluorination of a range of alcohol substrates (Scheme 3). Pri-
mary alcohols were broadly accommodated in good yield (Scheme 
3a). A variety of common functional groups were tolerated in the 
presence including aryl halides, heterocycles, and amine protecting 
groups. The reaction was selective for SN2 vs. potential SN2’ in sys-
tems where this is possible (2l, 2m). Similarly, the reaction was 
broadly tolerant of functionalized secondary alcohols (Scheme 3b). 
In addition, the reaction demonstrated clean SN2 with high stereo-
specificity observed across several substrate types, including sim-
ple alcohols (2a, 94% es) and aminoalcohols (2r, 16:1 dr), with 
good diastreoselection also displayed for exemplar sugar substrate 
2n (21:79 a:b). In addition, the reaction was selective for displace-
ment of the O-alkylisourea vs. labile alkyl bromides (2y), consistent 
with the experimental design. Substrates more inclined to SN1 path-
ways delivered product but in low yield (2w). Specific substrates 
were noted to undergo efficient fluorination but were prone to elim-
ination on silica, leading to diminished isolated yield (e.g., 2z, 2aa). 
The process was assessed on more complex substrates including 

marketed drugs, delivering the expected fluoride products in good 
yield (Scheme 3c). Finally, specific limitations (Scheme 3d) were 
observed with substrates liable to elimination (2ae-2ai). 

 

Scheme 3. Example scope of the deoxyfluorination process. Isolated yields 
unless noted. a Determined by NMR using an internal standard.  

 As noted in Table 1 (entry 11), the deoxyfluorination can be 
achieved using Cu(OTf)2 + KF. This enables application to PET 
radiolabeling by use of [18F]fluoride. With minimal optimization 
(increased CuCl catalyst loading), the 18F-labelled benchmark 
product 2a’ was prepared in 54.2 ± 6.3% (n = 2) radiochemical 
yield (RCY; Scheme 4).   
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Scheme 4. Installation of 18F. 

Efforts to understand the operation of the process were difficult 
based on the heterogeneity of the system and the stoichiometry of 
Cu(II), precluding in situ monitoring or meaningful NMR investi-
gations. However, engagement of the O-alkylisourea intermediate 
by Cu(II) was demonstrated by EPR (see SI for full details). 

In terms of the engagement/activation of CuF2, we were in-
trigued by the results which showed a critical dependence on H2O: 
addition of 1 equiv H2O to anhydrous CuF2 was essential, with both 
an anhydrous reaction and use of the dihydrate significantly less 
effective (Table 1: entry 1 vs. entries 4 and 5). Accordingly, we 
sought to interrogate the nature of any possible active copper spe-
cies generated using a combination of EPR, solid-state NMR, and 
powder XRD. It was not possible to directly study anhydrous CuF2 
+ H2O due to heterogeneity within the sample; however, “aged” 
anhydrous CuF2 (stored on benchtop under air) offered similar per-
formance to anhydrous CuF2 + 1 equiv H2O. We therefore used in-
stead the aged sample for analysis. EPR proved uninformative as a 
result of the lack of resolution of the hyperfine coupling (See SI). 
Greater insight was obtained through solid-state NMR and powder 
XRD. The 1H MAS NMR spectra of each of the three copper sam-
ples (Figure 1) displayed distinct differences between the anhy-
drous and dihydrate samples. For the anhydrous sample, a feature-
less and low intensity signal attributing to surface hydration was 
obtained. In contrast, the dihydrate shows an intense signal with an 
isotropic shift of 45 ppm and a large paramagnetic shift anisotropy 
(W = 302 ppm, k = 0.0) which can be attributed to the Cu-bound 
H2O. The 1H MAS NMR spectrum of the aged sample is essentially 
a superposition of the spectra of the two pure phases, suggesting 
either a unique phase somewhere between anhydrous and dihydrate 
or mixture of phases. 

 
Figure 1. (a) 1H (14. 1 T, 55 kHz MAS) NMR spectra of the three samples 
with a T1 relaxation filter chosen to show (a) paramagnetic and diamagnetic 
H and (b) paramagnetic H. 

Powder XRD patterns of the aged sample with both the anhy-
drous and dihydrate sample displayed similarities but, importantly, 
there are regions of significant difference. Similar to observations 
from 1H MAS NMR, this suggests the aged sample is either a single 
unique phase or a mixture of phases. 

In this regard, it is known that heating CuF2•2H2O to the thresh-
old temperature of 132 ºC will produce a Cu(OH)F•CuF2 species 
with the release of HF and H2O (eqn 1).14 

 

 

Figure 2. Powder XRD data showing overlay of anhydrous CuF2 (a), labor-
atory ‘in air’ aged CuF2 (b), and CuF2•2H2O (c) samples. 

It is therefore plausible that HF could be produced in small quan-
tities in the present system, which posed the question as to whether 
the observed reactivity could perhaps be due to formation of HF in 
situ. A series of control reactions were therefore conducted to ex-
plore the possibility of CuF2 acting as a masked HF source. For-
mation of the O-alkylisourea of 1a using DIC as standard (Table 1, 
entry 1) and treatment with Et3N•3HF at 100 ºC delivered the fluor-
inated product 2a in 47% conversion (see SI), which, while notably 
lower than our optimized conditions, could suggest some involve-
ment of HF. However, 100 ºC is insufficient to induce the for-
mation of HF from CuF2 (eqn 1).14 In addition, no issues of acid-
induced starting material or product decomposition were observed 
in the scope: for example, no hydration of olefins/alkynes (2l, 2m), 
no elimination issues with diols (2q), and no issues over benzyl 
deprotection (2n, 2p). Elimination issues were largely associated 
with substrates capable of E1 or E1cB, consistent with the presence 
of reactive F–, as exemplified in Scheme 3d. It should be noted that 
NBoc amines did undergo deprotection, although this was also ob-
served under thermal conditions in the absence of CuF2 in control 
experiments (see SI). Practical observations for lack of HF genera-
tion was also obtained by a notable absence of etched glassware.15 
Attempts to use scavengers to establish HF involvement were in-
conclusive: addition of organic bases did not impair the reaction 
(neither did amine substrates 1d, 1e, 1p, 1ab, 1ad, Scheme 3); si-
lylated molecules were deprotected, but this cannot be separated 
from standard F– reactivity; and, powdered glass did diminish effi-
ciency but this could not be separated from poor reactivity as a re-
sult of exacerbating heterogeneity.15 Ultimately, while the genera-
tion of HF cannot be ruled out conclusively, the totality of the cur-
rent data suggests that, if present, this contribution appears to be 
minimal. 

In summary, a simple method for deoxyfluorination using first-
row transition metal fluorides has been developed and exemplified 
using CuF2. The process is based on a proposed chelate-driven flu-
oride transfer that effectively overcomes the reactivity issues asso-
ciated with these fluoride sources. Control experiments and spec-
troscopic data suggest Cu(II) activation of an O-alkylisourea with 
fluoride transfer from a hydrated Cu(II)F species. The process can 
also be leveraged to allow 18F installation.  
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