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ABSTRACT: The first example of visible-light-driven reductive 

carboarylation of styrenes with CO2 and aryl halides in a 

regioselective manner has been achieved. A broad range of 

aryl iodides and bromides were compatible with this reaction. 

Moreover, pyridyl halides, alkyl halides and even aryl chlorides 

were also viable with this method. These findings may stimulate 

the exploration of novel visible-light-driven Meerwein arylation-

addition reactions with user-friendly aryl halides as the radical 

sources and the photocatalytic utilization of CO2.  

Visible-light-driven photoredox catalysis (PRC) has proven to 

be a powerful method to access complex organic molecules 

under mild reaction conditions.1 Difunctionalization of alkenes is a 

fruitful research filed that is valuable for building molecular com-

plexity in a highly efficient manner, which could be achieved 

through PRC processes besides transition-metal-catalyzed or other 

radical-mediated pathways.2-6 Particularly, the visible-light-driven 

Meerwein-arylation-type difunctionalization of alkenes, which 

generally utilizes aryl radical sources from aryl diazonium salts, di-

aryliodonium salts, arylsulfonyl chlorides and so on, has recently 

received much attention (Scheme 1a) and was pioneered by Kö-

nig.1a,2,3 However, aryl halides, which are bench-stable, inexpen-

sive and widely available, have not been successfully employed in 

this type of reaction to date.1a,2,3 One of the challenges could be it 

is difficult to generate highly reactive aryl radicals from aryl hal-

ides with visible-light since much higher negative reduction poten-

tial is required for aryl halides than aryl diazonium salts, diarylio-

donium salts or arylsulfonyl chlorides.1a,2,7-9 

In recent years, the photocatalytic utilization of carbon dioxide 

(CO2), which is an ideal one-carbon (C1) building block and sus-

tainable, abundant, low-cost and nontoxic as well, has been a re-

search topic of great interest in fine chemical synthesis.10-13 Nota-

bly, a limited number of redox-neutral photocatalytic difunctional-

izations of alkenes with CO2 were achieved to provide rapid access 

to carboxylic acids that are important motifs in a number of biolog-

ically active molecules (Scheme 1b).10 Consequently, visible-light-

induced regioselective carbocarboxylation, silacarboxyaltion, 

phosphonocarboxylation as well as thiocarboxylation of alkenes 

have been developed with CO2 and various radical precursors by 

the groups of Martin,10a Yu10b,d and Wu10c. However, these redox-

neutral protocols should not be applicable for developing three-

component carboarylation of alkenes with CO2 and aryl halides, 

since a novel highly-reducing protocol is probably necessary for 

utilizing aryl halides in such type of visible-light-driven reaction. 

Due to this challenge, the Meerwein-arylation-type carboarylation 

Scheme 1. Visible-light-driven Difunctionalization of Al-

kenes 

 

of alkenes with CO2 via visible-light PRC has not been realized so 

far.14,15 Inspired by previous studies by König,2a,9d Stephenson,7a 

Jui,7h,i and other groups,7-9 herein, we report the development of the 

first visible-light-driven reductive carboarylation of styrenes with 

CO2 and aryl halides in a highly regioselective manner using the 

readily available and low-cost HCO2K as the terminal reductant, 

leading to the rapid access to valuable hydrocinnamic acid deriva-

tives.16 Notably, the scope of aryl halides is very broad, and pyridyl 

halides, alkyl halides and even aryl chlorides are also compatible 

with this reaction (Scheme 1c). 

To start our investigation, 1,1-diphenylethylene was employed 

as the model substrate, which reacted with iodobenzene under 30 

W blue LEDs irradiation in the presence of commercially available 

[Ir(ppy)2(dtbbpy)]PF6 photocatalyst (PC) and an atmospheric pres-

sure of CO2 at ambient temperature (Table 1, see Supporting Infor-

mation (SI) for photocatalyst optimization). After extensive inves-

tigation of the reaction conditions, the desired carboarylation prod-

uct 1 was produced regioselectively in a 78% isolated yield in the 

presence of the hydrogen atom transfer (HAT) catalyst DABCO 

with HCO2K as the terminal reductant and K2CO3 as the base in 

DMSO (entry 1). It should be mentioned that for the ease of analy-

sis and product isolation, the original carboxylic acid product was 

converted to a methyl ester. Importantly, no product was detected 



 

in the absence of either a photocatalyst or light, demonstrating the 

reaction was induced by light (entries 2 and 3). Slight decrease in 

the yield was observed when the reaction was carried out under ni-

trogen atmosphere (entry 4), suggesting that CO2 could be also 

formed from oxidation of HCO2K or possibly the acidification of 

K2CO3.15j,17a Notably, not any product can be detected without add-

ing HCO2K, which was the vital terminal reductant (entry 5, see SI 

for other reductant tested).7a,i,17b-d However, DABCO was also cru-

cial for the reaction (entry 6), and it acted better than other amine 

HAT catalysts (entries 7-9). These results might suggest the com-

bination of HCO2K/DABCO is an effective electron donor for this 

reductive carboarylation. Moreover, it was found that K2CO3 was 

only slightly beneficial for the reaction (entry 10), and other bases 

such as Na2CO3 and Cs2CO3 were equally effective (entries 11 and 

12). Finally, solvents were also evaluated, and DMSO was found 

to be the best out of a variety of solvents such as DMF and DMA 

(entries 13 and 14).  

With the optimized reaction conditions in hand, the generality of 

this carboarylation was investigated with a variety of aryl iodides 

and bromides as well as some representative alkyl halides with 1,1-

diphenylethylene (Table 2). First, cheaper bromobenzene was only 

slightly less effective than iodobenzene (1). Notably, a large num-

ber of substituents that are electron-donating such as methyl, meth-

oxy and methylthio groups, or electron-withdrawing such as fluoro, 

choloro, boronate, trifluoromethyl, carbonyl and cyano groups 

were tolerated in this reaction without much difference in reactivity 

(2-33), delivering the target products in generally good yields. 

However, aryl iodides worked better than their bromide counter-

parts for some substrates with electron-donating groups such as hal-

ides for products 2-5. Similarly, aryl bromides worked much better  

Table 1. Optimization of Reaction Conditionsa 

 

Entry Deviation from standard conditions Yield [%]b 

1 none 82 (78)c 

2 without [Ir(ppy)2(dtbbpy)]PF6 N.D. 

3 in the dark N.D. 

4 under a nitrogen atmosphere 76 

5 without HCO2K N.D. 

6 without DABCO 3 

7 quinuclidine instead of DABCO 33 

8 quinuclidin-3-yl acetate instead of DABCO 6 

9 trisobutylamine instead of DABCO 64 

10 without K2CO3 76 

11 Na2CO3 instead of K2CO3 82 

12 Cs2CO3 instead of K2CO3 82 

13 DMF instead of DMSO 21 

14 DMA instead of DMSO 13 

aReaction conditions: 1,1-diphenylethylene (0.2 mmol), iodobenzene (0.4 
mmol), [Ir(ppy)2(dtbbpy)]PF6 (2 mol %), DABCO (0.1 mmol), K2CO3 (0.5 

mmol), HCO2K (0.4 mmol), DMSO (2 mL), 1 atm CO2, 30 W blue LEDs, 

rt, 24 h; then MeI (2.0 mmol), K2CO3 (1.0 mmol), acetone (10 mL), 70 oC, 
2 h. bYield was determined by 1H NMR with CH2Br2 as internal standard. 
cYield of isolated products in parentheses. DABCO = triethylenediamine; 

N.D. = not detected. 

Table 2. Scope of of Aryl Halides and Alkyl Halidesa 

 
aReaction conditions: standard conditions (Table 1, entry 1). b48h. cTrisobutylamine (50 mol %) was used instead of DABCO. 



 

than their iodide counterparts for some substrates with electron-

withdrawing groups such as bromides for products 25, 28 and 32. 

Moreover, ortho-substituted aryl halides generally gave lower 

yields than their meta- and para-substituted counterparts such as 5-

7, 12-14 and 28-30. In addition, iodo- and bromonaphthalenes were 

also viable in this reaction (34 and 35). It is noteworthy that the aryl 

iodides/bromides bearing a chloro or boronate group were feasible 

for our carboarylation (15-18), leaving the opportunity for further 

derivatization. Stimulated by the success in using aryl halides, we 

examined the feasibility of alkyl halides. Pleasingly, representative 

secondary alkyl halides (36-38) proceeded smoothly under the op-

timized conditions. Finally, tertiary bromide (39) could also be em-

ployed in this method. However, primary halides did not work well 

at present. 

The scope of styrenes was studied subsequently (Table 3). The 

α-substituted styrenes including α-methyl styrenes (62-65) were 

excellent substrates (40-65), regardless of the electronic nature and 

the position of substituents on the aromatic ring. Notably, hindered 

α,-disubstituted styrene (66) also delivered the expected products 

in a moderate yield. However, α,-nonsubstituted styrene deriva-

tives were less effective, leading to generally moderate yields of 

products with electron-deficient substrates (67-74). Notably, syn-

thetically useful boronate group (70) was also tolerated. However, 

aliphatic alkenes were not compatible with this method at this stage. 

Table 3. Scope of Styrenesa 

 
aReaction conditions: standard conditions (Table 1, entry 1). 

 

In light of these results, we turned our attention to test heterocy-

clic substrates, especially the challenging electron-deficient pyridyl 

halides. As shown in Table 4, alkenes with a thiofuryl or pyridyl 

group could afford the desire products (75 and 76) in modest yields. 

Remarkably, this reaction also proceeded efficiently with several 

pyridyl halides to give corresponding products (77-81) in generally 

good yields. In addition, unambiguous proof of the structure of 78 

was achieved by single-crystal X-ray analysis. 

To demonstrate the potential of this reaction, we tested the via-

bility of aryl chlorides that are generally much less reactive in vis-

ible-light driven photocatalytic reactions (Table 5).7i,9c,d,l-n,q  

Table 4. Scope of Heterocyclic Substratesa 

  
aReaction conditions: standard conditions (Table 1, entry 1); methylation 
conditions (75 used standard conditions): SOCl2 (0.4 mL), MeOH (4 mL), 

100 oC, 6 h, see SI for details. bThe methyl ester of 78 was transferred to 

acid 78 while isolating with silical gel. 

Table 5. Scope of Aryl Chloridesa 

 
aReaction conditions: standard conditions (Table 1, entry 1) in 48 h. b4 equiv 

aryl chloride were employed. cmethylation conditions:  SOCl2 (0.4 mL), 

MeOH (4 mL), 100 oC, 6 h, see SI for details. 

Remarkably, the carboarylation could be successfully extended to 

several electron-deficient (hetero)aryl chlorides that are often much 

cheaper than corresponding bromides and iodides (Table 5).  

To determine the carboxyl source of the product, 13CO2 (99% 13C) 

gas was employed and 74% 13C incorporation was found in the car-

boxyl of the product, indicating that CO2 is mainly from the CO2 

gas but part of the CO2 could be generated from HCO2K or K2CO3 

(Scheme 2a). Moreover, the reaction could be easily scaled up to 5 

mmol without significant decrease in the yield of 1 (Scheme 2b). 

Finally, the proposed mechanism for the carboarylation process 

is depicted in Scheme 3 based on Stern-Volmer luminescence stud-

ies (see SI) and previous reports.7a,b,10a,13i Upon blue light irradia-

tion, the excited PC* (A) is produced and subsequently quenched 

reductively by DABCO to give radical anion of PC (B) and radical 

cation of DABCO (see SI for Stern-Volmer luminescence studies). 

Then an electron is transferred from B to the aryl halide, leading to 

an aryl radical (C) by scission of the C−X bond. The aryl radical 

undergoes regioselective addition to alkene affording a benzyl rad-

ical (D), which can be reduced to a benzyl anion (E) by B.10a,13i, 

Then E undergoes nucleophilic addition to CO2 to produce the car-

boxylate F which was then converted to methyl ester after methyl-

ation. 



 

Scheme 2. Determination the Source of CO2 and the Scaled-

up Reaction. 

 

 

Scheme 3. Proposed Catalytic Cycle. 
 

 

In conclusion, we have developed the first effective reductive 

protocol of regioselective visible-light-driven carboarylation of 

styrenes with CO2 and aryl halides, leading to an efficient method 

for producing valuable hydrocinnamic acid derivatives. Notably, 

this highly-reducing protocol allows the use of a wide range of aryl 

halides, including electron-deficient and low-cost aryl chlorides. 

Moreover, pyridyl halides as well as alkyl halides were also viable 

with this method. These findings may open up a new opportunity 

for exploring novel visible-light-driven Meerwein type arylation-

addition reactions employing user-friendly aryl halides as the radi-

cal sources, as well as developing new photocatalytic utilization re-

actions of CO2. Further exploration of this discovery is under way 

in our laboratory and will be reported in due course. 
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