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ABSTRACT: Herein, we conceptualized a transient mediator 

approach that has the capability of para-selective C–H func-

tionalization of monosubstituted aromatics. This approach is 

enabled by in situ generation of a versatile sulfonium salt via 

highly electrophilic phenoxathiine or thianthrene dication inter-

mediate which can be readily generated from its sulfoxide with 

trifluoromethanesulfonic anhydride. Preliminary mechanistic 

study implied that the remarkable para selectivity might be re-

lated to the incredible electrophilicity of thianthrene dication in-

termediate. The versatility of this approach was demonstrated 

via para-borylation of various monosubstituted simple aromat-

ics combining the sulfonium salt formation with further photo-

catalyzed transformation. 

Tremendous efforts have been made in the field of precise 

control the site selectivity in C–H functionalization of aromatics 

during the past two decades.1-2 However, achieving para-selec-

tivity in direct C–H functionalization reactions remains a sig-

nificant challenge, especially when the targeted arene owns 

multiple reactive sites with subtle steric and electronic discrep-

ancy. Typically, para-selectivity control often dominated by 

steric and electronic factors of substrates, and high selectivity 

was observed mainly for electron-rich arenes, which have been 

represented in electrophilic aromatic substitution reaction of ar-

omatics.3 Recently, major progress to face this challenging 

para-C–H functionalization has been achieved through elec-

tronic recognition,4 steric control,5 template assistance,6 and 

radical involved processes7 (Scheme 1A). Despite undisputable 

advances, those methods are still lack of generality with insuf-

ficient regioselectivity, either requiring large excess of arenes 

or working with the assistance of directing group (template), 

and normally resulting in a mixture of para-substituted product 

with other isomers. The development of general and efficient 

approaches to achieve para-C–H functionalization without di-

recting group assistance remains a significant task. Herein, we 

conceptualized a transient mediator approach that enables 

para-selective functionalization of monosubstituted benzene 

derivatives (Scheme 1B). We envisioned that a mediator could 

be selectively introduced to the para position of the substituents 

via a highly electrophilic cation or radical cation intermediate 

Scheme 1. Background and Synopsis for para-C–H Func-

tionalization of Monosubstituted Arenes 

 

with electron or steric recognition. This resulted species could 

be readily converted to other functionalities with high effi-

ciency providing the para-decorated aromatics. By carefully se-

lecting the transient mediator and conditions, para-functionali-

zation of monosubstituted benzene could be realized in a single 

synthetic operation. In this case, highly electrophilic phenox-

athiine or thianthrene radical cation intermediate,8 in situ initi-

ated by its sulfoxide with trifluoromethanesulfonic anhydride, 

was capable of generating the corresponding sulfonium salt 

with a high para-selectivity. Para-borylation of monosubsi-

tuted benzene was realized by combining the sulfonium salt for-

mation with further photocatalyzed borylation using phenox-

athiine or thianthrene as the transient mediator.  
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We started our investigation by searching a suitable transient 

mediator, which has the capability of being installed at the para-

position of the monosubstituted aromatics with high selectivity, 

and being readily converted to other functional groups. Be 

aware of the remarkable activity of sulfide ditriflate, a highly 

active intermediate formed in situ by treating sulfide oxide with 

Tf2O,9 we hypothesized that the electrophilic sulfate ditriflate 

reagents might be a potential handle for addressing this chal-

lenging problem by adjusting the steric effects. In situ generated 

dimethyl sulfide ditriflate (DMSD) reacted with toluene provid-

ing the corresponding sulfonium salts in 99% yield with an in-

sufficient selectivity (p/o = 1.5/1.0). The selectivity was slightly 

improved with the increase of steric hindrances (2b-e). Diiso-

propyl sulfoxide (2f) gave a remarkable para/ortho ratio 

of >20/1.0, whereas the efficiency of sulfonium salt formation 

is unsatisfying and cannot be further improved probably due to 

bulky isopropyl substituent. It is noteworthy that methyl phenyl 

sulfoxide (2h) maintained the high efficiency and high selectiv-

ity simultaneously, giving 10.0/1.0 selectivity and 95% yield. 

Encouraged by this result, we decided to focus on evaluation of 

aryl sulfoxides (2i-n). Despite more steric hindrance sulfoxide 

2i led to lower reactivity, diphenyl sulfoxide 2j provided its sul-

fonium salt in quantitative yield with similar selectivity. Com-

pared to diphenyl sulfoxide, less steric hindrance dibenzothio-

phene sulfoxide (2k) and thioxanthone sulfoxide (2l) resulted in 

lower selectivities. Gratifyingly, phenoxathiine sulfoxide (2m) 

and thianthrene sulfoxide (2n) significantly improved the selec-

tivity to >76/1 (para/ortho) with high efficiency. 

Scheme 2. Evaluation of Sulfoxides.a,b 

 

aConditions: toluene (0.5 mmol), sulfoxide (0.6 mmol), Tf2O (0.6 

mmol), DCM (0.5 mL), N2; -40 oC for 30 min, then rt for 1 h. bThe 

yield was determined by 1H NMR using CH2Br2 as the internal 

standard. The selectivity was determined by the 1H NMR. 
To shed light on the causation for remarkable para selectivity 

using phenoxathiine and thianthrene derived sulfoxide, detailed 

mechanistic studies were carried out. Although the sulfoxide 

screening confirmed that the regioselectivity can be partially 

controlled by the steric effects, the EPR experiment of the reac-

tion system with various in situ generated sulfide ditriflates in-

dicated that the striking para-selecitivity might also be related 

to the formation of phenoxathiine10a and thianthrene radical cat-

ion intermediates.10b-f,11 In comparison, thioxanthone sulfoxide  

Figure 1. Mechanistic Study 

 
(2l) with similar scaffold without EPR response resulted in a 

lower para selectivity (Figure 1A). However, the reaction 

didn’t proceed at low concentration of sulfoxide and Tf2O, de-

spite the radical cation intermediate existed which confirmed by 

the EPR experiment. We hence doubted whether the radical cat-

ion intermediate is real reactive species for sulfonium salts for-

mation, and were intrigued by the origin of the outstanding re-

gioselectivity. To further understand this process, preliminary 

computational studies were performed at SMD-M062x/def2-

TZVP level of theory, and three possible intermediates, radical 

cation, radical cation dimer and sulfide dication, were system-

atically investigated. The intermediates of C–S formation with 

toluene and thianthrene radical cation didn’t show apparently 

energy difference (< 0.6 kcal/mol) indicating the poor selectiv-

ity of para/ortho position by the calculated energy scanning of 

forming C–S distance (see Figure S8). Based on Dunsch’s study 

(ref 10g), a dimer intermediate could be formed via a reversible 

dimerization of thianthrene radical cation, however, the dimer 

can’t lead to stable adducts for the reasonable para/ortho selec-

tivity in the electrophilic substitution of toluene through  calcu-

lations (see Figure S9) We next turned our attention to the plau-

sible thianthrene dication intermediate, and found the sulfide 

dication intermediate is facile from heterolysis of sulfide ditri-

flate 2n-OTf with slightly endothermic rather than dispropor-

tionation from thianthrene radical cation. The large free energy 

difference (> 4.0 kcal/mol) between para- and ortho- interme-

diates imply that the sulfide dication would be the possible  
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Scheme 3. Scope of Monosubstituted Arenes.a,b 

 
aReaction conditions: 1) 1 (0.2 mmol), 2n (1.2 equiv), Tf2O (1.2 

equiv), DCM (1.0 mL), -40 oC to rt, 1 h; 2) DMAP (2.0 + 2.0 equiv), 

4-CzIPN (5 mol %), (BPin)2 (4.0 equiv), Blue LED, 8 h. bIsolated 

yield; for all substrates, high para selectivities were obtained 

(para/others > 50/1). cTIPS-protected phenol was used. dReac-

tion conditions: 2n (2.4 equiv), Tf2O (2 equiv) and DMAP (3 + 2 

equiv.) were used rather than the standard conditions. 

active species responsible for the high regioselectivity. And the 

dispersedly positive NPA charge (see Figure S11) on both thi-

anthrene and toluene lead the exo-conformation in the favorable 

para-intermediate to minimize the electrostatic repulsions, 

which can rationalize the experimental observation of high p/o 

ration. Based on the DFT study, we therefore postulated that the 

para-selective sulfonium formation proceeded via electronic 

substitution with the highly electrophilic sulfide dication inter-

mediate, followed by deprotonation to form sulfonium salts 

(Figure 1C). Besides, the less efficiency with electron-deficient 

substrates, like PhCF3, PhCO2Me, also supported this reaction 

proceeded via cation intermediates.11a  

Given the versatility of aryl boronic acid in organic synthe-

sis,12 we are curious if we can achieve the para-borylation of 

monosubstituted benzenes by in situ converting the resulted sul-

fonium salt13 in a single synthetic operation. Several elegant ex-

amples towards the challenging para-C–H borylation of arenes 

have been witnessed in the last decade. For example, Itami and 

coworkers5a have reported an Ir-catalyzed para-C–H borylation 

by altering the steric hindrance on ligands, moderate to poor 

para selectivity was obtained using less congested monosubsti-

tuted arenes, such as cumene (para:others = 58:42) and 

ethylbenzene (para:others = 32:68). Recently, Nakao Group5d-f 

and Chattopadhyay group6c has achieved the Ir-catalyzed para-

selective borylation of aromatic esters and amides in high se-

lectivity by adopting the rational designed bimetallic or non-

covalent interaction strategy. However, those strategies cannot 

be extended to undirected aromatics without polar functional 

group assistance. After scrupulously evaluated the reaction pa-

rameters for para-borylation, we found the para-borylated tol-

uene can be obtained in 83% yield using DMAP as base and 

activator, 4CzIPN as photocatalyst in CH3CN (For detailed 

screening, see Supporting Information). With the optimized 

conditions in hand, the generality of this protocol was examined. 

As summarized in Scheme 3, alkylated benzene derivatives pro-

vided desired borylated products in high yields (4a-e), while di-

phenylmethane gave moderate yield (4f, 68% yield). Biphenyl 

also produced the corresponding boronic acid pinacol ester in 

73% yield (4g). Electron rich phenol (1h-l) and aniline (1m-p) 

derivatives are also suitable substrates for this protocol, in 

which the tolerance with difloromethoxybenzene, N-phenyl-

morpholine, 1-phenyl-2-pyrrolidinone are noteworthy. TIPS-

protected phenol (1h) provided the unmasked para borylated 

phenol in 74% yield, whereas phenol also can be used in the 

reaction with slightly lower yield. Electron-deficient fluoroben-

zene (1q) was compatible with this procedure along with high 

para selectivity. Derivatives of hydrocinnamic acid (1r), 2-phe-

nylethanol (1s 1t), phenylpropanol (1u), borylated biphenyl 

(1v), L-phenylalaninol (1w), and (S)-2-oxiranylanisole (1x) un-

derwent this protocol yielding the desired products in moderate 

to high yields. Some complex scaffolds (1y, 1z) were also com-

patible, demonstrating this protocol is versatile for late-stage 

functionalization of drug molecules. Moreover, the electron de-

ficient substrates provided low activities (1aa-ae) probably due 

to the electrophilic nature of dication intermediate in the sul-

fonium salts formation step. 

The para-borylated products can be readily transformed to 

various para-decorated arenes efficiently as summarized in 

Scheme 4. Using 4n as model scaffold, the boronic acid pinacol 

ester can be smoothly converted to alkenyl, aryl, iodide, meth-

oxyl, and aminyl in high efficiency. This protocol opens a new 

avenue for synthesis of 1,4-disubstituted arenes, a scaffold fre-

quently found in biologically active compounds. 
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Scheme 4. Transformation of Aryl Boron  

 

Conditions: a) CH=CHCO2Et, Pd(OAc)2 (10 mol %), Na2CO3 (2.0 

equiv), DMF, 50 oC, O2, 3 h; b) PhBr (1.0 equiv), Pd(dppf)Cl2 (5 

mol %), K3PO4 (3.0 equiv), H2O (5.0 equiv), THF, 70 oC, 3 h; c) 

KI (1.5 equiv), CuI (10 mol %), 1,10-phenanthroline (20 mol %), 

MeOH/H2O (4:1), 80 oC, 20 h; d) MeOH, Cu(OAc)2 (1.0 equiv), 

DMAP (2.0 equiv), 4 Å MS, rt, air, 24 h; e) morpholine (2.0 equiv), 

Cu(OAc)2 (1.0 equiv), Et3N (2.0 equiv), 4 Å MS, CH3CN, 80 oC, 

air, 24 h. 

In summary, para-borylation of monosubstituted benzenes 

has been demonstrated using phenoxathiine or thianthrene as 

the transient mediator. Preliminary mechanistic study indicated 

that the key to the remarkable para-selectivity might be the use 

of highly electrophilic phenoxathiine or thianthrene dication 

species. Detailed mechanistic study and the application of this 

transient mediator approach for site-selective functionalization 

are ongoing projects in our laboratory. 

 

Experimental procedures, complete characterization data, copies of 
1H and 13C NMR spectra. The Supporting Information is available 

free of charge via the Internet at http://pubs.acs.org.  
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