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ABSTRACT. SAXS experiments provide low-resolution but valuable information about the 

dynamics of biomolecular systems, which could be ideally integrated in MD simulations to 

accurately determine conformational ensembles of flexible proteins. The applicability of this 

strategy is hampered by the high computational cost required to calculate scattering intensities 

from three-dimensional structures. We previously presented a metainference-based hybrid 

resolution method that makes atomistic SAXS-restrained MD simulation feasible by adopting a 

coarse-grained approach to efficiently back-calculate scattering intensities; here, we extend this 

technique, applying it in the framework of multiple-replica simulations with the aim to investigate 

the dynamical behavior of flexible biomolecules. The efficacy of the method is assessed on the 
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K63-diubiquitin multi-domain protein, showing that inclusion of SAXS-restraints is effective in 

generating reliable and heterogenous conformational ensemble, also improving the agreement with 

independent experimental data. 

 

1. INTRODUCTION 

Biomolecules in solution can be characterized by a different extent of conformational dynamics 

depending on the specific system and experimental conditions1–3. While the dynamics of single 

domain proteins in native condition is generally limited to fluctuations around a well-defined 

structure, fully disordered proteins can only be described as statistical ensembles of conformations. 

In between these cases multi domain proteins connected by linker region can populate multiple 

states generally characterized by a different size4.  

Experimentally the characterization of conformational heterogeneity can be achieved by 

employing multiple solution techniques like nuclear magnetic resonance (NMR), Förster 

resonance energy transfer (FRET) and small angle X-ray scattering (SAXS)1,2. The latter has the 

advantage to be label free, to work with systems of any size and in essentially all experimental 

conditions5. An atomistic interpretation of scattering data could benefit from its combination with 

computational techniques, as Molecular Dynamics (MD) simulations, which could provide an 

accurate physical model to generate reliable conformational ensembles in agreement with SAXS 

data6. Common approaches employ SAXS to reweight conformational ensembles a posteriori, 

making use of statistically founded theoretical frameworks7–12. Recently, few methods in which 

SAXS experimental data are integrated in MD to drive conformational sampling have been 

proposed, nevertheless their application is hindered by the high computational cost required to 
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calculate scattering intensities13–15. As this is a major issue in the field, multiple strategies have 

been suggested to alleviate this problem16–19.  

In a previous work20, we developed a MD-based multi-resolution strategy to efficiently refine 

protein-DNA and protein-RNA complexes integrating SAXS experimental data with 

metainference21. According to this strategy, MD is run with full atomistic details, using standard 

atomistic force-field, while the back-calculation of SAXS intensities is performed in a coarse-grain 

fashion, based on the Martini force field22. In the refinement protocol conformational averaging 

was not considered, under the assumption that a single structure, representing the most populated 

state of the system, could reliably reproduce all the measured experimental data used as restraints. 

In this work, we aim to further extend this approach to investigate the conformational space of 

biomolecules that can adopt multiple conformations in solution.  

Here we applied our multi-resolution strategy to investigate the conformational ensemble of 

K63-linked diubiquitin (K63-Ub2). Diubiquitins represent an ideal test system as they are known 

to populate multiple conformational states due to the presence of a highly flexible linker 

connecting the C-terminal of the distal ubiquitin with either a lysine or the N-terminus methionine 

of the proximal domain (Figure 1A)23–29. In particular, the heterogeneity of K63-Ub2 

conformational space is supported by the presence of numerous crystallographic structures of this 

protein, free or in complex with diverse targets, displaying different degrees of opening and 

arrangements of the two subunits30–36. Furthermore, studies based on different biophysical 

techniques, including SAXS, NMR, cross-linking and FRET, support  the idea that K63-Ub2 in 

solution populates a dynamic ensemble, with a preference for compact states28,29,37. This 

equilibrium between multiple states is considered critical in modulating the affinity of diubiquitin 

towards its biological partners28.. 
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In the following we present our SAXS-restrained all-atom metadynamics metainference 

(M&M)1,38,39 simulation of K63-Ub2, performed with the hybrid resolution approach, in 

comparison with an unrestrained reference simulation, in which the same setting was used but for 

the inclusion of experimental data. The conformational ensembles obtained from the two 

simulations (metainference and unrestrained),  once assessed using independent experimental data 

available in literature from NMR paramagnetic relaxation enhancement (PRE) experiments29, 

allow us to suggest that M&M SAXS restrained simulations can be efficiently employed to 

characterize the conformational ensemble of dynamic systems. All the methods described in this 

paper are freely available in the PLUMED-ISDB module40 of the PLUMED library41, further all 

the input files used are available on the PLUMED-NEST repository42, as plumID:19.057. 

 

2. THEORY AND METHODS 

2.1 Metainference 

Metainference allows integrating experimental data with prior information, generally represented 

by a molecular mechanic force field21, taking into account the effect of conformational averaging 

and other sources of errors. In the case of Gaussian noise, the metainference energy can be 

written as43: 

𝐸"# = 𝐸%% +
'()
*
∑ ∑ [-./01.(𝑿)]6

789,.
( ;

6
<789,.

=>?;
6

@9
ABC

@D
EBC + 𝐸8,  

where 𝐸%% is the energy of the force field, 𝑘G the Boltzmann constant, 𝑇 the temperature, 𝑑E the 
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ABC  is averaged over the 𝑁A replica,  𝑓E(𝑋𝒓) is 

the forward model used to predict observable 𝑖 from conformation 𝑋𝒓, 𝜎A,EG  is an uncertainty 

parameter that describes random and systematic errors, 𝜎A,EPQ" is the standard error of the mean 
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related to the conformational averaging and 𝐸8 is an energy term that accounts for normalization 

of the data likelihood and error priors. Monte Carlo sampling is used to sample the uncertainty 

𝜎A,EG  and optionally a scaling parameter 𝜆 that relates experimental and back-calculated data (as in 

the case of SAXS experiment): these parameters are inferred during the simulation along with 

the model of the system. Importantly, if only one replica is considered, metainference becomes 

equivalent to the Inferential Structure Determination approach44; conversely, if 𝜎A,EG = 0 (i.e. in 

absence of data and forward model errors) it is equivalent to the replica-averaged MaxEnt 

modelling45. 

Metainference can be combined with metadynamics (M&M) to accelerate the exploration of the 

conformational space38,46. In particular, it was proposed to apply it in combination with parallel 

bias metadynamics47 (PBMetaD), which allows to use a larger number of collective variables 

(CVs) applying multiple low-dimensional bias potentials and therefore reducing the risk of 

missing slow degrees of freedom. In M&M multiple copies of simulation are run in parallel, 

where all the replica use the same conditions and force field and share the bias potential as in the 

case of multiple-walkers method48. The coupling of metainference and metadynamics is given by 

the calculation of the average forward model 𝑓E(𝑿), where each replica contributes differently to 

the average with a weight 𝑤(𝑋A) depending on the bias potential 𝑉VG according to: 𝑤(𝑋A) =

	𝑒
YZ(([Y(\9),])

^(_
	.  

2.2 Coarse-grain approach to calculate scattering intensities 

Given a molecule of N atoms, the average scattering intensity for multiple copies randomly 

oriented can be computed via the Debye equation as: 
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Here 𝑟Eb indicates the distance between the atoms 𝑖𝑗, 𝑞 = 4𝜋 sin 𝜗 /𝜆 is the magnitude of the 

scattering vector, 2𝜗 is the scattering angle and 𝜆 is the X-ray wave length. The form factor 𝑓E(𝑞) 

of the 𝑖-th atom can be computed using the Cromer-Mann analytic function49 and can be 

corrected using the Fraser approach50 to account for the effect of the displaced solvent. 

The calculation of scattering intensities with the Debye equation is extremely expensive from a 

computational perspective as it requires the evaluation of pairwise distances between all the 

atoms in the biomolecules, resulting in a problem of complexity 𝑂(𝑁*). Among the strategies 

adopted to overcome this problem, it has been proposed to coarse-grain the scattering 

calculation17,18. According to this method, which is well justified by the low resolution of SAXS 

data, the molecule is represented as a collection of 𝑀 beads, each comprising a variable number 

of atoms; herein the number of atoms per bead can be tuned to optimize the balance between 

accuracy and computational efficiency. If the form factors 𝐹(𝑞) of the beads are known the 

scattering intensities can then be computed as: 

𝐼(𝑞) = ∑ ∑ 𝐹E(𝑞)"
bBC

"
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cde(fu.g)
fu.g

,       (2) 

where 𝑅Eb indicates the distance between the center of mass of beads 𝑖𝑗 and with the sum running 

over the number of beads. The complexity is therefore reduced from 𝑂(𝑁*) to	𝑂(𝑀*). The form 

factors 𝐹(𝑞) for custom beads can be computed adopting the Single Bead Approximation 

averaging over multiple structures17. Alternatively, form factors for beads based on Martini force 

field22 are available18 and were previously implemented in PLUMED-ISDB module20,40. 

2.3 Hybrid-resolution SAXS-driven metainference simulations 
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SAXS experimental data can be used to improve MD simulations using the metainference 

approach. Importantly metainference is able to consider the ensemble-averaged nature of SAXS 

measurements; additionally, it can deal with both random and systematic errors in experimental 

data, as well as with the inaccuracies of the forward model (i.e. the calculation of SAXS 

intensities from the 3D-structures). This is particularly relevant in SAXS back-calculation when 

coarse-grain forward models are used and when the excess of electron density in the hydration 

shell is neglected. Recently, we implemented in PLUMED-ISDB a hybrid multi-resolution 

strategy to perform full atomistic MD simulations in which SAXS intensities, computed at a 

coarse-grain level based on Martini force field, are used as restraints within the metainference 

framework20 (see Figure 1A). To achieve this goal the virtual positions of the Martini beads are 

computed on-the-fly and are used in combination with Martini form factors18 for SAXS 

calculations. The computational efficiency of this strategy can be further improved using a 

multiple time-step protocol, where the metainference bias is applied only every few time steps51. 

In our previous work we demonstrated the reliability of the hybrid resolution approach for 

single-replica simulations in which two protein-nucleic acids complexes were refined against 

SAXS data.  

Here we extended the described approach to multi-replica M&M simulations, with the aim to 

exhaustively explore the conformational space of flexible biomolecules, able to populate 

multiple conformational states. 

2.4 Computational details of the simulations 

K63-Ub2, for which both SAXS and Paramagnetic Resonance Enhancement (PRE) experimental 

data are available29,37, was used as test-system. As starting model for the simulations, we used 
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the chains B and C of PDB 2ZNV34: the K63R and D77 mutations in distal and proximal 

ubiquitin, respectively, were maintained to be coherent with SAXS measurements. MD 

simulations were performed with GROMACS 201852, PLUMED 241 and the PLUMED-ISDB40 

module, using the Amber ff03w force field53 with TIP4P/2005 water model54 and scaled protein-

water Lennard Jones parameters55. The choice of this force field, that was specifically designed 

to increase molecules solvation, avoiding collapsed states and nonspecific protein-protein 

interactions, was guided by the fact that we expect an equilibrium between open and compact 

states of K63-Ub2 with only transient inter-domain contacts. The system was solvated in a 

periodic dodecahedron box, initially 1.2 nm larger than the protein in each direction, and 

neutralized. After an initial energy minimization to a maximum force of 100 kJ/mol/nm, the 

solute was equilibrated under NVT condition at the temperature of 300 K for 50 ps using the 

Berendsen thermostat56; then Berendsen barostat was used to equilibrate the system in the NPT 

ensemble to the target pressure of 1 atm for 200 ps. The equilibration phase was followed by an 

initial plain-MD simulation of 100 ns, from which a pool of well-equilibrated conformations was 

extracted to be used as staring models for the subsequent runs. During the production runs in the 

NPT ensemble, the md integrator was employed with a time step of 2 fs; the temperature was 

maintained at 300 K using the Bussi thermostat57 and the pressure was controlled with 

Parrinello-Rahman barostat58. Bonds were constrained with the LINCS algorithm59, using a 

matrix expansion of the order of 6 and 2 iterations per step. Electrostatic was treated by using the 

particle mesh Ewald scheme60 with a short-range cut‐off of 0.9 nm and a Fourier grid spacing of 

0.12 nm. The van der Waals interaction cut‐off was set to 0.9 nm. 

Two metadynamics multi-replica simulations were performed: 1) the metainference one, 

consisting of 18 replica, in which metainference was used to enforce the agreement with SAXS 
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data and 2) the reference one, consisting of 8 replica, in which the same settings of simulation (1) 

were used but without the inclusion of experimental restraints. PBMetaD was performed in 

combination with well-tempered metadynamics61 and the multiple-walker scheme48, where 

Gaussians with an initial height of 0.6 kJ/mol were deposited every 1 ps using a bias factor of 22. 

Four CVs were biased: two of them (hydContacts and polContacts) counts the number of the 

hydrophobic and polar contacts between the two ubiquitin domains, the other two (TICAcv1 and 

TICAcv2) are the results of the linear combination of numerous angles as determined by a Time-

lagged Independent Component Analysis62 (TICA) performed on the initial 100 ns plain MD 

simulation (see Supplementary Information for more details). The width of the Gaussians was 

determined with the dynamically-adapted gaussian approach63, using a time window of 2 ps to 

estimate CVs fluctuations and setting as minimum values for the width 0.01, 0.05, 0.01 and 0.01 

for hydContacts, polContacts, TICAcv1 and TICAcv2, respectively. 

Experimental SAXS intensities for K63-Ub2 are available in the SASDCG737 entry of the 

SASDB database64. For the metainference simulation, a set of 15 representative SAXS intensities 

at different scattering vectors, ranging between 0.06  Å/C and 0.20  Å/C and equally spaced, were 

included as restraints. These representative intensities were extracted from the experimental data, 

where a 21-point running average was performed to reduce the influence of experimental noise. 

Metainference was applied every 10 steps, using a single Gaussian noise per data-point and 

sampling a scaling factor between experimental and calculated SAXS intensities with a flat prior 

between 0.5 and 1.5. 

For both simulations, each replica was evolved for 350 ns, resulting in a total simulation time of 

6.3 𝜇s for the metainference simulation and of 2.8 𝜇s for the reference one. Convergence was 

checked using the block analysis procedure, in which free-energy profiles are computed over 
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different blocks of simulations and lastly, the weighted average error along the free energy 

profile is computed as a function of the block length (Figure S1). 

3. RESULTS AND DISCUSSION 

The hybrid AA-CG approach was applied to characterize the conformational ensemble of K63-

Ub2. Specifically, we performed: (1) a multi-replica M&M simulation, integrating the available 

experimental SAXS data with the coarse-grain approach every 10 steps; (2) an unrestrained 

reference simulation, adopting the same setting of the metainference run but without the 

inclusion of experimental data to drive the sampling. This second simulation is used for 

comparison and allows a deeper understanding of the role played by SAXS restraints. 

3.1 The hybrid AA-CG approach is computationally efficient. 

In Figure 1B we compared the performances of a plain atomistic MD simulation (yellow) and of 

all-atom metainference simulations where SAXS restraints were included every step with 

atomistic forward model (green) (that is Eq. 1 in theory and methods), every step (purple) or 

every 10 steps with CG forward model based on Martini force field (blue) (that is Eq. 2 in theory 

and methods). Of note, the use of the hybrid AA-CG approach can significantly improve the 

performances of SAXS-driven MD simulations if compared to the ones adopting atomistic 

scattering evaluation. This gain can be further increased using a multiple time-step protocol 

(Figure 1B, blue line), in which the metainference bias is applied every few time steps. This 

strategy is well justified in the case of SAXS data, which are characterized by slow temporal 

fluctuations, and allows to approach the performances of plain MD simulations.  
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Figure 1. (A)  K63-Ub2 (2473 atoms) represented with cartoon (top) or highlighting the centers of 

the 328 Martini beads (bottom), colored in white and orange for backbone and sidechain, 

respectively. (B) Performances, as a function of number of cores, for plain MD and for 

metainference simulations (with all-atom or coarse-grain forward model, computed every 1 or 10 

steps). Performances are estimated on Intel Xeon E5-2697 2.30 GHz for a single replica of K63-

Ub2 in water.  

3.2 Monitoring Metainference simulation. 

To evaluate on-the-fly the effectiveness of SAXS restraints in the metainference simulation, we 

monitored the correlation between back-calculated and experimental data as a function of the 

simulation time (Figure 2 and S2). Both the simulations showed a high correlation between 

experiments and forward model, as a consequence of the intrinsic low resolution of SAXS data. 

However, the comparison revealed a better agreement in the metainference than in the 

unrestrained simulation (Figure 2), confirming the efficacy of our restraints. This is supported 
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by other statistical properties, including the sum of square deviation and the slope/intercept of 

the linear fit (Figure S2). 

We also monitored the intensity of experimental restraints, which depends on the square sum of 

the uncertainty parameters 𝜎A,EG  and 𝜎A,EPQ". To this aim we computed the distribution across the 

metainference ensemble of both 𝜎A,EG , which is associated with experimental and forward model 

inaccuracies, and 𝜎A,EPQ", i.e. the standard error of the mean over the replicas. We observed a 

broader distribution of the sampled parameter 𝜎A,EG  with respect to 𝜎A,EPQ"(Figure S3), with greater 

uncertainties associated to smaller scattering angles (where indeed the global conformation 

mostly influences SAXS profiles). The values of 𝜎A,EPQ"are always within the range sampled by 

𝜎A,EG , indicating that the two sources of error comparably contribute to the restraint weight and 

suggesting that the number of replicas (which concurs in determining the magnitude of 𝜎A,EPQ") is 

sufficient.  
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Figure 2. Correlation, as a function of the simulation time, between experimental and back-

calculated SAXS intensities. The intensities considered are the ones used as restrained in the 

metainference simulation. The back-calculated data are averaged over the replica and computed 

with the non-approximated atomistic Debye equation (1). 

We finally computed the 𝜒*	value between the experimental and back-calculated SAXS data, 

considering the whole conformational ensembles sampled within the unrestrained or the 

metainference simulations. To this aim, we used as scaling factor 𝜆, relating experimental and 

calculated data, the one sampled via Monte Carlo in our metainference run, which converged to a 

value of 0.984 (Figure S4). The computed 𝜒*	values, 1.25 for the metainference and 1.82 for the 

unrestrained run, respectively, confirm that the metainference ensemble provides a better match 

with SAXS experimental data, even if the difference appears to be not that striking.  

3.3 Comparison of the conformational ensemble obtained from SAXS-driven and 

unrestrained simulations. 

Despite the relatively small improvement in the agreement with SAXS, the introduction of 

SAXS restraints has a relevant influence on the resulting ensembles. While the dynamic of the 

single ubiquitin units is only negligibly affected by the restraints, as testified by the comparison 

of the RMSD distribution of the single domains in metainference and unrestrained simulations 

(Figure S5), vice-versa, the relative positioning of the two ubiquitin units is strongly influenced 

by the introduction of SAXS data. Indeed, we observed that the probability density function of 

the gyration radius shows a wider distribution in the metainference simulation, according to 

which K63-Ub2 exists in a dynamic ensemble comprising both extended and compact 

conformations (Figure 3 and S6). Here, it is worth to observe that introducing experimental 
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restraints in MD does not result in a reduction of the conformational space sampled, as it could 

be naively guessed; on the opposite, it could help in broadening the conformational space visited, 

encouraging the exploration of regions that could be, otherwise, under-sampled. 

 

Figure 3. Distribution of the gyration radius in the metainference (green) and in the unrestrained 

(light blue) conformational ensembles. The vertical bars indicate the average back-calculated 

(green or light blue) and the experimental (red) gyration radius. The shade indicates the standard 

deviation, computed comparing the first and second halves of simulations. 

To have a better description of the generated conformational ensembles, we reconstructed the 2d-

free energy landscapes in a space defined by the C𝛼-gyration radius and a global dihedral angle 

𝜃 (used also as metadynamics CVs, see Figure S7), that describes the relative orientation of the 

two ubiquitin domains. Interestingly, the coordinates in this space of the available K63-Ub2 PDB 

structures mostly fall in regions characterized by low free-energy according to metainference 

simulation, supporting the reliability of the sampled conformation (Figure 4). Conversely, 

regions compatible with the extended structures, adopted by all the crystallized free K63-Ub2, 
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are insufficiently sampled within the unrestrained simulation. A comparison with Förster 

Resonance Energy Transfer data available in literature28,37 confirms that the unrestrained 

simulation over-sampled compact conformations, missing the extended ones (Supplementary 

Text S2 and Figure S8).  

The inspection of the 2d-fes (Figure 4) also revealed that the relative positioning of the two 

domains is different in the two ensembles, especially when focusing on compact conformations. 

This suggests that, in the two simulations, different Ub-Ub interfaces are preferred. The contact 

map analysis (Figure S9) confirmed that diverse groups of residues are involved in the inter-

subunit interactions in the two cases, where the major differences relies in the residues of distal 

ubiquitin (residues 42-49 according to metainference, residues 8-12 according to the unrestrained 

simulation). Based on this observation, it would be tempting to hypothesize that SAXS restraints 

could help in identifying reliable protein-protein interfaces. To confirm this hypothesis, we 

proceeded by validating our conformational ensemble against Paramagnetic Relaxation 

Enhancement (PRE) data. 
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Figure 4. 2D-free energy surface for K63-Ub2, derived by the metainference (left panel) and the 

unrestrained (right panel) ensembles, as a function of the C𝛼-gyration radius and the global 

dihedral angle 𝜃 (see Supplementary Text S1 and Figure S7). The coordinates of the available 

PDB structures in this space are plotted with points (colored from red to white, from more 

compact to extended conformations). To make the C𝛼-gyration radius comparable with the one 

back-calculated from the PDB structures, only residues 1-72 of the two ubiquitin domains were 

considered. 

3.4 Validation and analysis of the Ub-Ub interfaces. 

PRE experiments from NMR are particularly suited to provide information about inter subunit 

distances in multi domain proteins. In these experiments, after conjugation of a specific residue 

with a paramagnetic probe, PRE can be measured for the other domain, where PRE values are 

proportional to the inverse sixth power of the distance between the paramagnetic centre and the 

nuclei. Due to this functional form, PRE data are extremely sensible to closed states even if 

poorly populated65. Therefore, comparison of conformational ensemble against PRE is 

particularly indicated to validate the Ub-Ub interfaces of the compact states and their relative 

population. 

Liu and co-workers previously acquired inter-subunit PRE data for K63-Ub2, conjugating the 

paramagnetic probe on residues N25 or K48 of the distal ubiquitin, after N25C/K48C mutations, 

and detecting many large PRE for some residues of the proximal unit29,66. We back-calculated 

the same PRE values from our metainference and unrestrained conformational ensembles, 

approximating the paramagnetic centre–nuclei distances with the distances between the C𝛽 atom 

of N25 or K48 and all the amide hydrogens of the proximal ubiquitin. As this approximation is 
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reasonably quite strong, we evaluated an error of ±3Å on the estimation of these distances, 

which finally gave us an estimation of the minimum/maximum PRE values. We observed that 

experimental N25-PRE are in good agreement with the ones calculated from the metainference 

ensemble (Figure 5, upper-left panel), suggesting that the compact interfaces are correctly 

sampled in our metainference run. Conversely, the unrestrained ensemble fails to reproduce N25-

PRE for the proximal unit residues 8-14 and misses the high PRE observed for residues 46-47 

(Figure 5, lower-left panel). On the opposite, both the metainference and the unrestrained 

ensembles totally failed in reproducing K48-PRE (Figure 5, right panels), showing high PRE in 

regions not detected by experiments (e.g. proximal residues 18-26) and vice-versa (e.g. residues 

45-49). As the comparison with N25-PRE gave good indication about the reliability of our 

metainference ensemble in sampling correct Ub-Ub interfaces, we investigated the reasons 

underlying the bad agreement with K48-PRE by analysing the energetic contributions of each 

residue to the interface formation. We found that, according to metainference ensemble, K48 of 

proximal ubiquitin is important in stabilizing electrostatic interactions at the interface (Fig 6A). 

Based on this, we hypothesize that the introduction of the paramagnetic probe at this site, along 

with the K48C mutation, could strongly destabilize relevant inter-domains contacts, leading to a 

rearrangement of the positioning of the two subunits and finally giving rise to PRE values that 

could not be comparable with the one of wt-K63Ub2. Importantly, we verified that this is not the 

case for N25C, where neither Coulomb nor Lennard-Jones interactions seem to play a major role 

in stabilizing the Ub-Ub interfaces (Figure 6A and S10). 

In order to have a deeper insight into the sampled Ub-Ub interfaces, we analyzed the 

conformational minima identified by our metainference run. Based on the 2d free-energy of 

Figure 4, we classified the closed states (defined as the conformers with C𝛼-gyration radius<2.1 
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nm) in 4 different regions: region A, with -100º<𝜃<=60º, region B, with 60º<𝜃<=140º, region C, 

with 𝜃<=-100º or 𝜃>140º and gyration radius <=1.82 nm, and region D, with 𝜃<=-100º or 

𝜃>140º and gyration radius >1.82 nm (see Figure S11). Region A, B, C and D have a population 

of ~33%, ~8%, ~12% and ~14%, together accounting for the 67% of the conformational space, 

whereas the remaining 33% is populated by extended conformations (gyration radius >2.1 nm). 

The two minima associated with regions A and B present well-defined Ub-Ub interfaces (Figure 

6 B-C and Figure S12); on the opposite, the broad regions C and D contain quite heterogenous 

conformational states (Figure S12), suggesting that additional variables could be useful to 

subdivide the compact conformational space in even smaller minima and supporting the idea that 

many different possible interfaces can be transiently populated by K63-Ub2. Inspection of both 

the structures of minima A and B and of the related energy matrices (Figure S12) allowed us to 

characterize more in detail these interfaces. In minimum A we observed many charged residues 

involved (Figure 6 B): next to the K63-linker region, the positively charged R72-R42 of distal 

ubiquitin contact E16-E18 of the proximal domain; further distal K48 engages both polar 

interactions with proximal charged residues D21-E24-E52, as well as stabilizing hydrophobic 

contacts with T22 and/or T55. In minimum B (Figure 6 C) R72-R42 of distal ubiquitin play 

again an important role by contacting the negatively charged E64 of the proximal unit; further 

interactions involve the aliphatic side-chains of distal residues E24-N25 and the hydrophobic 

proximal residues F45-A46.  

Overall, our analysis revealed the involvement of many charged residues in the Ub-Ub interface 

and suggests that K63-Ub2 prefer electrostatic interfacial contacts, being hindered by steric 

constraints to interact via the common I44/I36 hydrophobic patches, in line with previous reports67. 

Our results are in agreement with previous mutagenesis experiments concerning the E64 residue 
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of the proximal unit, which play a major role in minimum B interface. Indeed, it was reported that 

E64 is important for the stabilization of closed conformations, where an E64R mutation was shown 

to decrease the binding affinity toward ligands, known to bind the K63-Ub2 closed states, via an 

entropically-driven mechanism. Herein, our results support the conformational selection 

mechanism proposed by Liu and coworkers29 for K63-Ub2 ligand recognition. 

 

 

Figure 5. Comparison of experimental (black line) and back-calculated inter-subunit PRE for the 

residues of K63-Ub2 proximal ubiquitin, with the paramagnetic probe conjugated at N25C (left 

panels) or K48C (right panels) of the distal ubiquitin. The area between the minimum/maximum 

back-calculated PRE values, considering a ±3Å error on the estimation of probe-nuclei 

distances, is coloured with green or light-blue shades, for metainference and unrestrained 

ensembles, respectively. The respective back-calculated PRE, without distance correction, are 
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shown with green and light blue lines. PRE values higher than 120 s-1 are indicated with a star on 

the top of the graph.
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Figure 6. (A) Per-residue Coulomb energy obtained summing over the residue-residue energetic 

contributions for pairs of residues belonging to the two different Ub domains. Residues of distal 

and proximal ubiquitin are colored in orange and red, respectively; lowest energy peaks are 

labelled. (B,C) Representative conformations extracted from minima A and B, respectively. 

Relevant residues for the interface formation are highlighted in sticks. 
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4. CONCLUSIONS 

In this work we presented a hybrid-resolution MD-based strategy, useful to determine 

structural ensembles providing an accurate interpretation of SAXS data. The hybrid AA-CG 

approach, in which SAXS intensities are computed at a coarse-grain level while simulations are 

run with atomistic force field, makes the SAXS-driven simulations feasible in terms of 

computational efficiency without losing atomistic details. Of notice, the proposed method is able 

to deal with highly flexible systems, aiding in the estimation of the population of the different 

existing conformational states. 

To prove the efficacy of the method, it has been here applied to study the conformational 

ensemble of the multidomain protein K63-Ub2. Our results reveal that the inclusion of SAXS 

restraints significantly influences the relative positioning of the different sub-units, without 

altering the dynamics of the single domain. The effectiveness of the approach in improving the 

reliability of the conformational sampling is supported by multiple indirect validations as well as 

by quantitative comparison with independent experimental data (e.g. PRE from NMR). 

Given the efficacy of the hybrid resolution method, we propose that it could be used as a 

strategy to provide accurate interpretation of scattering data for multi-domains and/or disorder 

proteins. Importantly, the approach is implemented in the freely available PLUMED software 

and all the data and PLUMED input files required to reproduce the results reported in this paper 

are available on the PLUMED-NEST repository (www.plumed-nest.org)42, as plumID:19.057. 
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