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Extension and Evaluation of the D4 London
Dispersion Model for Periodic Systems

Eike Caldeweyher, Jan-Michael Mewes, Sebastian Ehlert, and Stefan Grimmea†

London-dispersion effects are of great relevance to many aspects of materials science and for
various condensed matter problems. In this work we present an adaptation and implementation
of the DFT-D4 model [Caldeweyher et al., J. Chem. Phys., 2019, 150, 154122] for periodic sys-
tems. The main new ingredient are better computed reference polarizabilities for high coordination
numbers (including alkaline metals, earth alkaline metals, and d-metals of group 3-5), which are
consistently derived from periodic electrostatically embedded cluster calculations. Some techni-
cal extensions have been added concerning the coordination number, the partial charges, and the
dispersion energy expression. To demonstrate the performance of the improved scheme, several
test cases are considered, for which we compare D4 results to those of its predecessor D3(BJ) as
well as to several other dispersion corrected methods. The largest improvements are observed
for solid state polarizabilities of 16 inorganic salts, where the new D4 model achieves an un-
precedented accuracy, surpassing its predecessor as well as other, computationally much more
demanding approaches. For cell volumes and lattice energies of two sets of chemically diverse
molecular crystals, the accuracy gain is less pronounced compared to the already excellently per-
forming D3(BJ) method. For the challenging adsorption energies of small organic molecules on
metallic as well as on ionic surfaces, DFT-D4 provides high accuracy similar to MBD/HI or uncor-
rected DFT/SCAN approaches. These results suggest the standard application of the proposed
periodic D4 model as a physically improved yet computationally efficient dispersion correction for
standard DFT calculations as well as low-cost approaches like semi-empirical or even force-field
models.

1 Introduction

The efficiency of modern Kohn–Sham density functional theory1,2

(DFT) enables its routine application to very large molecules
with thousands of atoms, as well as the systematic screening of
huge numbers of smaller compounds.3 However, DFT as approx-
imate mean-field electronic structure method can fail dramati-
cally for certain types of interactions. The two most prominent
and relevant problems are (i) the absence or severe underestima-
tion of long-range electronic-correlation effects, which give rise
to London dispersion interactions,4 and (ii) the so-called self-
interaction error (SIE).5,6 The SIE problem will not be further
discussed in this work, however, the focus of the present study is
the extension of a correction scheme which attempts to solve the
first mentioned London dispersion problem.

An accurate account of dispersion interactions is indispensable
for any reasonable description of chemically relevant molecules
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and even more so for condensed-phase systems. Accordingly,
it has shown, that dispersion-corrections systematically improve
the accuracy of density functionals on all rungs of Jacob’s lad-
der.7 Hence, the development of dispersion correction schemes
is a very active field of research which has spawned several dif-
ferent approaches. The unifying idea of all these approaches is
to reintroduce the in principle well understood physics of London
dispersion to the DFT framework. The existing approaches may
be organized in two categories. On the one hand, there are self-
consistent schemes in which dispersion is directly included in the
functional, e. g., via a response function and/or non-local disper-
sion kernels, and on the other with additive post-SCF-type cor-
rections which model dispersion based on atomic polarizabilities.
The latter may be subdivided in corrections which explicitly take
into account the electron density, and semi-classical approaches
that are electron density independent.

Most approaches incorporate the electron density into their the-
oretical apparatus. These include the exchange-hole dipole mo-
ment (XDM) approach of Becke and Johnson,8,9 as well as the
Tkatchenko–Scheffler (TS) model,10 and its many-body disper-
sion (MBD) successor.11,12 All those methods employ a Hirshfeld-
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type atomic partitioning of the electron density, either to rescale
the polarizabilities of the neutral atoms (TS, MBD), or to density-
weight the approximated expectation value of the squared total
multipole operator for each atom within the molecule (XDM). For
the TS related approaches, Bučko and co-workers13,14 showed
that an iterative Hirshfeld partitioning, in which the fractionally
charged atomic reference state is determined self-consistently, can
drastically improve the description of dispersion interactions.

Approaches of the first category, which self-consistently include
dispersion in the density functional circumvent the somewhat
arbitrary atomic partitioning of the electron density. However,
this comes at the cost of a reduced flexibility — coupling to any
method is hardly possible — and increased computational costs.
Famous approaches of this class are the van der Waals density
functionals15–20 (vdW-DF), which are based on the fundamental
adiabatic connection theory. A simplified construction scheme for
the non-local correlation part has been introduced by Vydrov and
Van Voorhis (rVV10).21,22

The perhaps most widespread correction schemes and main
topic of this work are the semi-classical DFT-D methods of the
last category.4,23 Testing representatives from each of these cat-
egories, including TS(TS/HI), MBD(MBD/HI,MBD/FI), opt-vdw-
DF2, rVV10, and DFT-D, we find that they are all equally able
to accurately account for dispersion interactions in various sce-
narios within a DFT framework. However, the associated compu-
tational costs of these methods can differ drastically. The over-
arching principle for the cost of any such correction should be
that the computational efficiency of the underlying DFT method
must be retained. While this is in general the case for all of these
methods in combination with hybrid functionals employing large
Gaussian basis sets, the correction can become the bottleneck in
low-cost GGA DFT calculations, as will be shown and discussed
later in this article. For even lower-cost atomistic models such as
semi-empirical molecular orbital or force-field methods, only the
fastest approaches remain viable. An important point concern-
ing the computational efficiency of additive dispersion-correction
schemes is their account of the chemical environment. While it
appears as a logical step to derive and/or scale the atomic po-
larizabilities based on the electron density, this also introduces a
computationally demanding step, which typically slows down the
calculation.

One attempt to overcome this problem forms the basis of the
prominent DFT-D3 model,24,25 in which the atomic polarizabil-
ities are interpolated between atomic references based on frac-
tional coordination numbers (CNs). This avoids the need to deal
with the complex electron density, while the chemical environ-
ment is implicitly accounted-for by the CNs. The recently in-
troduced successor DFT-D4 further improves this model by mak-
ing the atomic reference polarizabilities charge-dependent.26,27

However, to retain the computational efficiency, the charge-
information is not derived from the electron density, but provided
by a classical and thus very efficient electronegativity equilibra-
tion (EEQ) model calculation. While this charge-scaling improves
the description for most molecular applications, in particular for
transition metals,28 there are still issues with certain metal-ions
in highly polar and periodic environments, such as Na+ in crys-

talline NaCl. By analyzing these failures, we noted that the
charge-scaling is not the root cause of the problem, but rather
the absence of suitable reference systems in the model. In the
solid state, the coordination number of alkaline, alkaline-earth
and early transition metals can approach values far beyond those
for which references polarizabilities are available from molecular
treatments, causing the otherwise accurate interpolation to be-
come an unreliable extrapolation.

The present work addresses this problem by widening the scope
of the references. For this, polarizabilities for new, highly coordi-
nated systems are added based on pseudo-periodic model calcu-
lations with the periodic electrostatic embedded cluster method
(PEECM). This includes new polarizabilities for alkaline, alkaline-
earth, and early transition metal elements. Herein theoretically
observed solid state polarizabilities are evaluated against exper-
imentally determined ones. We check the quality for properties
such as organic polymer refractive indices which are directly de-
pendent on polarizabilities. Lattice energies and cell volumes of
molecular crystals are evaluated using different literature known
London dispersion correction schemes in comparison to the new
approach. Furthermore, interfaces between organic molecules
and inorganic surfaces are treated for which new properties can
emerge.29–31 Noncovalent London dispersion effects are essen-
tial for structural properties, but also for the quantification of
the stability of such systems.32–34 For this purpose we discuss
adsorption energies of organic molecules on non-polar and ionic
surfaces which either exhibit partly covalent or partly electrostat-
ically driven binding motifs penetrating the particular description
of noncovalent interactions (NCIs) between adsorbate and sur-
face.

The next section shortly introduces the DFT-D4 theory, which
defines the method under periodic boundary conditions. A de-
tailed description of the methodologies—especially the genera-
tion of periodic EEQ partial charges and the periodic dispersion
energy expression— is given in the Supplementary Material. A
special focus shall be put on a scheme to calculate periodic ref-
erence polarizabilities. Afterwards the results for the above men-
tioned tests will be discussed. Finally, a summary and an outlook
are given presenting the quality of the method on solid state prop-
erties and discuss possible future applications.

2 Theory
The theoretical framework of this work was presented in detail in
Ref. 27 describing the basics of the molecular DFT-D4 model. For
the calculation of periodic CNs, charge and geometry dependent
dynamic polarizabilities α(iω), as well as for pair and triple-wise
dispersion energies see the detailed theoretical description given
in the Supplementary Material. A periodic EEQ model is devel-
oped within the present work for the efficient calculation of par-
tial charges used in the ζ -scaling for atom-in-molecules polariz-
abilities (see Supplementary Material for further details). For this
purpose, a cyclic cluster model is used to capture periodic bound-
ary conditions. Since dispersion interactions are much faster de-
caying (leading order term is proportional to R−6) than, e. g.,
Coulomb interactions, we employ for this energy contribution a
real-space cutoff within the periodic implementation. Analytical
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gradients (nuclear forces) are available for the dispersion energy
expression including pairwise and triple wise London dispersion
interactions.

2.1 Dynamic polarizabilities from cluster extrapolation

A major problem for D3/D4 calculations of dense periodic sys-
tems has been the absence of suitable molecular reference sys-
tems. Consider for example the alkaline (earth) metals, for which
there are only singly or doubly coordinated molecular references
(KH, MgH2), but no references with CNs close to the ones real-
ized, e. g., in salts (KCl, MgCl2, etc.). This problem persisted up to
group 5, and causes too large polarizabilities to be used in these
situations and in turn an over-stabilization of such systems. In or-
der to eliminate this shortcoming, it is desirable to augment the
database of references with dynamic polarizabilities of the atoms
in exactly such situations. For this purpose, the polarizability per
crystal unit cell and eventually that of the anions and cations has
to be calculated, which can in principle be accomplished in two
ways: (i) the calculation of polarizability per volume from the
dielectric function of the solid (using, e. g.,, the Clausius–Mosotti
equation35 in the limit of ideal ionic crystals), and (ii) the cal-
culation of polarizability per atom from a cluster extrapolation.
Zhang et al. have shown that a cluster extrapolation gives sat-
isfactory results for obtaining atomic polarizabilities within the
solid state (maximum deviation of about 2% for the polarizability
of silicon)36. Since this latter approach is moreover more similar
with the method used to obtain molecular reference polarizabili-
ties, it is most suitable for our purpose.

To simulate periodic boundary conditions of the crystal as close
as possible we apply the PEECM.37 Within this approach the en-
tire periodic system is divided into three parts: the inner part
covering the cluster (I), an optional shell (II) which is build from
effective core potentials (ECPs), and the outer part (III) which
describes its environment. Part (I) is treated quantum mechan-
ically (QM), whereby in part of (II) ions are replaced by ECPs.
Such an isolating ECP shell—surrounding the actual QM part—is
necessary in order to prevent artificial polarization of the electron
density by ions which would otherwise be in direct contact with
the QM boundary. The outer part (III) is described by a periodic
array of point charges, representing cationic and anionic sites of
the perfect ionic crystal. The effect of the additional ECP shell is
briefly shown in table 1 where a simple point charge embedding
(PCE) model describes the cluster without additional ECPs.

As evident from table 1, the polarizability of lithium as part of
an isolated Li4Cl4 cluster (i.e., no embedding) decreases signifi-
cantly in PBC. Furthermore, when applying a PCE model, it is cru-
cial to use adjusted point charges, since properties such as polariz-
abilities are strongly influenced by the present Coulomb field. The
effect of unadjusted point charges within a PCE model (qPC =±1)
results in artificially low polarizabilities and thus small dispersion
coefficients. However, this can be overcome by means of an ECP
shell, without having to manually adjust the point charge in ad-
vance (see “PEECM” embedding in table 1). Thus, it is advisable
to embed the QM region into ECPs to get the right answer for the
right reason. The electronic Coulomb energy term arising from

Table 1 Static polarizabilities (given in Bohr3) and homoatomic dispersion
coefficients (given in Hartree Bohr6) as obtained by a cluster extrapola-
tion for lithium inside the lithium chloride crystal. Here the effect of an
ECP shell on the absolute size of the particular property within the crys-
tal is investigated starting from a Li4Cl4 cluster. Furthermore, the point
charges (termed qPC) creating the outer part are given.

Embedding qPC αLi(0) CLiLi
6

None 0.0 37.2 129.7

PCE ±0.3 8.0 15.4
PCE ±1.0 <0.1 0.1

PEECM ±1.0 5.0 7.6

the periodic field of point charges surrounding the cluster has the
following form

J = ∑
µν

N∈UC

∑
k

∞

∑
T∈O

Dµν qk

∫
dr

µ(r)ν(r)
|r−Rk−T|

, (1)

where UC denotes the unit cell of point charges, Dµν are elements
of the density matrix, µ and ν are basis functions, qk and Rk de-
note charges and positions of point charges, and T denotes the
direct lattice vector of the outer part III. The energy term is evalu-
ated using the periodic fast multipole method38 (PFMM) which—
unlike the Ewald method—defines the lattice sums entirely in the
direct space. Fig. 1 schematically shows the distribution of the
cluster into three parts.

Fig. 1 The schematic construction of a cluster within the periodic elec-
trostatic embedded cluster method. Part (I) consists out of the QM part
(pink spheres) embedded into part (II) which is build from ECPs (blue
atoms). Part (III) is embedding part (II) by periodic point charges (small
gray atoms) representing cationic and anionic sites as in the perfect ionic
crystal.

The correct representation of polarities for atoms inside solids
without using QM information still remains a challenge. For the
geometry dependent D3 method this is hardly possible, because
only the CN is used to weight reference systems accordingly. This
disadvantage was partly overcome with the development of the
D4 method by including information from the electronic structure
(atomic partial charges) in the calculation of the atomic dipole
polarizabilities. Nevertheless, periodic dipole polarizabilities are
significantly smaller than those present in molecules which rises
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the need of reference systems that are especially designed for rep-
resenting solid state properties. An addition of such references is
easily feasible in the D4 method, since only dynamic polarizabil-
ities of the new references are required, from which the corre-
sponding dipole–dipole C6 dispersion coefficients are obtained—
by means of numerical Casimir–Polder integration—during the
calculation itself. Figure 2 highlights the elements for which new
periodic reference polarizabilities have been calculated. In par-
ticular, the elements of group 1–5 were supplemented with new
references.

...

...

...

Fig. 2 The yellow highlighted elements received new periodic reference
polarizabilities at the PEECM level. All these elements exposed relatively
high polarizabilities for molecular reference systems.

All new reference system structures are given as a tarball within
the Supplementary Material.

3 Results

3.1 Polarizabilities and refractive indices

Accurate polarizabilities are the foundation of many London-
dispersion correction schemes. It is therefore of utmost impor-
tance to be able to calculate polarizabilities as exactly as possible.
As demonstrated in previous works,24,26,27 there is a direct cor-
relation between the description of molecular polarizabilities and
the accurate description of NCI energies. Therefore, this section
will briefly discuss the quality of the new reference polarizabil-
ities. In addition, ionic polarizabilities are shown representing
the polarizabilities of cations and anions inside the crystal. In
general, cations have a lower electron density and thus a lower
local (atomic) polarizability and vice versa. The last part of this
section covers the calculation of refractive indices of several op-
tical organic polymers to validate the quality of polarizabilities
in “organic” crystals where the new reference polarizabilities are
supposed to have a small effect.

The experimental data were obtained by measuring the refrac-
tive index n (RI) at several wavelengths λ . In Ref. 35 all RIs are
extrapolated to λ = ∞ (obtaining n∞) and used within the Lorentz
expression to calculate the particular experimental salt polariz-
ability

α
exp
salt =

3Vm

4π

n2
∞−1

n2
∞ +2

, (2)

where Vm is the volume of the crystal divided by the number of
molecules inside the crystal. All Vm values are taken from X-ray
data39 and all theoretical salt polarizabilities are obtained as the
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Fig. 3 Given are (a) deviations of salt polarizabilities with respect to
experimentally obtained values taken from Ref. 35 and (b) schematic
2D-representation for anionic (yellow) and cationic (blue) polarizabilities
within the KCl (top) and RbI (bottom) solid state. Given are the experi-
mentally derived ionic polarizabilities (left) as computed by Tessman and
coworkers, 35 the calculated atomic D4 polarizabilities (right), and the D3
polarizabilities (center). The radii of the spheres correspond to the abso-
lute value of the polarizability.

sum of the cationic and the anionic polarizability

α
calc
salt = α

cation
salt +α

anion
salt . (3)

For D3, atomic polarizabilities are calculated as introduced in
Ref. 24, hence we do not approximate polarizabilities as intro-
duced in the empirical relationship for determining polarizabili-
ties from homoatomic dispersion coefficients40,41. Furthermore,
the Tkatchenko-Scheffler10 method with iterative Hirshfeld (HI)
partitioning13,14 (termed TS/HI) as well as its many-body dis-

4 | 1–19



persion analogon11,12 (termed MBD/HI) are listed for the sake of
completeness13,14,42. Here an HI analysis is indispensable, since
the TS and MBD variants calculate cationic polarizabilities that
are too high in their absolute value (similar to neutral atomic po-
larizabilities) leading to artificially high salt polarizabilities. Fur-
thermore, the MBD/FI (fractionally ionic) variant is used, which
was developed by Gould et al.43 This method promises in partic-
ular a drastic improvement for the calculation of polarizabilities
in ionic systems. In figure 3 the quality of salt polarizabilities
are given for the best performer methods namely for two DFT-D
methods (DFT-D3 and DFT-D4) as well as for two MBD methods
(MBD/HI and MBD/FI).

Extended statistical evaluations are given for the mean devia-
tion (MD), the mean absolute deviation (MAD), the root mean
squared deviation (RMSD), and the absolute maximum error
(AMAX) and are given in Bohr3 if not stated otherwise. The
experimentally determined polarizabilities are reproduced with
high accuracy by the DFT-D4 method (MD = −0.2, MAD = 1.7,
RMSD = 2.1, AMAX = 4.1). MBD is not able to calculate rea-
sonable polarizabilities for seven out of 16 different salts due to
non-physical negative values after its screening procedure. Note
that this failure is already literature-known.43 MBD/HI calculates
polarizabilities for all salts without such problems, however, this
method gives only poor results (MD = 32.0, MAD = 32.0, RMSD =

21.4, AMAX = 66.1). This is slightly improved at the density-
independent DFT-D3 level (MD = 31.8, MAD = 31.8, RMSD = 9.5,
AMAX = 44.7). Compared to DFT-D3, further improvements are
obtained when using the MBD/FI method where the fractional
ionic reference systems are beneficial for describing salt polariz-
abilities (MD = 14.6, MAD = 14.6, RMSD = 8.4, AMAX = 40.6).
TS and TS/HI show overall the largest deviations. Here even
the iterative Hirshfeld partitioning cannot lower the absolute val-
ues of the neutral TS atomic polarizabilities enough to produce
reasonable salt polarizabilities (TS: MD = 192.0, MAD = 192.0,
RMSD = 199.0, AMAX = 256.3, and TS/HI: MD = 114.1, MAD =

114.1, RMSD = 118.4, AMAX = 158.2).
Until now we discussed salt polarizabilities whose values were

obtained as the sum of the particular cationic and anionic po-
larizabilities. However, to check for ionic polarizabilities them-
selves, we use experimental ionic polarizabilities that have been
created by partitioning salt polarizabilities to the contributions of
their cations and anions using a least-squares fitting procedure.35

Those experimental ionic polarizabilities are compared to theo-
retically derived polarizabilities representing the cation and the
anion inside the crystal. The lower part of figure 3 schematically
highlights how D4 and D3 obtain ionic polarizabilities for K+ and
Cl– in KCl and for Rb+ and I– in RbI (both space group Fm3m)
compared to experimental ionic polarizabilities. Here, the abso-
lute value of polarizabilities are expressed in sphere-radii, where
large radii correspond to large polarizabilities and vice versa. Fur-
thermore, cationic polarizabilities are represented in blue and
anionic polarizabilities in yellow. The agreement to experimen-
tal ionic polarizabilities is significantly improved by adding pe-
riodic reference polarizabilities in combination with a charge
scaling procedure as it is done within the periodic D4 method
when comparing to the D3 method (i.e., αRb∈RbI

exp
/

α I∈RbI
exp = 0.3

versus α
Rb∈RbI
D4

/
α

I∈RbI
D4 = 0.4, and α

Rb∈RbI
D3

/
α

I∈RbI
D3 = 1.8). A com-

parison with the TS and the MBD model shows that the scal-
ing of neutral atomic polarizabilities using Hirshfeld volumes
is insufficient for the accurate calculation of ionic polarizabili-
ties within RbI (α

Rb∈RbI
T S /α

I∈RbI
T S = 8.0 and α

Rb∈RbI
MBD /α

I∈RbI
MBD = 13.1).

TS/HI and MBD/HI perform better in determining ionic po-
larizabilities within RbI compared to their non-iterative ana-
logues (α

Rb∈RbI
T S/HI

/
α

I∈RbI
T S/HI = 4.5 and α

Rb∈RbI
MBD/HI

/
α

I∈RbI
MBD/HI = 1.3). The

MBD/FI method significantly improves here (α
Rb∈RbI
MBD/FI

/
α

I∈RbI
MBD/FI =

0.1) whereby the cationic polarizability of Rb+ is obtained some-
what too small and the anionic polarizability of I– too large
within this salt. In general it is assumed that improved ionic
polarizabilities also yield improved interaction energies for ionic
systems (e. g.,, adsorption processes on ionic surfaces) which will
be discussed in more detail in section 3.3.

Another test case is the calculation of RI values for optical or-
ganic polymers, which is based on the work of Hachmann and co-
workers.44 In their work, polymer polarizabilities of organic com-
pounds were calculated using hybrid TD-DFT (TD-PBE0/def2-
TZVP) and RIs were obtained using the Lorentz equation. Con-
trary to their work, we calculate RIs from molecular polarizabili-
ties of the monomer units of each polymer obtained by approxi-
mated methods (DFT-D, TS, or MBD). This approximation, how-
ever, is accompanied by a lack of many-body effects, so that the
RIs to be calculated are known to be too large in absolute value.
Furthermore, monomer structures are used, since the explicit
polymer growth (including conformational analysis for each poly-
mer) is beyond the scope of this work. However, this is intended
to be covered in more detail in future works, e.g., by interfacing
the supramolecular toolkit of Jelfs and co-workers45 to explicitly
build polymer structures. Overall 73 monomer units of polymer
structures have been extracted from Ref. 44 and re-optimized at
the PBEh-3c46 level of theory after searching for minimum con-
formers using the conformer-rotamer ensemble sampling tool47

for each monomer unit. We calculate RI values as follows

n∞ =

√
3Vm +8π ·α
3Vm−4π ·α

, (4)

where Vm values are taken from Ref. 44 assuming a constant
packing fraction of the bulk polymer. Figure 4 shows the rel-
ative deviation of RIs from experimental values44 (the MAD of
TD-DFT RIs from experimental RIs is 2.3% its RMSD 3.0%). As
can be seen from the graph, all methods generally calculate too
large RI values, which is partly due to the approximation of us-
ing molecular polarizabilities α in equation 4. However, since
this approximation is applied to all methods, they can be directly
compared with each other. The smallest MD and RMSD values
are obtained from the D3 and D4 methods, which are able to
determine RI values with good accuracy. The slightly better per-
formance of D3 compared to D4 is within statistical uncertainty
and expected, as D3 already provides highly accurate polarizabil-
ities for organic molecules and molecular crystals. Subsequently,
the MBD/FI method from Gould and co-workers achieves ade-
quate accuracy. The least suitable method for predicting RIs is
the TS/HI method, which achieves improvements through addi-
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Fig. 4 Error ranges (relative to experimental data) for calculated re-
fractive indices at different theoretical levels of theory (D4, D3, MBD/HI,
MBD/FI, and TS/HI) for an organic polymer database.

tional many-body dispersion effects within the MBD/HI method.

3.2 Molecular crystals
3.2.1 Lattice energies

Molecular crystals are very relevant for material science as well
as in pharmaceutical chemistry.52,53 An important property is the
lattice energy Elat, which reflects how much energy is released
per molecule upon resublimation. It is defined as

Elat =
1
Z

Ecrystal−Egas, (5)

where Ecrystal is the energy of the crystal including overall Z
molecules within the primitive cell and Egas is the energy of the
isolated molecule in the lowest energy conformation.

Recently, a set of eight highly accurate reference energies
for molecular crystals have been published based on diffusion
Monte-Carlo (DMC) calculations.51 These reference systems in-
clude various binding motifs like, e. g., hydrogen bonding in ice,
electrostatic interactions in CO2, as well as London-dispersion
dominated unsaturated hydrocarbons. The statistical deviation
(RMSD) of these high-level results from experimental data is
small (0.004 eV). To provide a framework for the following dis-
cussion of the DFT results, it is useful to consider previous ap-
plications of this data set, which has been used to benchmark
RPA and MP2.54–56 With a computational cost between the DMC
benchmark calculations and DFT-based methods, RPA and MP2
afford RMSDs of 0.08 eV and 0.06 eV, respectively. Moreover, by
systematically studying the deviations from the reference, it was
possible to devise an efficient GW-type singles correction to RPA
(GWSE), which provides a much improved RMSD of only 0.01 eV.

In the following, we will explore the performance of DFT-D4
and D3(BJ) in combination with various functionals (PW91,57

SCAN,58,59 PBE,60 rPBE,61, revPBE,62 TPSS,63 B3LYP,64,65 and
PBE066), and moreover compare D4 to other dispersion-corrected
DFT methods. For the sake of completeness, we include almost
all dispersion-corrected method implemented in the latest version

of the prominent VASP program package, namely the methods
of Tkatchenko/Scheffler (TS and MBD with fixed and iterative
atomic charges)10–13,13,14,14,43, Landgreth/Lundquist (original
vdW-optPBE15–20 and revised rev-vdW-DF2)67 and Vydrov/Van
Voorhis (revised VV10)21,22.

We begin the discussion with the performance of D4 and
D3(BJ) in combination with different functionals, which is de-
picted in 5a. The perhaps most impressive result of this survey is
the dramatic improvement from the uncorrected DFT level to the
results including D3 and D4 (cf. number given in parenthesis in
the x-axis labels vs the lower purple and grey bars). In almost all
cases, the error without any D is well above 0.5 eV, whereas the
worst performance including the dispersion correction is 0.1 eV
(revPBE-D3). Only the SCAN functional without D achieves an
RMSD below 0.3 eV, indicating that it includes medium-range
correlation effects to some extend, which is in agreement with
previous reports.58,59,68 The best over-all performance is pro-
vided by PBE0-D4 with an RMSD of 0.02 eV, which is well be-
low that of much more demanding MP2 and RPA approaches and
that of RPA(GWSE). Considering also the MDs of 0.08 eV, 0.06 eV
and 0.01 eV for RPA, MP2 and PBE0-D4 shows that the error of
PBE0-D4 is less systematic. The computationally even more ef-
ficient (no exact exchange) rPBE-D3(BJ) approach is almost as
accurate as PBE0-D4, and closely followed by TPSS-D4, B3LYP-
D3 and revPBE-D3, which all provide an RMSD ≤ 0.04 eV in the
range of chemical accuracy (about 1 kcal mol−1). For perspective,
these DFT calculations take only hours (hybrid DFAs) to minutes
(GGAs) on a reasonably modern compute node with 16 CPUs.

Comparing D3(BJ) and D4, the agreement with the reference
improves significantly in some cases for D4 (cf., revPBE and
B3LYP), while for most DFAs it is only slightly more accurate, and
in some cases slightly worse (cf., PW91 and rPBE).

The results shown in figure 5b for the two-body models TS and
TS/HI indicate a systematic under-binding. In particular for the
crystals of the aromatics, one of the most common structural mo-
tif in organic chemistry, the deviations are as large as 50% of
the total lattice energy. This is cured by the inclusion many-body
effects in the MBD approaches, which afford an accuracy compa-
rable to that of D3(BJ) and D4. Note, that D3(BJ) as employed
here achieves this good result without including many-body ef-
fects. While the vdW-optPBE functional based on the original ap-
proach is not able to accurately describe the different interaction
motifs, the revised variant rev-vdW-DF2 does a much better job,
approaching the accuracy of PBE-D4. SCAN-D4 and SCAN-rVV10
perform very similar. Although they are slightly worse than PBE-
D4 regarding their RMSD, the deviation within a given chemical
compound class as indicated by similar colors in figure 5 is con-
sistent. As a result, they provide by far the best relative energies
of the ice (blue) and NH3 forms.

In conclusion, these results suggest PBE0-D4 as the most ac-
curate approach for studies on molecular crystals. At the com-
putationally much more efficient (meta)GGA level, rPBE-D3 and
TPSS-D4 are the next best options, providing only slightly worse
lattice energies at much lower computational cost. Rev-vdW-
DF2 and the MBD based approaches provide very similar ac-
curacy. However, for MBD/HI and MBD/FI the computation
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Fig. 5 a) Benchmark of DFT-D4 with several prominent DFs for the computation of lattice energies of eight molecular crystals (subset of the ICE10 48 and
X23 49,50 benchmark set), for which high-level fixed node diffusion Monte-Carlo (FN-DMC) references are available. 51. The RMSD of the uncorrected
DFs is given in parenthesis (x-axis). b) PBE-D4 compared to other dispersion corrected approaches, including the original two-body TS correction, 10

TS/HI with iterative Hirschfeld charges, 13,14 TS/MBD with many-body effects, 11,12 the combination of MBD with HI, 13,14, as well as yet another revision
that includes ionic references (MBD/FI). 43 Also shown are results obtained with SCAN-D4 compared to SCAN-rVV10, 21,22), as well as with the
original variant of vdW-DF, 15–20 and a more recent revised variant. The colored bars depict the relative (%) deviation from the reference, whereas the
transparent bars at the bottom show the absolute root-mean square deviation (RMSD) from the reference including its numerical value. All calculations
were conducted with VASP and employ the hardest PAW-PBE (GW) potentials available in the VASP library, an energy cut-off of 1000 eV and fine
k-spacing. See Supplementary Material for more details.

of the dispersion-correction takes much longer than the GGA
calculation itself (cf. timings below), limiting their applicabil-
ity. If the variation in investigated chemical structures is small
and the relative energies are more important than absolute en-
ergies, SCAN-D4 and similarly also SCAN-rVV10 can be recom-
mended. However, due to the increased cost of the SCAN func-
tional, also these approaches are computationally more demand-
ing than GGA+D3/D4.

3.2.2 Geometries from experimental measurements

The packing of organic molecules into crystals is highly sensi-
tive to an accurate treatment of NCIs and dispersion effects in
particular. In 2012, Johnson and co-workers compiled a set of
organic crystals from available low temperature X-ray structures
(termed C21 benchmark49) which was refined and extended by
Reilly and Tkatchenko resulting in the X23 benchmark set.50 Vari-

ous groups already used this benchmark set to test their electronic
structure methods.69,70 In their work Johnson et al. explicitly ap-
plied an artificial pressure to include volume expansion due to
vibrational effects in the optimization procedure. However, as
already discussed in earlier works46 the zero point vibrational
energy (ZPVE) and thermal contributions of the unit cell volume
can be estimated and used to transform the experimental volume
V0 into back-corrected reference equilibrium volumes Ve which
are directly comparable to optimizations on the electronic energy
surface.

Here we have calculated unit cell volumes using PBE-D3(BJ),
PBE-D4, PBE-TS, PBE-TS/HI, PBE-MBD, PBE-MBD/HI, PBE-
MBD/FI, and pure PBE for the X23 systems. Figure 6 shows
deviations from reference volumes per molecule for the 23 crys-
tal structures. Uncorrected PBE only achieves a poor description
by generally overestimating the cell volumes for these molecu-
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lar crystals (black bar in figure 6, MD = 14.7, MAD = 14.7, and
RMSD = 5.2 all given in %). Coupling PBE to any dispersion
correction improves the description significantly but the respec-
tive methods perform differently well. PBE-TS performs worst
which, however, can be improved by using an iterative Hirshfeld
partitioning. Including many-body dispersion effects or adding
an iterative Hirshfeld partitioning further improves the accuracy.
Additional reference systems with fractional ionic character do
not further increase the quality of the MBD results which is ex-
pected, since the considered molecular crystals have almost no
ionic character. PBE-D3(BJ) volumes are comparable to those
calculated with the TS/HI method. For the 23 tested molecu-
lar crystals, MBD gives a more accurate description compared to
D3(BJ). However, PBE-D4 also improves upon PBE-D3(BJ) and
furthermore is on par with the computationally more demanding
MBD method in terms of all statistical evaluations (MD , MAD,
and RMSD).

D4

D3

TS

TS HI

MBD

MBD HI

MBD FI

∆Vm in Å3
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/

Fig. 6 Error ranges (relative to experimental data) for calculated cell vol-
umes divided by the number of molecules inside the cell for 23 molecular
crystal structures (X23 benchmark set). Shown are data for pure PBE
(black) and PBE coupled to D4, D3(BJ), TS, MBD, TS/HI, MBD/HI, and
MBD/FI. For all PAW calculations an 800 eV plane-wave energy cutoff is
applied to minimize Pulay stress.

As another test, the D4 and MBD models are tested for their
capability of reproducing strong hydrogen networks within dif-
ferent ice polymorphs. This important binding motif is under-
represented in the X23 benchmark set, so that the ICE10 bench-
mark48 set is to be used for this purpose. A detailed description
of crystallized water requires an accurate description of NCIs es-
pecially for reproducing structural properties. Overall, we investi-
gate eight experimentally studied ice polymorphs. The measure-
ments have been conducted at low temperatures (up to 100 K)
where the thermal contribution to the ice density has been as-
sumed to be rather small assuming that measured structures can

be treated as equilibrium structures.48 In the original ICE10 pub-
lication the ZPVE is estimated on each unit cell volume by correct-
ing for thermal effects using the HF-3c72 method applied with an
ATM many-body dispersion treatment. In the present work we
apply the quasi-harmonic approximation (QHA), see Supplemen-
tary Material for details) to eight out of ten ICE10 polymorphs
to obtain back-corrected equilibrium volumes that are listed in
table 2. For this purpose HSE-3c71 calculations are performed
within CRYSTAL17 73 to revise parts of this benchmark set. This
composite DFT method has already proven its accuracy with re-
spect to the reproducibility of volumes of molecular crystals71

and is ideally suited for such computational intensive calcula-
tions.74

The direct comparison of PBE-D4 and PBE-MBD shows that
both methods are well suited to describe equilibrium volumes of
ice polymorphs. For the IX system, both methods calculate vol-
umes that are too small, while for the VI and III systems D4 yields
a too large volume while MBD does the opposite. The only “out-
lier” can be seen in the hexagonal ice Ih, where both methods
drastically underestimate the equilibrium volume. The effect of
the underlying density functional should be considered as well,
since PBE is known to overbind hydrogen bonds75. For the Ih
polymorph earlier studies already showed that PBE drastically un-
derestimates the equilibrium volume76 which could be corrected
by explicitly including many-body correlation effects in terms of
diagrammatic perturbation theory. However, this is beyond the
scope of this work and will be neglected. The data of table 2
show that PBE-D4 is suitable to generate accurate volumes for ice
polymorphs (MD = 0.3, MAD = 2.0, RMSD = 2.7 all given in %)
when comparing to MBD corrected PBE (MD =−0.3, MAD = 2.3,
RMSD= 3.4 all given in %). In general, pure PBE drastically over-
estimates all equilibrium volumes (PBE: MD = 5.6, MAD = 6.3,
RMSD = 3.6 all given in %) indicating that use of an appropri-
ate London dispersion correction is indispensable even in systems
that are dominated by hydrogen bonding.

3.3 Adsorption on surfaces

To evaluate the performance of the D4 and related approaches
for the calculation of adsorption energies, three chemically di-
verse model systems dominated by NCIs are considered.77 These
include the adsorption of non-polar benzene on gold (sparse),
polar CO on polar MgO (saturated), as well as non-polar C2H2
on ionic NaCl (also saturated). For all of these, accurate experi-
mental and/or high-level computational references are available.
The respective adsorption models are shown in figure 7. In ad-
dition to D4, we consider its predecessors D3(BJ), D2, as well as
other established methods, namely MBD (including variants), TS
(including variants) and the vdw-DF2 and rVV10 dispersion func-
tionals. All D and TS/MBD calculations are conducted in combi-
nation with the PBE functional.

The adsorption energies are calculated using

∆Eads = (Etotal−Eslab−nEmolecule)/n, (6)

where n is the number of adsorbed molecules per unit cell, Eslab
the energy of the vacant surface, Etotal the energy of the adsorbed
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Table 2 Refinement of the ICE10 benchmark set 48 (excluding polymorph II and XIII) with a correction of equilibrium volumes Ve to free-energy volumes
V0 due to ZPVE and thermal energies calculated at the HSE-3c level of theory 71 using a quasi-harmonic approximation. Structures and experimental
temperatures are taken from Ref. 48. For all PAW calculations an 800 eV plane-wave energy cutoff is applied to minimize Pulay stress. All volumes
are given in Å3.

HSE-3c Experimenta ∆ V / %

Polymorph V0 Ve ∆V/V0 (%) V0 V re f
e PBE -D4 -MBD

Ih 29.19 28.11 3.7 32.05 30.86 −3.0 −5.8 −6.5
III 25.11 23.69 5.7 25.69 24.23 7.3 0.9 −0.5
VI 23.36 21.44 8.2 22.84 20.97 5.0 0.5 −0.7
VII 23.03 21.32 7.4 20.26 18.76 7.4 1.8 0.8
VIII 23.03 21.38 7.2 20.09 18.64 8.2 2.7 2.2
IX 24.88 23.76 4.5 25.63 24.48 5.8 −1.0 −2.8
XIV 23.65 21.75 8.0 23.12 21.27 6.4 1.4 0.1
XV 23.45 21.60 7.9 22.45 20.68 7.2 1.8 5.0

aExperimental Ve estimated as V re f
e =V re f

0

(
1+

V HSE-3c
e −V HSE-3c

0
V HSE-3c

0

)
.

molecule on the surface, and Emolecule the energy of the isolated
molecule. To circumvent computationally expensive structure
optimizations at each level, and yet avoid a bias by using one
of the tested dispersion-correction schemes to conduct the op-
timizations, all calculations refer to single-point energies (cut-off
800 eV) on geometries obtained at the plain DFT/SCAN level (cut-
off 500 eV). In these optimizations, the molecules as well as the
first (complete) layer of the surfaces is relaxed, while the lower
layers were kept fixed at default values provided by the atomic
simulation environment (ASE).78 SCAN has been chosen for this
purpose because it provides reasonable agreement for all systems
without any dispersion correction. In general, the impact of the
geometric relaxation (with respect to ASE default parameters) on
the binding energy has been investigated at the PBE-D3(BJ) and
SCAN levels of theory and found to be small with about 0.01–
0.02 eV for the polar surfaces, and 0.05 eV for benzene on gold.

Figure 7 displays the results of these calculations in the form of
deviations from the experimental reference values. These data,
the choice of the experimental references, as well as the details of
the systems under considerations are discussed below. It should
be pointed out that there is a systematic bias when comparing
calculated adsorption energies to experimental enthalpy values
as used here. Since the calculations do not account for zero-point
and thermal contributions, both of which will reduce the interac-
tion, a slight overestimation of the theoretical adsorption energy
compared to the reference values is expected (and preferable to
an underestimation).

Benzene on gold—The adsorption of aromatic molecules on
transition metal surfaces is of particular interest in materials sci-
ence because the catalytic conversion of aromatic substances is
a key reaction in many petrochemical processes.79 Our model is
based on the common adsorption mode with benzene flat on the
(111) surface of fcc Au as is shown in Fig. 7, and corresponds to
coverage of θ = 1/25.80 Since gold provides one of the most in-
ert surfaces, the adsorption is almost exclusive driven by London

dispersion. The experimental estimate of the adsorption energy
is −0.64 eV at a sub-monolayer coverage.81 Plain PBE provides
a qualitatively wrong, repulsive energy of (0.49 eV). While the
old D2 model clearly over-corrects this failure of PBE with an ad-
sorption energy of −1.4 eV, the newer D3(BJ) model provides a
much improved energy of −0.76 eV, which can be considered in
agreement with the experiment given the absence of zero-point
and thermo-chemical corrections in the calculated values. The
D4 model presented here is even closer to the experimental result
with −0.69 eV. The original TS model performs very similar to D4
(−0.70 eV) irrespective if fixed or iterative Hirshfeld charges are
used. Including many-body effects via the MBD approach signifi-
cantly worsens the agreement, providing too small adsorption en-
ergies (−0.48 eV), which is surprising in face of the much better
agreement of the MBD approach for the benzene crystal (cf. fig-
ure 5). Also for the MBD approach, the agreement is almost inde-
pendent of the charge scheme. Only the fractional-ionic scheme
(FI) leads to a slight improvement, which is surprising in face of
the non-polar nature of this system. Plain SCAN finds, in con-
trast to PBE, an attractive interaction between adsorbate and sur-
face. However, with−0.50 eV it is slightly below the experimental
value. This confirms that SCAN describes parts of medium-range
correlation effects intrinsically. However, as already seen for the
molecular crystals, this can lead to double counting in combina-
tion with dispersion corrections. Accordingly, both SCAN-rVV10
and SCAN-D4 slightly over-bind the system with adsorption ener-
gies of−0.83 eV and−0.85 eV, respectively. Also the rev-vdw-DF2
functional correctly recovers the (attractive) interaction between
adsorbate and surface, but slightly underestimates it with an ad-
sorption energy of −0.56 eV.

Carbon monoxide on magnesium oxide—The adsorption of
carbon monoxide on MgO(001) surfaces has been extensively
studied both experimentally82–84 and theoretically.85–88 Exper-
imental studies provided adsorption energies ranging from about
−0.13 eV83,89 up to −0.20 eV,90 and showed that CO adsorbs
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Fig. 7 Benchmark of various DFT approaches for the adsorption of small organic molecules on metallic and ionic surfaces.

in a C-down configuration on top of five-fold coordinated Mg
atoms.83 This is reflected in our model system with a coverage
of 75%, which has been taken from Ref. 91 and is shown in fig-
ure 7. While previous DFT-based studies predict a wide range
of adsorption energies from −0.10 eV to −0.56 eV,86 coupled-
cluster based approaches provide values in better agreement with
the experiment of −0.15 eV88 to−0.17 eV92. Considering the ab-
sence of zero-point and thermo-chemical corrections in our cal-
culations, we selected the lowest experimental value of −0.20 eV
to be used as reference. Already plain PBE is with a computed
adsorption energy of −0.12 eV in qualitative agreement with the
reference value. As noted previously, the D2 model over-binds
CO with an adsorption energy of −0.30 eV. Surprisingly, this be-
comes even worse with D3(BJ) (−0.36 eV), and even D4 does not
improves the result with −0.31 eV. In fact, all employed methods
except plain PBE predict much too large adsorption energies for
this system, which range from the worst value of−0.47 eV (MBD)
to the best of −0.26 eV (SCAN, MBD/HI). This may be seen as a
hint towards a more fundamental problem of DFT for this sys-
tem, or a problem with the model system. In face of this general
over-binding of dispersion-corrected DFT for this system, it is not
surprising that SCAN and MBD/HI provide the best agreement,
as these are also the approaches that provide the over-all smallest
adsorption energies, and accordingly the only ones besides plain
PBE with a positive mean average deviation.

Acetylene on sodium chloride—The adsorption of acetylene
on sodium chloride has been studied by several groups ex-
perimentally and theoretically. Experimental adsorption ener-
gies93,94 range from −0.25 to −0.31 eV corresponding to full and
half coverage, respectively. Previous studies employing periodic
DFT provide values ranging from −0.32 eV to −0.44 eV.91 We
employ the same model system, which corresponds to full cov-

erage with the C2H2 molecules ordered in a T-shaped formation
(cf. figure 7). We use a reference value of −0.29 eV, which is
between the experimental estimates for full and half coverage.
Plain PBE affords an attractive yet too small interaction between
adsorbate and surface, as evident from the adsorption energy of
−0.12 eV. Again, D2 significantly over-corrects to an adsorption
energy of (−0.42 eV). This improves slightly with D3(BJ) provid-
ing −0.40 eV, and more significantly with the latest D4 approach
to −0.35 eV. Most certainly, this improvement is related to the
superior ionic polarizabilities of the D4 approach compared to
D3(BJ). Also the results of the other methods demonstrate the ne-
cessity for accurate ionic polarizabilities. While the TS and MBD
approaches with their fixed atomic charges both over-stabilize
this system even more than D2 with an adsorption energies of
−0,48 eV, the iterative schemes TS/HI and MBD/HI yield much
better agreement with −0.24 eV and −0.25 eV. Adding ionic ref-
erences in the MBD/FI schemes further improves this agreement,
leading to an adsorption energy closer to both D4 and the ref-
erence with −0.27 eV. Also plain SCAN provides a good descrip-
tion, yielding an adsorption energy of −0.28 eV, which increases
slightly when the functional is combined with a dispersion correc-
tion (SCAN-D4 −0.36 eV, SCAN-rVV10 −0.38 eV). Also the rev-
vdW-DF2 functional performs well with a value of −0.33 eV.

In particular this last system nicely demonstrates the necessity
to include charge and/or density information in the dispersion
correction, as evident from the superiority of D4 over D3(BJ),
as well as the charge-iterative Hirshfeld schemes over the stan-
dard models. Regarding the over-all statistical agreement, the
data indicate that PBE-D4, PBE-TS/HI, SCAN and rev-vdW-DF2
are the most accurate approaches with an RMSD below 0.1 eV. Of
these, in particular PBE-D4 stands out with the most consistent
deviation in the form of a slight over-binding of the adsorbates.
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As pointed out earlier, this is preferable to an under-binding and
would be corrected by including zero-point and thermo-chemical
contributions in the calculations. The perhaps most surprising
result from this benchmark is the excellent performance of the
uncorrected SCAN functional. However, this also comes at an in-
creased computational cost, as will be discussed in detail in the
next section.

3.4 Timings

In this section, we compare the computational cost of different
dispersion-corrected DFT methods using the cyclohexanedione
crystal structure as a test case. For this purpose, single-point en-
ergy calculations are conducted with VASP with settings for high
numerical precision (cut-off of 800 eV, fine k-point grid) on a 16
core Intel(R) Xeon(R) CPU (E5-2660 v4 @ 2.00 GHz). With this
set-up, the DFT/PBE single-point takes about 7.5 minutes wall-
time. Figure 8 provides the total walltime of the calculation, as
well as (if possible) the timing for the dispersion-correction only,
which is determined as the difference between the DFT/PBE cal-
culation with and without the respective correction.
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Fig. 8 Total walltime of a single-point calculation for the cyclohexane-
dione crystal with DFT/PBE and various dispersion-correction schemes,
SCAN-rVV10 and rev-vdW-DF2 (blue bars). Time spent on the dis-
persion correction alone is shown in orange (not available for the self-
consistent approaches).

Regarding the total walltime, DFT-D4, -TS and -MBD (the lat-
ter with fixed charges) are comparable with timings just under
10 minutes, followed by rev-vdW-DF2 just above 10 minutes.
The charge-iterative schemes are significantly more expensive
taking just above 15 (TS/HI, MBD/FI) up to almost 30 minutes
(MBD/HI). Only the SCAN-rVV10 calculation takes even longer
with 33 minutes, but this is mostly due to the increased compu-
tational cost of the SCAN functional.

Removing the overhead of the DFT calculation and focusing
only on the timing of the dispersion-correction, D4 turns out as
the fastest method by far with 11 s, followed by fixed-charge TS
and MBD with 31 s and 118 s, respectively. All of these are in stark
contrast to the charge-iterative schemes, which are orders of mag-
nitude slower taking as long (9 min for TS/HI and MBD/FI), or

twice as long (19 min for MBD/HI) as the underlying DFT/PBE
calculation. As a result, the dispersion-correction becomes the
bottleneck of the calculation, in spite of the high numerical preci-
sion settings for the DFT calculation. In combination with semi-
empirical and/or tight-binding approaches, or just more sloppy
DFT settings and a good initial guess – as is the typical scenario
for DFT molecular-dynamics simulations – the charge-iterative
schemes are impractical and only the fastest schemes (D4, TS)
remain useful.

4 Summary and conclusions
We presented an extension of the molecular DFT-D4 model for de-
scribing dense condensed-phase systems under periodic boundary
conditions. For this purpose, new periodic reference polarizabili-
ties for alkaline, for alkaline-earth, and for early d-metals (group
3-5) were calculated using a pseudo-periodic electrostatic embed-
ded cluster model.

The utility of the additional reference polarizabilities was
demonstrated by calculating solid state polarizabilities of differ-
ent salts and comparing them to experimental data. Here, the
new references lead to a dramatic improvement for cationic and
anionic polarizabilities, which now exhibit the correct ordering
compared to the experiment and also show better quantitative
agreement. For the same test set, related methods like MBD,
MBD/HI and even MBD/FI exhibited much larger deviations. This
is despite the explicit inclusion of ionic reference systems in the
MBD/FI approach, which improves the description compared to
MBH/HI, but does not approach the accuracy of the D4 model.

Eventually, the performance of the periodic DFT-D4 model was
tested and compared to its predecessors and related approaches
in three real-world application scenarios. These include (i) the
calculation of lattice energies of molecular crystals, (ii) the de-
termination of cell volumes of molecular crystals, as well as (iii)
the modeling of the adsorption of chemically diverse substrates
on non-polar, polar and ionic surfaces. For lattice energies of
molecular crystals, various D3 and D4 corrected DFAs showed ex-
cellent agreement to high-level references. Especially “repulsive”
density functionals (e. g.,, revPBE, TPSS, and PBE0) turned out
to provide an accurate account for NCIs, whereas density func-
tionals that already include mid-range correlation to some extent
(SCAN) appear to suffer from possible double-counting issues.
Other approaches showed to be competitive to D4 for describing
such lattice energies like MBD/HI corrected DFAs or the rev-vdw-
DF2 functional. The quality of geometries was investigated using
cell volumes of 23 molecular crystals and eight different ice poly-
morphs. For those systems, DFT-D4 yielded accurate cell volumes
with a deviation very similar to related approaches. In general, all
tested approaches show a tendency to calculate slightly too small
volumes. Regarding the calculation of adsorption energies for or-
ganic molecules, a direct comparison between DFT-D4 and elec-
tron density dependent (TS;TS/HI, MBD;MBD/HI;MBD/FI, vdw-
DF2, rVV10) and independent (DFT-D3(BJ) and DFT-D2) mod-
els showed DFT-D4, TS/HI and rev-vdW-DF2 to provide the best
agreement, followed by SCAN (without any vdW correction) and
the iterative MBD schemes. Of these, D4 stands out as the ap-
proach provides the most systematic deviation in the form of a
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slight over binding. Ultimately, an analysis of computational tim-
ings shows that DFT-D4 is orders of magnitude faster than the
iterative MBD schemes which offer similar accuracy, and thus pro-
vides the best balance between cost and accuracy. With the de-
velopment of the periodic DFT-D4 model it is routinely possible to
describe chemically diverse molecular, periodic solids or surfaces
accurately with a low computational effort.

5 Acknowledgments
EC thanks T. Bredow for valuable discussions. Furthermore, the
authors thank J. G. Brandenburg for sharing molecular crystal
structures of the DMC8 benchmark set and T. Bučko for help with
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6 SUPPLEMENTARY MATERIAL
6.1 Periodic DFT-D4 methologies

Let us begin with a review of the theoretical framework of the
D4 approach27 as this will provide the context for the introduc-
tion of the new features. The underlying concept of D4 and its
predecessors is to model the dispersion energy based on atomic
pairwise dispersion coefficients C jk

6 , which are obtained from a
Casimir–Polder integration of the respective atomic polarizabili-
ties αeff(iω)

C jk
6 =

3
π

∞∫
0

dω α
eff
j (iω)αeff

k (iω). (7)

Note that atomic units are used throughout in this work. To ac-
count for the influence of the chemical environment, the atomic
polarizabilities used in the D4 model are not fixed at the values
of the isolated atoms α(iω), but depend (i) on geometric parame-
ters captured by the atomic coordination number (CN j, as in D3),
as well as (ii) on effective atomic charges (z j, new in D4) ob-
tained via an electronegativity-equilibration (EEQ) scheme. The
idea behind the introduction of this charge scaling is to allow for
a more “natural” behavior of the effective polarizabilities, i.e., to
render atoms with negative partial charge more polarizable and
vice versa.

In practice, the geometry and charge dependence of the polar-
izabilities is implemented using an interpolation based on a set
of molecular reference systems. To do this efficiently and avoid
an interpolation in two dimensions, the atomic polarizabilities of
all reference systems are, in a first step, rescaled to match the
effective charge of the atom under consideration of z j via

α
ref
i (iω) = α

ref
i (iω)ζ (z j,zref

i ), (8)

where ζ describes an empirical relation between the polarizability
of an atom and its effective charge. Its analytical form

ζ (z i,zref
i ) = exp

(
β

{
1− exp

[
γi

(
1−

zref
i
z i

)]})
, (9)

with β as a global parameter set to 3 and γi as the chemical hard-
ness taken from Ref. 95 is discussed in more detail in Ref. 27.
The calculation of the necessary effective charges z done with an
EEQ model is described in section. 6.2

In a second step, the effective polarizability of the atom j is ob-

tained via interpolation from the charge-scaled reference polar-
izabilities using a Gaussian weighting based on the coordination
number (CN)

α
eff
j (iω) =

N i,ref

∑
i,ref=1

α
ref
i (iω)W i,ref

j (CN i,ref
i ,CN j). (10)

However, to use this CN-based approach in periodic systems, a
different formula for the CN is used compared to the molecular
implementation to avoid CN-divergences. The expression for the
CN in periodic systems reads

CN i =

∑
T

∑
′

j

δ EN
i j

2

(
1+ erf

(
−k0

(
|R i j +T|−Rcov

i j

Rcov
i j

)))

δ
EN
i j =

(
k1 exp

(
|EN i−EN j|+ k2

)2
)/

k3 ,

(11)

where, T = t1a1 + t2a2 + t3a3 denotes the translation vector with
a1, a2, and a3 being the lattice vectors (t1, t2, and t3 ∈ Z). The
primed sum over j indicates that the case i = j is omitted for
T = 0. One of the central changes is the use of Pauling elec-
tronegativities (EN),96 as well as the inter-nuclear distance R i j of
the pair i j, and the covalent atomic radii97 (Rcov

i j = Rcov
i +Rcov

j ).
Note that the CN has become EN-dependent to differentiate be-
tween covalent and ionic bonding (e.g., differentiate F2 from HF).
The parameters in equation 11 (k0 = 7.5, k1 = 4.1, k2 = 19.09, and
k3 = 254.56) were taken from Ref. 27.

This charge and geometry dependent calculation of atomic po-
larizabilities from molecular reference systems, which may be
described as an atom-in-molecule approach to polarizabilities,
presumes the additivity of atomic polarizabilities,98 which is re-
flected in the following equation

α
ref
i (iω) =

1
m

[
α

ImXn(iω)− n
l

α
Xl (iω)ζ (zX ,z

ref
X )
]
. (12)

Here, α ImXn(iω) is the molecular polarizability of one I-reference,
αXl (iω) refers to the homonuclear compound (e.g., αH2(iω) as di-
hydrogen) and m, n, and l are the particular stochiometric coeffi-
cients. All I atoms inside the reference molecules and the X atoms
in the homonuclear compounds are electronically equal and thus
symmetry equivalent. By exploiting this symmetry equivalence,
the approximation of additive polarizabilities is justified. Further-
more, the charge scaling of all X atoms in the respective reference
system is directly incorporated.

This more general scheme has no disadvantaged compared to
the hydrogenated reference systems used in the D3 model. With
it, any diatomic molecular polarizabilities, e.g., dihalide molec-
ular polarizabilities (chlorine or fluorine) and oxygen molecular
polarizabilities can be used in the subtraction scheme of equa-
tion 12 as briefly discussed in Ref. 91. This generalization of
the approach opens up the possibility to provide specialized C6

dispersion coefficients, which will be exploited here to properly
describe interactions in ionic solids.
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6.2 Periodic electronegativity equilibration model

For the generation of atomic partial charges q under periodic
boundary conditions, a classical geometry dependent EEQ charge
model is developed in the present work. For this purpose, a
cyclic cluster model (CCM) is implemented which applies peri-
odic boundary conditions to a cluster that uses a non-primitive
unit cell of a solid, a surface, or an infinite chain by directly em-
ploying cyclic Born-van-Kármán boundary conditions. The envi-
ronment of each atom is replaced by a notional cyclic arrange-
ment of cluster atoms, where the interaction zone of each atom
within the cyclic cluster is described by a Wigner-Seitz cell, con-
structed by the translation vectors of the unit cell and centered at
the atom. The cluster is constructed as a supercell of the primitive
unit cell, so that a repetition of this unit cell of N1, N2, and N3 cells
along the lattice vectors a1, a2, and a3 leads to a total cell number
of N = N1 ·N2 ·N3. In the CCM, the WSCs are stoichiometrically
and symmetrically constructed to ensure local electroneutrality.
This is guaranteed by the fact that each WSC central atom i is
surrounded by Ξ i neighbours j with an inverted partial charge.
When setting up the cluster, the number of all neighbours of each
WSC central atom is determined and weighting factors w i j = 1/Ξ i

for the respective neighbours are assigned, accordingly. Since
the CCM is a finite-size method, the clusters used can also carry
a net charge without running into convergence problems occur-
ring within the employed Ewald sums. In contrast to a supercell
model, no summation over special k-points has to be carried out.
Instead, a discrete number of k-points is contained implicitly by
placing them equally distributed in space.

{k}=
3

∏
j

g j

N j
b j with g j = 0, . . . ,N−1

j (13)

Here, we introduce the reciprocal lattice vectors b. The periodic
charge density ρ(r) of the system is supposed to be a superposi-
tion of spherically symmetric Gaussian functions centered at the
atoms position, each normalized to the corresponding nuclear
charge qi given by the following expression

ρ i(r) = ∑
T

q i

a3
i π

3/2
exp

(
−|r−R i−T|2

a2
i

)
. (14)

Here, the atomic van der Waals radii a i are introduced. By choos-
ing such atomic charge densities the total isotropic electrostatic
(IES) energy is amenable by the following expression given in
matrix notation

E IES = qT
(

1
2

A ·q−X
)
. (15)

The interaction matrix A contains all periodic Coulomb inter-
actions, which are developed in Ewald sums by splitting the
Coulomb operator into short-range and long-range contributions
(Ewald splitting parameter ξ =

√
π/V 1/3). Here, the previously

determined weighting factors wi j (as obtained from the CCM) are

applied for all off-diagonal elements

Arec
i j =

4π

V ∑
k6=0

cos
(
k · (R i j +T)

)
exp
{
− k2

4ξ 2

}
w i j

k2

Arec
ii =

4π

V ∑
k6=0

exp
{
− k2

4ξ 2

}
1
k2

Adir
i j = ∑

T

(
erf(γ i j

∣∣R i j +T
∣∣)∣∣R i j +T

∣∣ −
erf(ξ

∣∣R i j +T
∣∣)∣∣R i j +T

∣∣
)

w i j

Adir
ii = ∑

T 6=0

erf(γii|T|)
|T|

− erf(ξ |T|)
|T|

Aself/back
ii = Jii +

2γ ii√
π
− π

ξ 2V
.

(16)

Furthermore, we define γ i j to be equal to
(

a2
i +a2

j

)−1/2
. The

Lagrangian is constructed under the constraint that the sum of
the atomic charges conserves the total charge of the cluster, i.e.,

L = E IES +λ

(
∑
k

qk−qcluster

)

with
∂L
∂q

= 0 ∧ ∂L
∂λ

= ∑
i

q i−qcluster = 0,

(17)

which leads to a set of (N + 1) linear equations. The right-hand
side (RHS) of this set of equations is given by Xi =−χ i, where χ i

consists of the fitted atomic electronegativity EN i which is shifted
according to the following expression

χ i = EN i−Ω i. (18)

The molecular EEQ model uses for this shift the square root of a
modified error function CN as described in Ref. 27. Since high co-
ordination numbers can be reached very quickly in a periodic sys-
tem, artificial polarity reversals can occur. An instructive example
is displayed in figure 9, where the polarity between cations and
anions within the sodium chloride crystal is reversed (i.e., sodium
formally becomes anionic and chlorine cationic). This is an arti-
fact of the definition of the CN, which depends on the covalent
radius Rcov of the respective atom. As a result, the atom with the
larger covalent radius also gets a higher CN (here Rcov

Na = 3.5 Bohr
and Rcov

Cl = 2.5 Bohr) and thus a higher EN shift resulting in non-
physical polarity changes. In order to avoid such artifacts, the
procedure is modified for periodic boundary conditions. Here, Ω i

is used which includes the global parameter γ = 8 and is given as

Ω i = κ i log
(

1+ exp(γ)
1+ exp(γ)−CNi

)
. (19)

This classical charge model requires overall five empirical param-
eters (Jii, a i, EN i, κ i, and Rcov

i ) per element and achieves for
molecules across the entire periodic table of elements an average
deviation of about 0.04 e− (0.03 e− for organic molecules) with
respect to PBE0 based Hirshfeld charges.27

By using the definition of the Lagrangian given in equation 17
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Fig. 9 Functional dependence on the sodium partial charge q(Na) with
increasing CN(Na) using the molecular EEQ model within the sodium
chloride crystal.

the analytical charge gradients is derived as

∂q
∂R j

= Ã−1
[
−∂ (A ·q)

∂R j
+

∂X
∂R j

]
(20)

where the inverse of the indefinite (N+1) matrix has been ob-
tained by a Bunch–Kaufman factorization99 and inversion.

6.3 Dispersion energy

The periodic DFT-D4 energy expression is constructed as follows

ED4
disp = E(6,8)

disp +E(9),ATM
disp . (21)

The left part of equation 21 corresponds to the pairwise disper-
sion energy which is given by

E (6,8)
disp =−1

2 ∑
i

∑
T

∑
′

j
∑

n=6,8
sn

C i j
(n)

R(n)
i jT

f (n)damp
(
R i jT

)
. (22)

Here, the primed sum over j indicates that the case i = j is omit-
ted for T = 0. In equation 22, sn scales the individual multi-
polar contributions—s6 and s8 for the dipole–dipole and dipole–
quadrupole term—and f (n)damp denotes the rational Becke–Johnson
(BJ) damping function (denoted as BJ-damping (BJD) in the fol-
lowing) which is used to couple this approach to standard DFAs.

f (n)BJD(Ri jT) =
R(n)

i jT

R(n)
i jT +

(
a1 Ri j

0 +a2

)(n) (23)

Equation 23 incorporates the DFA-specific parameters a1 and a2

and the cutoff-radii defined as

Ri j
0 =

√√√√C i j
8

C i j
6

, (24)

where the recursive relation between dipole–dipole and dipole–
quadrupole dispersion coefficients is used. Furthermore, we de-
fine the following expression for the rational damping term

R i j
0,BJ =

(
a1 Ri j

0 +a2

)
. (25)

The simplest way to include three-body effects uses the well-
known Axilrod–Teller–Muto100,101 (ATM) term (cf., right side of
equation 21) which is defined as the sum over i jk energy contri-
butions each defined by

E i jk =
C i jk

9
(
3cosθi cosθ j cosθk +1

)(
Ri jR jkRki

)3 . (26)

Here, θi, θ j, and θk are the internal angles of the triangle formed
by R i j, R jk, and Rki while C i jk

9 is the triple-dipole constant given
by

C i jk
9 ≈

√
C i j

6 C jk
6 C ki

6 . (27)

The C i jk
9 coefficients are derived from C6 coefficients which are

obtained from charge-neutral atomic polarizabilities (i.e., neutral
atoms with z i =Z i). The finally used three-body dispersion energy
expression is as follows

E(9),ATM
disp =

− k∑
i

∑
T

∑
j

∑
′

T′
∑
′′

k
f (9)damp(Ri jTkT′

)E i jTkT′ ,
(28)

where the sum is over all atom triples i jk applied with a zero-
damping scheme proposed by Chai and Head-Gordon102

f (9)damp(Ri jTkT′
) =

1

1+6
(

Ri jTkT′

)−16 . (29)

To avoid multiple counting of three-body interactions the factor k
is set to 1

3 if atoms i, j, k are within the reference cell and to 1
2

in all other cases. As previously, the primed sum over j indicates
that the case i = j is omitted for T = 0, the double primed sum
over k indicates that the case j = k is omitted for T = T′ and i = k
is omitted for T = 0. Equation 29 includes the averaged inter-
atomic distance

Ri jTkT′
=

(
Ri jT R jTkT′

RkT′ i

/
R i j

0,BJ R jk
0,BJ Rki

0,BJ

)1/3
, (30)

which incorporates R i j/ jk/ki
0,BJ (cf. equation 25). Since dispersion in-

teractions are much faster decaying (leading order term ∝ R−6)
than, e.g., Coulomb interactions we employ for this energy con-
tribution a real-space cutoff within the periodic implementation.
Furthermore, analytical gradients are available for the dispersion
energy expression in equation 21.

6.4 Theory of the Quasi-harmonic approximation

In order to account for thermodynamic properties to crystals, the
knowledge of phonon modes is required over the complete first
Brillouin zone (FBZ) of the system. The easiest way to account
for ZPVE contributions includes harmonic lattice dynamics where
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each k-point in the FBZ is associated with 3M harmonic oscilla-
tors (i. e. phonons) which are labeled by a phonon band index
n (n = 1, . . . ,3N) and whose energy levels are given by the usual
harmonic expression as

ε
n,k
m =

(
m+

1
2

)
ωkn, (31)

where m is an integer, ωkn = 2πνkn, and N is the number of
atoms per primitive cell. The overall vibrational canonical par-
tition function of a crystal at a given temperature T is given as

Qvib(T ) = ∏
k

3N

∏
n=1

∞

∑
m=0

exp

(
− ε

n,k
m

kBT

)
, (32)

where kB is Boltzmann’s constant. From this expression it is
straightforward to obtain harmonic expressions to the internal
energy given as

E (T ) = kBT 2
(

∂ log(Qvib)

∂T

)
= ∑

kn
h̄ωkn

1
2
+

1

exp
(

h̄ωkn
kBT

)
−1

 .

(33)
However, the harmonic approximation has its limitations like
zero thermal expansion, temperature independence of elastic
constants and bulk modulus, equality of constant-pressure and
constant-volume specific heats, as well as infinite thermal con-
ductivity and phonon lifetimes.103 To overcome such drawbacks,
the simplest way includes quasi-harmonic quantities in the sense
of the quasi-harmonic approximation (QHA).104–107 According to
the QHA the Helmholz free energy of a crystal is written retaining
the same harmonic expression but introducing an explicit depen-
dence of vibrational phonon frequencies on volume as given by

FQHA(T,V ) =U0(V )+FQHA
vib (T,V ), (34)

where U0(V ) is the zero-temperature internal energy of the crys-
tal without any vibrational contribution (similar to volume con-
strained geometry optimizations) and the vibrational part is given
by

FQHA
vib (T,V ) = ∑

kn

h̄ωkn(V )

2
+ kBT

[
ln

(
1− exp

(
−

h̄ωkn(V )

kBT

))]
,

(35)
where the first part refers to the zero-point energy of the system.
The equilibrium volume at a given temperature T is obtained by
minimizing FQHA(T,V ) with respect to volume V while keeping T
constant.

6.5 Technical details

All molecular dynamic dipole polarizabilities α(iω) were cal-
culated using time-dependent density functional theory (TD-
DFT).108,109 A variant of the PBE0 hybrid functional was used,
with a Fock-exchange admixture of 37.5% (dubbed PBE38). This
method has already proved its accuracy and robustness in previ-
ous works.24,26,27 The atomic orbital (AO) basis sets used in the
TD-DFT calculations are of def2-QZVP110,111 quality closely rep-
resenting the complete basis set (CBS) limit for this property. The

following def2-ECPs are used: ECP-28112–114 covering 28 core
electrons (for Rb, Sr, Y-Cd, In-SB, Te-Xe, Ce-Lu), ECP-46 covering
46 core electrons (for Cs, Ba, La), and ECP-60 covering 60 core
electrons (for Hf-Hg, Tl-Bi, Po-Rn) as defined in Ref. 110. Crys-
tal structures have been extracted from MATERIALS PROJECT 115

(for alkali metals Li, Na, K, Rb, and Cs; for alkaline earth metals
Be, Mg, Ca, Sr, and Ba; for d-block elements Sc and Y) and used
within the PEECM to obtain dynamic polarizabilities. Since some
elements have experimental crystal structures that exhibit high
dipole moments, the PEECM calculation could not be successfully
converge (e.g, for Ti, Zr, Hf, V, Nb, and Ta). For these elements
closed-shell monomers without dipole moments were extracted
from the crystal structure and dynamic polarizabilities were cal-
culated using the presented level of theory. Furthermore, periodic
coordination numbers were assigned to those six extracted clus-
ters to be used as approximated “periodic” reference system. The
ECPs used to create the shells within part (II) of the particular
clusters have been extracted from the TURBOMOLE 116,117 basis
set library (nomenclature reads as follows element/ecp-electrons
in core-name; for alkali metals we used: Li/ecp-2-sdf, Na/ecp-
10-sdf, K/ecp-18-sdf, Rb/ecp-36-sdf, and Cs/ecp-54-sdf; for earth
alkali metals we used: Be/ecp-2-sdf, Mg/ecp-10-sdf118, Ca/ecp-
18-sdf, Sr/ecp-36-sdf, and Ba/ecp-54-sdf; for d-block elements we
used: Sc/ecp-10-mdf119, Y/ecp-28-mwb120; for halogen we ap-
plied Cl/ecp-10-sdf and F/ecp-2-sdf and for oxygen we applied
O/ecp-2-sdf).

6.6 Computational details

6.6.0.1 X23: Solid state volumina For the determination
of the 23 molecular crystal structure volumes we applied the
VASP 6.0.8 software package. All PBE PAW calculations used
an 800eV plane-wave cutoff (convergence criteria: energy differ-
ence ∝ 10−6). The DFT conjugated gradient method has been
used within the optimization where all atomic positions and the
cell has been relaxed. For all calculations standard pseudopoten-
tials have been used.

6.6.0.2 ICE10: QHA calculations Quasi-harmonic approxi-
mation calculations have been performed for eight different ice
polymorphs. For this purpose the QHA implementation within
the CRYSTAL17 code has been applied in combination with HSE-
3c. Here, four different volumina have been used (steps of 2.5%)
for which overall ten different temperatures have been applied
(ranging from 10 K to 100 K applying 10 K steps). V0 has been
extracted from Helmholtz free energy calculations at a pressure
of 0 GPa.

6.6.0.3 Timings for the cyclohexanedione crystal A self-
consistent field (SCF) calculation has been performed for the cy-
clohexanedione crystal using the PBE/800eV setup in VASP 6.0.8
(convergence criteria: energy difference ∝ 10−6). The converged
wave function has been applied to determine the pure timing aris-
ing from each dispersion correction. For SCAN-rVV10 and vdW-
DF2 we applied an PAW cutoff of 800eV. For all calculations stan-
dard pseudopotentials have been used.
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6.6.0.4 Refractive indices Refractive indices have been cal-
culated for an organic polymer database. For D3 and D4 we use
polarizabilities from the DFTD3 and DFTD4 standalone programs.
For other dispersion corrections we have calculated polarizabil-
ities using VASP 6.0.8 with a PBE/500eV setup using standard
pseudopotentials.

6.6.0.5 Salt polarizabilities Salt polarizabilities have been
calculated for several alkali halides. For D3 and D4 we use po-
larizabilities from the DFTD3 and DFTD4 standalone programs.
For other dispersion corrections we have calculated polarizabil-
ities using VASP 6.0.8 with a PBE/500eV setup using standard
pseudopotentials. All values are given in table 3 together with
statistical measures.
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